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Abstract

Background: The introduction of next-generation sequencing (NGS) into molecular cancer diagnostics has led to an increase
in the data available for the identification and evaluation of driver mutations and for defining personalized cancer treatment
regimens. The meaningful combination of omics data, ie, pathogenic gene variants and alterations with other patient data, to
understand the full picture of malignancy has been challenging.

Objective: This study describes the implementation of a system capable of processing, analyzing, and subsequently combining
NGS data with other clinical patient data for analysis within and across institutions.

Methods: On the basis of the already existing NGS analysis workflows for the identification of malignant gene variants at the
Institute of Pathology of the University Hospital Erlangen, we defined basic requirements on an NGS processing and analysis
pipeline and implemented a pipeline based on the GEMINI (GEnome MINIng) open source genetic variation database. For the
purpose of validation, this pipeline was applied to data from the 1000 Genomes Project and subsequently to NGS data derived
from 206 patients of a local hospital. We further integrated the pipeline into existing structures of data integration centers at the
University Hospital Erlangen and combined NGS data with local nongenomic patient-derived data available in Fast Healthcare
Interoperability Resources format.

Results: Using data from the 1000 Genomes Project and from the patient cohort as input, the implemented system produced
the same results as already established methodologies. Further, it satisfied all our identified requirements and was successfully
integrated into the existing infrastructure. Finally, we showed in an exemplary analysis how the data could be quickly loaded into
and analyzed in KETOS, a web-based analysis platform for statistical analysis and clinical decision support.

Conclusions: This study demonstrates that the GEMINI open source database can be augmented to create an NGS analysis
pipeline. The pipeline generates high-quality results consistent with the already established workflows for gene variant annotation
and pathological evaluation. We further demonstrate how NGS-derived genomic and other clinical data can be combined for
further statistical analysis, thereby providing for data integration using standardized vocabularies and methods. Finally, we
demonstrate the feasibility of the pipeline integration into hospital workflows by providing an exemplary integration into the data
integration center infrastructure, which is currently being established across Germany.
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Introduction

Background
Combining omics data with other clinical patient data has been
the focus of multiple studies in the past years [1-3]. In particular,
the emergence and widespread use of next-generation
sequencing (NGS) for the identification of pathological gene
variants has led to an increase in the amount of data available
for diagnosis. This has directly improved the quality of medical
care for many diseases [4-6]. The meaningful combination of
NGS data with other patient data from varying sources has been
challenging for a number of reasons. First, the amount of data
generated by NGS is vast compared to other data such as
laboratory and clinical data, data derived from classical
diagnostic tests, and demographic data, for example, age and
gender. Second, NGS data typically contains many data points,
which might not be relevant for subsequent analysis. Third,
NGS data are highly sensitive in terms of privacy and more
difficult to anonymize in a meaningful way. Therefore, any
analysis within and across institutions will have to be carefully
considered and crafted in a privacy-preserving manner. Many
different studies have been conducted to investigate the
feasibility of directly integrating omics data into clinical data
repositories such as OMOP (Observational Medical Outcomes
Partnership) [7], i2b2 (informatics for integrating biology and
the bedside), and transMART [2]. The OHDSI-OMOP
(Observational Health Data Sciences and Informatics-OMOP)
common data model (CDM) focuses on observational research,
and i2b2 focuses on the integration of different types of data
into 1 clinical repository. These systems require an extra
genomics pipeline to be run before the data can be loaded and
integrated into the data repositories. Many of the proposed
methods are not optimized for initial data investigation,
automatic annotation of the data, or privacy-preserving
cross-hospital analysis.

This study focusses on bridging this gap by creating a system
that supports the whole process. It starts from variant call format
(VCF) files. The data are then annotated and preanalyzed. In
the final step, selected genomics data are combined with other
structured and standardized patient data in 1 data set in a table
format for further statistical analysis. We achieve this by
extending the open source framework GEMINI (GEnome
MINIng) [8]. It allows a user to load VCF files and places
genetic variants, sample phenotypes and genotypes, as well as
genome annotations into 1 database. This supports powerful
exploration of genetic variations for disease and population
genetics. GEMINI makes it possible to analyze the NGS data
using structured query language (SQL), which allows
researchers to filter variants by clinical relevance, rarity, and
read quality. Our proposed system then combines GEMINI with
the Fast Healthcare Interoperability Resources (FHIR) [9], a
standard for health care data exchange. FHIR describes the
clinical information in so-called resources. These modular
components describe different elements found in electronic

health records, for example, a patient or a clinical observation
such as a laboratory result. It was developed to address the
shortcomings of the previously developed HL7 clinical care
document standard. The FHIR standard aims to improve
interoperability, and its lightweight nature and direct use of
common data formats such as JSON and XML allows it to easily
integrate with lightweight web services, similar to the ones
created in the pipeline described here.

In order to create a pipeline on standardized data such as FHIR,
heterogenous hospital data need to be transformed into a
standardized format first. The German Medical Informatics
Initiative (MI-I) [10] has recently funded 4 consortia of mainly
university hospitals across Germany to investigate how
heterogenous clinical data, including omics data, can be
integrated into clinical data repositories. One aim of the MI-I
is to establish data integration centers (DICs), which are the
backbone of the cross-hospital and cross-consortia
communication. The DICs will provide different services,
including data integration, data harmonization, standardized
data repositories, consent management, and ID management
[11-14]. This study builds on efforts of 2 use cases from the
MIRACUM (Medical Informatics in Research and Care in
University Medicine) [14], particularly on 1 use case, which
aims to establish a genomics pipeline to support NGS data
interpretation and clinical decision making at molecular tumor
boards. This MIRACUM-Pipe [15], similar to other genomics
pipelines, creates VCF files in the process. These VCF files
provide a good point of integration for further data analysis
beyond the use for the molecular tumor board. Another use case
of the MIRACUM consortium focuses on analyzing data within
and across hospitals in a privacy-preserving manner, as well as
deploying prediction and decision support models in a clinical
context.

Aim of the Study
In order to treat individual patients within the molecular tumor
board, individual sequencing data are generated in VCF. Our
study supports research by building on these data, aggregating
them across multiple patients and enriching them with clinical
data. These integrated data sets are analyzed with open-source
analysis tools and frameworks to generate or validate
hypotheses. Our proposed system extends GEMINI with
multiple web services and a user interface to support the whole
data flow as well as the subsequent integration with the already
established FHIR [9] data repository, KETOS [16], and
DataSHIELD [17] platforms for statistical analysis. To validate
our approach, we implemented and applied this data analysis
pipeline to data from the 1000 Genomes Project, which yielded
highly consistent results. We then applied our pipeline to
high-throughput gene panel sequencing data from a cohort of
206 patients from the Institute of Pathology of the University
Hospital Erlangen and compared the findings with the results
of the established Illumina genomics pipeline [18]. Finally, as
a proof of concept, we combined the selected data from this
patient cohort with diagnosis codes from the local FHIR server
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and analyzed the correlation between locations based on the
diagnoses and gene mutations to demonstrate one potential use
of the system.

Methods

Common Requirements for NGS Analysis
To understand the requirements for NGS analysis, we studied
the status quo of the Institute of Pathology of the University
Hospital Erlangen. The institute analyses gene mutations by
using a commercial pipeline provided by Illumina and presents
its findings to the local molecular tumor board. A detailed
description of the DNA and RNA library preparations from
patient tissues can be found in Multimedia Appendix 1. The
pipeline currently used by the institute has limited capabilities
when it comes to performing cross-patient analysis and is not
easily integrated with other open-source solutions. Therefore,
the following requirements were defined, which need to be met:
be on-premises, be open-source, deliver the same results as a
commercial product, allow analysis across multiple patients,
and possibility of web-based integration with existing and new
infrastructure to be developed.

Data Analysis
The biggest drawback of the current system is that it does not
support cross-patient analysis and integration of additional

patient data, as the patient data are distributed across multiple
systems in the hospital. The system therefore does not currently
support a way to, for example, correlate a patient’s diagnosis
with particular gene mutations as is done in our exemplary
analysis shown below. We therefore propose a new pipeline,
which improves on these drawbacks. Figure 1 depicts the
multistep analysis workflow of such a genomics pipeline. In
the first step, VCF files are uploaded into a database for gene
annotation and, subsequently, gene variant filtering and analysis.
To allow further processing of the data, it is crucial to filter
variants that are irrelevant for a particular research question.
The amount of data and noise must be reduced. For this,
researchers need to be able to query and filter the genomic
database. This would satisfy any research only focusing on NGS
data; however, in a clinical setting, NGS data become truly
meaningful when clinical patient data are available. To achieve
this, a standardized way to combine genomics data with clinical
data is essential. Finally, combined data needs to be transformed
to a common format that can easily be analyzed, processed
further, and integrated into existing data analysis frameworks.
The resulting system described in Figure 1 can be split into 2
larger parts: (1) Part 1: an NGS processing and analysis pipeline
and (2) Part 2: a system for integrating clinical patient data for
further analysis.

Figure 1. Genomics pipeline and analysis system. NGS: next-generation sequencing; VCF: variant call format.

Part 1: NGS Processing and Analysis Pipeline
Figure 2 shows the first part of the architecture of the
implemented genomics pipeline and analysis system. The
proposed system includes a graphical user interface (GUI, Figure

2), which supports all steps. The GUI is used to upload a VCF
file via the VCF web service, which is then processed and loaded
into GEMINI via the GEMINI web service. The web service
then uses our integrated GEMINI pipeline (Figure 3) to process
and load the data into GEMINI.
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Figure 2. Part 1: Next-generation sequencing processing and analysis pipeline architecture. GUI: graphical user interface; VCF: variant call format;
GEMINI: GEnome MINIng.

Figure 3. GEMINI pipeline schema. SnpEff: single nucleotide polymorphism effect; GEMINI: GEnome MINIng.

This GEMINI pipeline (Figure 3) first decomposes the VCF
file using the Variant Tools software [19] decompose
functionality, which splits up multiallelic variants of a VCF file,
resulting in a separate row for each reference
sequence/alternative sequence pair. The decomposed VCF file
is then normalized using the normalize function of the Variant
Tools software. This step ensures that each VCF entry is left
aligned and parsimonious, as described by Tan et al [20]. The
resulting VCF file is then automatically annotated using the
SNP (single nucleotide polymorphism) effect (SnpEff) tool,
reported by Cingolani et al [21]. The SnpEff annotation process
enriches the VCF file with information about possible effects
or malignancies. One important functionality of GEMINI is the
addition of multiple extra annotations during the load process.

This is the last step of our GEMINI pipeline (GEMINI-Load,
Figure 3) and includes the following annotation sources: 1000
Genomes Project (population data, allele frequencies) [22],
dbSNP (reference snp IDs according to the National Center of
Biotechnology Information) [23], and ClinVar (disease
information, eg, disease name or clinical relevance) [24].

Once loaded, data can be analyzed using the user interface (GUI,
Figure 4) and the GEMINI web service. The user interface
allows one to download a GEMINI database in the form of an
SQLite file for further use. It further implements a web-based
query tool for the GEMINI database. The advantage of this
web-based query tool is that the researcher does not need to
learn how to use the command line tool, while still providing
full GEMINI query functionality.
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Figure 4. Exemplified user interface.

Part 2: A System for Integrating Clinical Patient Data
for Further Analysis
Figure 5 depicts the structure of the complete system (numbers
indicate the order of the executable steps). A VCF file (Step 1)
is read, annotated, and loaded into GEMINI (steps 2-4). Then,
NGS data are combined with nonomics, clinical patient data in
an FHIR format using the patient ID as a link in a prepared data
set (steps 5-8) for the final analysis. The combining of the NGS
and clinical patient data is performed by the combining web
service, which is described in more detail with an example in

the Results section. One of the advantages of an on-premises
open source solution is the straightforward extendibility with
the other already established web services. Here, we used the
KETOS analysis platform established as part of the local DIC.
Further, the creation of a prepared data set in the form of a
comma-separated values (CSV) file allows a direct import into
the DataSHIELD platform for privacy-preserving cross-hospital
analysis (steps 8, 9a, and 9b). DataSHIELD supports this as its
underlying data warehouse supports the loading of CSV files
for further analysis.

Figure 5. Combining genomics and patient data. VCF: variant call format; GEMINI: GEnome MINIng; FHIR: Fast Healthcare Interoperability
Resources.
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Results

Overview
We implemented and deployed the above-described architecture
at the University Hospital Erlangen. Its functionality was then
validated by comparing the results of our analysis system to the
results from the 1000 Genomes Project [22] and subsequently
by assessing the ability of the system to identify relevant
tumor-associated gene variants. Finally, we used the system to
combine gene mutation data from 206 patients with diagnosis
codes from the local FHIR data repository. We analyzed the
resulting prepared data set by using KETOS and Jupyter

Notebook (interactive cell-based code development in a web
browser) [25].

Comparison with the 1000 Genomes Project
To demonstrate the accurate functionality of the pipeline, we
investigated the genomic variations of the X-chromosome in a
cohort of 1092 individuals, which were studied in the initial
phase of the 1000 Genomes Project [26]. First, we loaded the
publicly available VCF file data supplied by the study into a
GEMINI database by using our pipeline. Then, we compared
the variation data in our database to the results from the 1000
Genomes Project [27] (Table 1).

Table 1. Comparison of the statistical evaluation of the 1000 Genomes Project and GEMINI (GEnome MINIng) pipeline.

GEMINI (n)1000 Genomes Project (n)Mutations

Single nucleotide polymorphisms

1,275,275~1,300,000Total variants

104,757~105,000Average per sample

Indels

59,157~59,000Total variants

12,715~13,000Average per sample

Large deletions

432432Total variants

2626Average per sample

As shown in Table 1, results generated with our system were
identical to the results generated by the 1000 Genomes Project.
The analysis, including converting and loading the data into
GEMINI, took approximately 3 hours to run on a MacBook Pro
(15-inch, 2016)-System with 2.7 GHz Intel Core i7-Processor
and 16 GB 2133 MHz LPDDR3-RAM. Once loaded, the SQL
queries took approximately 120 seconds to complete. This
clearly demonstrates that the bottleneck is loading the data rather
than the subsequent analysis using GEMINI.

Comparison With Illumina Pipeline and Genomic
Analysis

Single Patient Analysis
We loaded individual patient–derived VCF files into the
GEMINI database and prepared an SQL query according to

established filter criteria used in the Illumina pipeline at the
Institute of Pathology. In the first iteration, the resulting SQL
query (Multimedia Appendix 2) filtered the following: all
variants that failed to pass any of the variant quality filters, all
variants that displayed a low impact in regard to protein
functionality, and all variants that were not considered
pathogenic as they did not change the coding protein (eg,
synonymous variants, intronic variants, upstream/downstream
variants). In addition, all variants with a population-based allele
frequency of ≥2% were also excluded. Table 2 shows an
exemplary comparison of the results from the Illumina versus
the GEMINI pipeline. Illumina VariantStudio yielded 16
variants, while GEMINI yielded 15 variants. The Illumina
VariantStudio included chromosome 4 position 10085736.
GEMINI also included chromosome 9 position 21970916.
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Table 2. Comparison of the filtered results of the mutations in the GEMINI (GEnome MINIng) and Illumina pipeline.

GEMINIIlluminaCodon change (according to the Human
Genome Variation Society coding)

PositionChromosome

✓✓c.539A>G403666581

✓✓c.537_538insCG403666591

✓✓c.1518_1519delTGinsCA2156322552

✓✓c.776C>G126456933

✓c.1088C>T1061561874

✓✓c.7504G>A1121787955

✓✓c.1189_1190delGGinsAC1765202705

✓✓c.1702_1704delCCAinsGCC1765226055

✓✓c.3029C>T1164119907

✓c.442G>A219709169

✓✓c.6624A>C377842416

✓✓c.5709dupG377933816

✓✓c.5709delG377933816

✓✓c.5687A>C377936116

✓✓c.277_278delCT757940817

✓✓c.2773C>A4154615822

Based on this result, we revised the filter criteria (Multimedia
Appendix 3) so that only variants with the filter impact_severity
high or one of the impact types (disruptive_inframe_deletion,
disruptive_inframe_insertion, missense_variant) were included
in the results. Furthermore, the ClinVar database was used to
assess the pathogenicity of individual gene alterations, which
is readily available in the annotated GEMINI database. All
mutations that were classified as benign, likely_benign, and
benign/likely_benign according to the ClinVar database were
deleted from the data set. Mutations without known ClinVar
status were kept and manually classified by interrogating
web-based variant repositories. The adjusted SQL query yielded
the same results as the Illumina pipeline, which qualifies the
open source solution for routine use in clinical practice. Finally,
the automation of the filtering steps saves hands-on time of
approximately 30 minutes per patient analysis.

Multiple Patient Analysis
We used gene sequencing data of 206 patients from the
University Hospital Erlangen. To analyze the data, the 206
individual VCF files were first merged and then loaded into
GEMINI. Each file had a size of 57 MB, which adds up to a
total file size of 12 GB. The merged VCF file had a size of 4.8
GB, and the GEMINI database a size of 664 MB. To analyze
the whole patient cohort, we first created an SQL query to
provide simple descriptive statistics of the cohort, such as the
overall number of mutations by impact_severity and type (snp,
indel). As expected, most mutations were classified with a low
impact severity. We then further analyzed the merged data with
another SQL query to determine the occurrence of gene
mutations, impact, and codon_change (Multimedia Appendix
4). This analysis revealed that impact_severity is not a suitable
filter for dichotomizing high impact variants from synonymous
variants. Therefore, specific impacts (impact column) were used

instead. In addition, the same filter criteria as described for the
adjusted query were used for further analysis (Multimedia
Appendix 3). Looking at the results in more detail, it became
clear that many of the mutations were sequencing artefacts,
which would have to be excluded before further analysis.
Especially critical is the fact that merging of multiple VCF files
leads to information loss and reduces the quality of the
sequencing data. We discovered that the merge function
vcf-merge of VCFtools only keeps the lowest passed quality
filter for each variant. This means that a higher quality grade
will only be listed in the FILTER column if it was passed by
each sample for a variant. Other merge functions such as the
merge function of BCFtools allow the user to choose between
either keeping the lowest passed or the highest passed filter for
each variant. However, in all cases, the quality criteria of each
individual sample cannot be reconstructed. This poses a potential
problem for further analysis as 1 low-quality read for a variant
in 1 sample would obscure potential good results in others,
leading to the exclusion of good-quality reads; vice versa, 1
high-quality read may mask low-quality reads, which might
impact the data analysis. A solution for this problem is to either
exclude particularly poor-quality samples before joint analysis
is executed or to load and analyze samples individually in an
automated way. This will preserve sample quality information
in a combined data set.

Creating a Prepared Data Set for Combined Analysis
To create a combined prepared data set and to make it available
for further analysis, we integrated the combining web service
with the KETOS platform by making the web service, which
combines the NGS data with the nonomics data, available to
the KETOS host by using internet protocol address restriction
as well as password protection. The combined prepared data
set is a combined subset of all the available NGS and clinical
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data, which were prepared for 1 specific research question. The
combining web service data for a particular research question
is identified using JSON syntax. It includes an fhir part to
specify patient data in the form of the required FHIR resources
and a GEMINI part to specify the filtered variants to be
included. The specification also requires patient IDs to identify
the patient cohort for further analysis (see Multimedia Appendix
5). In an initial combining web service specification, we required
the user to specify the exact variant positions and alleles. This
returned a data set in which the variant-specific fields are

connected to the variant via a prefix, which is added to all
extracted variant fields. The prefix contains the chromosome,
chromosomal location of the variant, as well as the nonreference
allele, for example, chrX#154158284#154158285#C#. The web
service collects the data for the prepared data set and returns
the data either as a JSON array or as a CSV file. The resulting
data set in the CSV format is then created as shown in Table 3.
It contains 1 row for each patient. Each row includes the patient
ID as well as other fields specified by the user.

Table 3. Example of a prepared data set.a

<prefix>b gts<prefix>b alt<prefix>b refDiseaseDate of birthGenderPatient_ID

CCG101.10.41male28

aThis table shows only the examples of values.
b<prefix> is the concatenation of the chromosome, chromosomal location of the variant, and nonreference allele, eg, chrX#154158284#154158285#C#—this
would, for example, result in the following column name: chrX#154158284#154158285#C#ref.

In our further analysis, we found this specification of the
combining web service to be limiting. We therefore extended
the web service to allow the researcher to specify the GEMINI
query used to collect the NGS data directly in SQL, rather than
being limited to extracting fields by variant position only. The
resulting request specification is analogous to the one described
in Multimedia Appendix 5, except for the following extending
fields inside the GEMINI part: sql_mode, sql, columns, rows.
This allowed us to create an example of a data set by using a
query similar to that shown in Multimedia Appendix 6, which

resulted in a data set similar to Table 4. This allowed us to avoid
information loss regarding read quality, as the combining web
service can query an individual database for each patient,
thereby omitting data-merging steps. The resulting data set
could then be imported into the KETOS analysis environment
where further analysis could be conducted within a Jupyter
Notebook [25] by using a researcher’s favorite tools. Further,
the comma-separated nature of the data set means that it could
also be imported into DataSHIELD, which supports further
privacy-preserving analysis across institutions.

Table 4. Format of the initial raw data set.a

GenehDiagnosise (ICDf10 Code)Date of birthdGendercPatient_IDb

PIK3CB2019-01-01T00:00:00+00:0001.01.50FemalePSEUDO-ID-1

PIK3CB2019-01-01T00:00:00+00:0001.01.50MalePSEUDO-ID-2

--01.01.50MalePSEUDO-ID-3

-2019-01-01T00:00:00+00:0001.01.50MalePSEUDO-ID-4

aSince the combined data set comprised 206 patients, 135 diagnoses, and 152 genes, values shown in this table are only examples, as the entire data
cannot be represented here.
bExamples of IDs of patients.
cExamples of genders.
dExamples of birth dates of patients.
eExample value, C20 or C61; timestamp diagnosis. (One column per diagnosis - if there is no diagnosis for a patient, the column will be empty in this
patient's row.)
fInternational Classification of Diseases.
hGene name examples. (One column per Gene - if there is no gene mutation for a patient, the column will be empty in this patient's row.)

Exemplary Analysis of Tumor Entity and Diagnosis
Inside KETOS by Using Jupyter Notebook
As a proof of concept for our system, we created a data set with
combined diagnostics and tumor mutational data for further
analysis. The initial data set included 206 patients. In the first
step, we identified 135 cancer-related diagnosis codes across
our cohort. We then used the revised GEMINI query
(Multimedia Appendix 3) to collect the gene mutations across
our cohort. The combined data set comprised 206 patients, 135

diagnoses, and 152 genes. The final raw data set had the format
shown in Table 4.

Using Jupyter Notebook in one of the analysis environments
inside the locally installed KETOS data analysis platform; we
requested the data from our combining web service. Patients
without diagnosis were removed. We removed all secondary
tumor diagnoses from our data set and focused on primary tumor
locations. Tumor entities represented by less than 4 patients
were regarded as underrepresented and were also removed prior
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to further analysis. This yielded a sample group of 124 patients
across 12 tumor entities. A total of 142 unique genes with
mutations were identified across this population. As a proof of
principle, we aimed to identify the driver mutations for each
tumor entity. Therefore, we included only genes that were
mutated in more than 50% of the patients, resulting in the heat
map depicted in Figure 6. This filtering step identified 14
frequently mutated genes within the patient cohort, mainly bona
fide tumor suppressor genes such as APC, ATM, BRCA2, or
TP53 and well-known protooncogenes such as GNAS, KRAS,
and NRAS. Notably, this analysis revealed tumor characteristic

mutational profiles. For instance, the colorectal cancer cohort
displayed a characteristic rate of APC, TP53, KRAS, and NRAS
mutations when compared to previously reported data [28].
Likewise, KRAS mutations were highly prevalent in the
pancreatic cancer cohort, a malignancy with an observed KRAS
mutation rate of up to 95% [29]. Since patients with cancers
were distributed across multiple sites and the number of patients
for some locations was small, a very accurate distribution by
location might have been lost in the analysis process. This could
be remedied using a larger sample size and factoring the
multisite cancers into the analysis.

Figure 6. Distribution (%) of the gene mutations by location. Y-axis: location (number of patients); x-axis: gene, eg, 80% for stomach for TET2 means
that 4 of 5 patients with stomach cancer had a mutation in TET2.

Discussion

Overview
We presented an open-source web-based NGS annotation
pipeline based on the GEMINI database, which produced the
same results as the established Illumina pipeline used in routine
diagnostics. We then extended our pipeline to combine the
annotated NGS data with other clinical data and demonstrated
the feasibility of our approach in an exemplary analysis, which
combined gene mutation data with clinical diagnosis codes.

The new pipeline improved on the current pipeline by supporting
this cross-patient analysis. This allowed us to combine the NGS
data with other patient data from other systems across the
hospital in 1 data set. The source code of this project is open to
the public and is available on GitHub [30].

Previous studies have investigated the integration of omics with
other clinical data. In particular, 2 larger systems, which have
recently seen efforts to achieve this integration, are the
OHDSI-OMOP CDM and i2b2. Murphy et al [2] compared 3
different strategies for integrating omics data into i2b2, 2 of
which combined omics and clinical data in the same database.
The third approach is similar to the one described in this study.
It kept omics data in a separate database. For the OMOP CDM,
NGS data were integrated into 1 database with clinical data by
creating additional tables for the omics data. All approaches
had 1 thing in common that they did not provide a user interface
for loading data into the respective databases. In contrast, our
pipeline significantly improves usability by providing a user
interface, which allows a user to process VCF files and load
them into the GEMINI analysis database. Additionally, using
an established omics database allowed us to fast-track querying
and preanalysis of the genomics data, thereby significantly
reducing the amount of data at an early stage in the process.
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GEMINI is part of the pipeline used by the MIRACUM
consortium and therefore provides us with a clear point of
integration. This means that once the MIRACUM-Pipe has been
established across the different DICs, it can potentially replace
the Illumina pipeline and integrate directly with the solution
described here.

Generalizability of the Pipeline
In this paper, we focus on the integration with the DICs currently
being established across Germany. However, as the system
relies on common formats (VCF for NGS data and FHIR for
clinical patient data), it could easily be applied to other hospitals.
The FHIR format, in particular, is currently seeing a rise in
popularity and as electronic health record vendors will provide
more and more data in the FHIR format, establishing a local
FHIR store with patient data should be feasible for many
institutions. However, as with any standardized format, studies
that have captured data in their own format or another standard
format such as OMOP would have to convert their data into
FHIR formatted data in order to take advantage of this solution.
As the whole solution can be deployed on premises, acceptance
for the solution should be high as the deployment can be tailored
to the specific needs of individual institutions and no data has
to leave the institution at any time. In our example, we show
how the prepared data sets, which result from the pipeline, can
be analyzed in Jupyter Notebook and KETOS, a web-based
analysis platform. Generally, the prepared data sets in the CSV
format could be read into many other analysis platforms such
as DataSHIELD, converted into table-like formats, and analyzed
further.

Potential Use of the System
We have demonstrated in this paper how our system can be
used to combine diagnoses with NGS data for further analysis.
Connecting the system to an FHIR repository of standardized
data means that there is a great opportunity to undertake further
analyses in the future with other data available in an FHIR store.
The MIRACUM FHIR store at the University Hospital in
Erlangen currently has information about patients, encounters,
diagnoses, laboratory results, procedures, and medications. The
system described here would, for example, support further
investigation of the correlation between the diagnosis of
COVID-19, disease outcome from hospital discharge
information, and gene mutations. The prerequisite for this would
be that the gene sequences of respective patients are sequenced
as part of a wider investigation.

Lessons Learned
We were able to augment the existing GEMINI software with
web services. The resulting pipeline, which is based on the open
source project, could be hosted on premises. It fulfilled the
requirement of producing the same results as the established
commercial pipeline. One of the biggest drawbacks of the
GEMINI database is that it does not allow the uploading of the
data of multiple patients directly into 1 database. Instead, data
from multiple patients have to be merged first, which leads to
a loss of information regarding the sequencing quality for a
particular variant. This may impact analysis and data
interpretation as low-quality reads and high-quality reads would

be interpreted in the same way. However, this limitation can be
augmented by preselecting files with good-quality reads or
loading each file individually and focusing only on variants that
are relevant to the particular research question. The combining
web service in sql_mode described above can also be used for
this type of analysis by simply requesting GEMINI data from
individual databases. Once loaded into the GEMINI database,
queries for a particular variant were very fast and results were
returned within seconds, making the analysis across multiple
patients feasible.

Limitations
The web-based user interface provides direct access to different
databases. However, exporting prepared data sets is currently
not supported and has to be triggered using a web service
representational state transfer call. Therefore, the platform
presented here requires the user to be proficient with SQL and
basic programing skills in order to extract and analyze the data,
making it unsuitable for users with no programming or SQL
skills. The chosen method of prefiltering data for further analysis
using an established, fast open source tool allows one to avoid
large data volumes. However, it also limits the explorative
analysis of NGS with other patient data. The medical device
regulations in Germany approves the use of the system described
above for research purposes only. The MIRACUM DICs follow
these regulations. The reliance on FHIR requires the
infrastructure to provide an FHIR server. However, the MI-I
initiative has already set FHIR as the format of choice for
interconsortia communication [31].

Future Directions
In this study, we focused on 1 hospital to show how a potential
analysis can be made possible within a hospital. In the future,
it would be of interest to duplicate the platform across multiple
hospitals to establish cross-hospital analysis pipelines and run
analyses across institutions by using DataSHIELD. Pipeline
automatization, ie, automated variant annotation and execution
of predefined variant filtering/classification steps as well as
automated inclusion of results in clinical reports could lead to
significant time savings. Another prospective extension would
be the integration of therapy suggestions from different
web-based databases such as Somatic Mutations In Cancer [32],
My Cancer Genome [33], and ClinicalTrials.gov [34]. The
prepared data set or combining web service should be integrated
further into existing workflows to automate data selection and
preparation as well as to make the data provision easier. The
FHIR standard for patient data is constantly being developed
and has been standardized to integrate omics data directly. Our
approach could be extended to load selected data directly into
an FHIR database, which would make explorative analysis
easier.

Conclusion
In this study, we successfully demonstrated how NGS genomics
data can be combined with FHIR clinical data to provide
accessory analysis to existing gene variant analysis solutions
in clinical settings. The chosen method of prefiltering data for
further analysis by using an established database, which is based
on the fast GEMINI open source tool, means that large data
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volumes can be avoided. In addition, we showed that a pipeline
and web services built on open-source tools delivered the same
results as a commercial product and could be hosted on the
premises, and be integrated well within a clinical DIC, building

on existing structures, and benefiting from the data
standardization DICs provide. Finally, we showed how the
system could be used to create and analyze a data set, which
included gene mutation and diagnosis data.
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CDM: common data model
CSV: comma-separated values
DIC: data integration center
FHIR: Fast Healthcare Interoperability Resources
GEMINI: GEnome MINIng
GUI: graphical user interface
i2b2: informatics for integrating biology and the bedside
MI-I: Medical Informatics Initiative
MIRACUM: Medical Informatics in Research and Care in University Medicine
NGS: next-generation sequencing
OHDSI: Observational Health Data Sciences and Informatics
OMOP: Observational Medical Outcomes Partnership
SNP: single nucleotide polymorphism
SnpEff: single nucleotide polymorphism effect
SQL: structured query language
VCF: variant call format
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