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Abstract

Background: A large number of web-based COVID-19 symptom checkers and chatbots have been developed; however,
anecdotal evidence suggests that their conclusions are highly variable. To our knowledge, no study has evaluated the accuracy
of COVID-19 symptom checkers in a statistically rigorous manner.

Objective: The aim of this study is to evaluate and compare the diagnostic accuracies of web-based COVID-19 symptom
checkers.

Methods: We identified 10 web-based COVID-19 symptom checkers, all of which were included in the study. We evaluated
the COVID-19 symptom checkers by assessing 50 COVID-19 case reports alongside 410 non–COVID-19 control cases. A
bootstrapping method was used to counter the unbalanced sample sizes and obtain confidence intervals (CIs). Results are reported
as sensitivity, specificity, F1 score, and Matthews correlation coefficient (MCC).

Results: The classification task between COVID-19–positive and COVID-19–negative for “high risk” cases among the 460
test cases yielded (sorted by F1 score): Symptoma (F1=0.92, MCC=0.85), Infermedica (F1=0.80, MCC=0.61), US Centers for
Disease Control and Prevention (CDC) (F1=0.71, MCC=0.30), Babylon (F1=0.70, MCC=0.29), Cleveland Clinic (F1=0.40,
MCC=0.07), Providence (F1=0.40, MCC=0.05), Apple (F1=0.29, MCC=-0.10), Docyet (F1=0.27, MCC=0.29), Ada (F1=0.24,
MCC=0.27) and Your.MD (F1=0.24, MCC=0.27). For “high risk” and “medium risk” combined the performance was: Symptoma
(F1=0.91, MCC=0.83) Infermedica (F1=0.80, MCC=0.61), Cleveland Clinic (F1=0.76, MCC=0.47), Providence (F1=0.75,
MCC=0.45), Your.MD (F1=0.72, MCC=0.33), CDC (F1=0.71, MCC=0.30), Babylon (F1=0.70, MCC=0.29), Apple (F1=0.70,
MCC=0.25), Ada (F1=0.42, MCC=0.03), and Docyet (F1=0.27, MCC=0.29).

Conclusions: We found that the number of correctly assessed COVID-19 and control cases varies considerably between symptom
checkers, with different symptom checkers showing different strengths with respect to sensitivity and specificity. A good balance
between sensitivity and specificity was only achieved by two symptom checkers.

(J Med Internet Res 2020;22(10):e21299) doi: 10.2196/21299
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Introduction

In the modern world, large numbers of patients initially turn to
various web-based sources for self-diagnoses of health concerns
before seeking diagnoses from a trained medical professional.
However, web-based sources have inherent problems, such as
misinformation, misunderstandings, misleading advertisements,
and varying quality [1]. Interactive web sources developed to
provide web-based diagnoses are sometimes referred to as
symptom checkers or chatbots [2,3]. Based on a list of entered
symptoms and other factors, these symptom checkers return a
list of potential diseases.

Web-based symptom checkers have become popular in the
context of the novel COVID-19 pandemic, as access to
physicians is reduced, concern in the population is high, and
large amounts of misinformation are circulating the internet [1].
On COVID-19 symptom checker web pages, users are asked a
series of COVID-19–specific questions; upon completion, an
association between the answers and COVID-19 is given
alongside behavioral recommendations, such as self-isolation.

In this context, COVID-19 symptom checkers are valuable tools
for preassessment and screening during this pandemic; they can
both ease pressure on clinicians and decrease footfall within
hospitals. One example is practicing social distancing by not
going to a physician’s waiting room when feeling sick. The
importance of social distancing has been highlighted in the
COVID-19 pandemic [4,5], the 2009 H1N1 influenza pandemic
[6], and the 1918-1919 influenza pandemic [7] and is reviewed
in [8]. Symptom checkers can also ease pressure on medical
telephone hotlines [9,10] by reducing the number of human
phone operators needed.

A large number of symptom checkers specific to COVID-19
have been developed. Empirical evidence (eg, a newspaper

article [11]) suggests that their conclusions differ, with possible
implications for the quality of the symptom assessment. To our
knowledge, there are no studies comparing and evaluating
COVID-19 symptom checkers.

In this paper, we present a study evaluating 10 different
web-based COVID-19 symptom checkers using 50 COVID-19
cases extracted from the literature and 410 non–COVID-19
control cases of patients with other diseases. We found that the
classifications of many patient cases by the COVID-19 symptom
checkers differ. Therefore the accuracies of symptom checkers
also differ.

Methods

COVID-19 Symptom Checkers
In April 2020, we conducted a Google search for COVID-19
symptom checkers using the search terms COVID-19 symptom
checker and Corona symptom checker. All ten COVID-19
symptom checkers that we found and that were freely available
on the internet between April 3 and 9, 2020, were included in
this study (Table 1). Nine checkers were implemented in the
English language, while one was in German. These symptom
checkers were used in the versions available in this date range,
and updates after this date were not considered for analysis.

As a baseline for the performance evaluation of the 10
web-based COVID-19 symptom checkers, we developed two
additional simplistic symptom checkers. These two checkers
evaluate and weigh the presence of COVID-19 symptom
frequencies provided by the World Health Organization (WHO)
[12] (see Multimedia Appendix 1) based on vector distance
(SF-DIST) and cosine similarity (SF-COS). These approaches
can be implemented in a few lines of code (see Multimedia
Appendix 2).

Table 1. List of web-based COVID-19 symptom checkers included in this study.

ReferenceName

[13]Ada

[14]Apple

[15]Babylon

[16]CDCa

[17]Cleveland Clinic

[18]Docyet

[19]Infermedica

[20]Providence

[21]Symptoma

[22]Your.MD

aCDC: US Centers for Disease Control and Prevention.

Clinical Cases
We used a total of 460 clinical cases to evaluate the performance
of the COVID-19 symptom checkers. Each case lists both

symptoms and the correct diagnosis alongside the age and sex
of the patient when available. Details of the two case sets used
are given below and in Table 2.
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Table 2. Number of symptoms and age and sex distributions in each case set (N=460).

Case setCharacteristic

Control, n=410COVID-19, n=50

Number of symptoms

9.8 (4.4)8.4 (4.1)Mean (SD)

97Median

Age (years)

38.6 (22.4)45.6 (16.9)Mean (SD)

3845Median

Sex, n (%)

238 (58)25 (50)Male

160 (39)21 (42)Female

12 (2.9)4 (8)Unknown

COVID-19 Cases
A total of 50 COVID-19 cases were extracted by three trained
physicians from the literature in March and April 2020 and are
listed in Multimedia Appendix 3. Each case describes one
patient’s medical situation (ie, symptoms experienced or
COVID-19 contacts). The symptoms of each case were extracted
separately from the COVID-19 engine construction and
evaluation. The physicians entering the symptoms did not know
how the engine would react to their symptom lists. To the best
of our knowledge, we included all cases available at the time
except for severe edge cases (eg, several severe comorbidities
causing unrelated symptoms). Changes to the initial symptom
lists were not allowed later.

Control Cases
The COVID-19 case data enabled us to evaluate the sensitivity
of the symptom checkers. To evaluate the specificity, 410
control cases from the British Medical Journal (BMJ) were also
sourced [23,24]. To allow a fair assessment, we only used cases
containing at least one of the COVID-19 symptoms reported
by the WHO [12] (see Multimedia Appendix 4). Classifying
nonrelevant cases (eg, a fracture) would overestimate the
symptom checkers’ specificity. Furthermore, these patients
would not consult a web-based COVID-19 symptom checker.
None of the 410 BMJ cases lists COVID-19 as the diagnosis,
as the cases where collected before the COVID-19 outbreak.

Mapping of Symptoms and Addressing Missing Inputs
and Questions
Each of the symptom checkers has a different interface and
different question sequences to reach the diagnosis. Therefore,
we mapped the exhibited symptoms across our cases to the
constrained input allowed by each checker via a synonym table
and hierarchy created by a trained physician. For example, if a
checker asked for “shortness of breath” but the case description
listed “respiratory distress” or “(acute) dyspnea”, the symptom
was still correctly used for this case and symptom checker.

Not all cases contained answers to all the questions of a checker.
In such cases, the answer “I don't know” was chosen; if the “I
don't know” answer option did not exist in a checker, “No” was

used. In contrast, if a case contained information that did not
fit any of the questions of the checker, this information was not
used for this checker.

Accuracy Evaluation
For statistical analysis, we used the following classification:

• True-positive : COVID-19 case classified as COVID-19
• False-positive: non–COVID-19 case classified as

COVID-19
• True-negative: non–COVID-19 case classified as

non–COVID-19
• False-negative: COVID-19 case classified as

non–COVID-19

For each symptom checker, we calculated the following metrics:

Sensitivity (true-positive rate):

Specificity (true-negative rate):

F1 score (harmonic mean of the precision and recall):

Matthews correlation coefficient (MCC):

Classification of the Outputs of the Symptom Checkers
Most COVID-19 symptom checkers return human-readable text
that contains an association between the entered symptoms and
COVID-19. We classified these associations into three different
categories: high risk, medium risk, and low risk. Respective
examples of a high, medium, and low risk classification are
“There is a high risk that COVID-19 is causing your symptoms,”
“Your symptoms are worrisome and may be related to
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COVID-19,” and “There's nothing at present to suggest that
you have coronavirus (COVID-19). Please practice
physical/social distancing.” Our full mapping of text outputs to
risk for all symptom checkers and all text outputs is given in
Multimedia Appendix 5.

Some symptom checkers only have two possible outputs:
COVID-19 risk or no COVID-19 risk. To compare symptom
checkers with three and two risk levels, we performed two
different analyses: (1) medium risk and high risk were treated
as COVID-19–positive (and low risk was treated as COVID-19
as negative), and (2) high risk was treated as
COVID-19–positive (and low risk and medium risk were treated
as COVID-19–negative).

Bootstrapping
To evaluate the robustness of our statistical measures and
account for the unbalanced dataset, we performed bootstrapping

across our cases. A total of 3000 random samples consisting of
50 COVID-19 cases and 50 control cases was created by
sampling with replacement from the original set of 50
COVID-19 cases and the 410 control cases.

Results

To analyze the performance of the 10 web-based symptom
checkers, we calculated the sensitivity and the specificity of
each symptom checker based on the cases described in the
method section. Scatterplots of the sensitivity and specificity
to COVID-19 of the different symptom checkers are given in
Figure 1, and detailed numerical values are provided in
Multimedia Appendix 6 and Multimedia Appendix 7. These
symptom checkers fall approximately into four groups: upper
left corner, lower right corner, central region, and upper right
corner.

Figure 1. Sensitivities and specificities of web-based COVID-19 symptom checkers to COVID-19 cases and controls. The means of the 3000 random
samples and 90% bootstrap CIs are reported as dots and crosses, respectively. (A) High risk: A COVID-19–positive prediction is defined only by a high
risk result returned by a symptom checker. (B) Medium-high risk: A COVID-19–positive prediction is defined by either a medium risk or high risk
result returned by a symptom checker. CDC: US Centers for Disease Control and Prevention; SF-COS: symptom frequency based on cosine similarity;
SF-DIST: symptom frequency based on vector distance.

Further analysis of the true and false case classifications of these
groups shows that the group in the upper left corner is composed
of symptom checkers that require the presence of one (or few)
highly specific symptoms to classify a case as
COVID-19–positive (eg, “intensive contact with a
COVID-19–positive person”). In this way, these symptom
checkers miss many patients who are positive for COVID-19
who did not exactly report this highly specific symptom. In
contrast, these highly specific symptoms are rarely present in
non–COVID-19 cases. This results in low sensitivity and high
specificity.

The group in the lower right corner is composed of symptom
checkers that predict a case as COVID-19–positive based on
the presence of one or few COVID-19 associated symptoms
(eg, the presence of fever or cough is sufficient to predict a
patient to be COVID-19–positive). These checkers classify

almost every patient that has a respiratory disorder or viral
infection as COVID-19–positive. As such, they do not miss
many patients with COVID-19 but wrongly predict many
patients who do not have COVID-19 to be COVID-19–positive.
This results in low specificity and high sensitivity.

The group in the more central region is composed of symptom
checkers that use a more balanced prediction but exhibit limited
success in correctly classifying patients with and without
COVID-19.

The group in the upper right corner is composed of symptom
checkers that also use a more balanced model to associate
symptoms to COVID-19; however, in this case, the classification
of patients with and without COVID-19 is more successful.
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Discussion

Principal Findings
We classified 50 COVID-19 case descriptions from the recent
literature as well as 410 non–COVID-19 control cases using 10
different web-based COVID-19 symptom checkers. Only 2/10
symptom checkers showed a reasonably good balance between
sensitivity and specificity (Figure 1). Most other checkers were
either too sensitive, classifying almost all patients as
COVID-19–positive, or too specific, classifying many patients
with COVID-19 as COVID-19–negative (Figure 1). For
example, our BMJ control cases included a patient suffering
from a pulmonary disease who presented with various
symptoms, including fever, cough, and shortness of breath,
which are the three most frequent symptoms associated with
COVID-19. Additional symptoms and risk factors were not
considered by most checkers. Namely, loss of appetite, green
sputum, and a history of smoking can be used to discern a
correct diagnosis of COVID-19–negative.

Furthermore, in terms of F1 score, most of the symptom
checkers were outperformed by a simplistic symptom frequency
vector approach; the F1 scores were 0.57 and 0.79 for SF-DIST
and SF-COS, respectively. Notably, the cosine version showed
surprisingly good results, outperforming 8/10 symptom checkers
based on the F1 score.

In contrast, it could also be argued that sensitivity is more
important for a COVID-19 symptom checker than specificity
(ie, numerous false-positive COVID-19 diagnoses are not of
concern as long as no COVID-19 infections are missed).
However, it is not difficult to create a symptom checker that is
100% sensitive by simply returning every test as
COVID-19–positive. While no checker does this 100% of the
time, some checkers tend to declare every person who reports
any flu-like symptom to be COVID-19–positive. This assesses
every patient with allergic asthma (“shortness of breath”),
heatstroke (“fever”), or heavy smoker (“cough”) to be
COVID-19–positive. Therefore, we believe that a healthy
balance between sensitivity and specificity is necessary for a
useful checker. However, from the figure in this paper, readers
can decide for themselves which balance between sensitivity
and specificity is most useful and select the corresponding
checker.

An additional aspect is that the developers of the 10 checkers
may have had different purposes in mind during development.
For example, they may have envisioned the checker to be a
self-triage and recommendation tool or a likelihood predictor
(as classified in [2]). In our study, we found that most checkers
provide a certain likelihood as well as recommendations;
therefore, classification is difficult. Therefore, we did not further
subgroup the checkers in our analysis.

To our knowledge, this is the first scientific evaluation of
web-based COVID-19 symptom checkers; however, there are
a number of related studies evaluating symptom checkers. These
include a study that evaluated 23 general-purpose symptom
checkers based on 45 clinical case descriptions across a wide
range of medical conditions and found that the correct diagnosis

was listed among the top 20 results of the checkers in 58% of
all cases on average [2]. The aforementioned study design was
extended to five additional symptom checkers using ear, nose,
and throat (ENT) cases, showing similar results [25]. Other
evaluations include a study of symptom checkers used for knee
pain cases; based on 527 patients and 26 knee problems, it was
found that the physician’s diagnosis was present within the
prediction list in 89% of the cases, while the specificity was
only 27% [26]. In another study, an analysis of an automated
self-assessment triage system for university students prior to
an in-person consultation with a physician found that the
system’s urgency rating agreed perfectly in only 39% of cases;
meanwhile, for the remaining cases, the system tended to be
more risk-averse than the physician [27]. Also, the applicability
of web-based symptom checkers for 79 persons aged ≥50 years
based on “think-aloud” protocols [28], deep learning algorithms
for medical imaging [29], and services for urgent care [3] were
evaluated.

The acceptability of the performance of a web-based symptom
checker depends on the perspective and use of the results. In
the case of COVID-19, a web-based assessment cannot fully
replace a polymerase chain reaction (PCR) test, as some people
are asymptomatic while others presenting with very specific
COVID-19 symptoms may in fact have a very similar but
different disease. Regardless, web-based COVID-19 symptom
checkers can act as a first triage shield to avoid in-person
physician visits or ease pressure on hospitals. Symptom checkers
could even replace telephone triage lines in which
non–medically trained personnel read a predefined sequence of
questions. Although this was not part of this study, the authors
believe that COVID-19 symptom checkers (if appropriately
maintained and tested) may also be more reliable than the direct
use of search engines such as Google or information via social
media.

Strengths and Limitations
The strength of this study lies in the fact that it is based on a
large number of real patients’ case descriptions from the
literature (n=460) and a detailed evaluation of the best
performing symptom checker in terms of F1 score (Multimedia
Appendix 8). In contrast, a potential weakness of this study lies
in its use of real literature-based cases, which may have biased
the test set to rather severe cases of COVID-19 because mild
and uninteresting cases are usually not found in the literature.
We countered this bias by not including extreme edge cases
from the literature in our 50 COVID-19 cases. A limitation of
our study is that the benchmarking represents a specific point
in time (April 2020; see Methods) and underlying algorithms
may change. However, this temporal limitation is present in all
benchmarking studies as knowledge increases and software is
updated. Another bias may be that our control case descriptions
do not report a COVID-19 contact, even though, for example,
a person with a cold may have had a COVID-19 contact (and
did not become infected). Another limitation of this study is the
nonstraightforward mapping of the symptom checker outputs
to risk levels (Multimedia Appendix 5). The interpretation of
the textual output is debatable in some cases. We countered this
by allowing three different risk levels and merging them in two
different ways (see Figure 1A and Figure 1B). Also, every
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symptom checker output was classified by multiple persons
until consensus was reached.

Conclusion
Symptom checkers are being widely used in response to the
global COVID-19 pandemic. As such, quality assessment of

these tools is critical. We show that various web-based
COVID-19 symptom checkers vary widely in their predictive
capabilities, with some performing equivalently to random
guessing while others show strength in sensitivity, specificity,
or both.
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