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Abstract

Background: As the process of producing official health statistics for lifestyle diseases is slow, researchers have explored using
Web search data as a proxy for lifestyle disease surveillance. Existing studies, however, are prone to at least one of the following
issues: ad-hoc keyword selection, overfitting, insufficient predictive evaluation, lack of generalization, and failure to compare
against trivial baselines.

Objective: The aims of this study were to (1) employ a corrective approach improving previous methods; (2) study the key
limitations in using Google Trends for lifestyle disease surveillance; and (3) test the generalizability of our methodology to other
countries beyond the United States.

Methods: For each of the target variables (diabetes, obesity, and exercise), prevalence rates were collected. After a rigorous
keyword selection process, data from Google Trends were collected. These data were denormalized to form spatio-temporal
indices. L1-regularized regression models were trained to predict prevalence rates from denormalized Google Trends indices.
Models were tested on a held-out set and compared against baselines from the literature as well as a trivial last year equals this
year baseline. A similar analysis was done using a multivariate spatio-temporal model where the previous year’s prevalence was
included as a covariate. This model was modified to create a time-lagged regression analysis framework. Finally, a hierarchical
time-lagged multivariate spatio-temporal model was created to account for subnational trends in the data. The model trained on
US data was, then, applied in a transfer learning framework to Canada.

Results: In the US context, our proposed models beat the performances of the prior work, as well as the trivial baselines. In
terms of the mean absolute error (MAE), the best of our proposed models yields 24% improvement (0.72-0.55; P<.001) for
diabetes; 18% improvement (1.20-0.99; P=.001) for obesity, and 34% improvement (2.89-1.95; P<.001) for exercise. Our proposed
across-country transfer learning framework also shows promising results with an average Spearman and Pearson correlation of
0.70 for diabetes and 0.90 and 0.91 for obesity, respectively.

Conclusions: Although our proposed models beat the baselines, we find the modeling of lifestyle diseases to be a challenging
problem, one that requires an abundance of data as well as creative modeling strategies. In doing so, this study shows a
low-to-moderate validity of Google Trends in the context of lifestyle disease surveillance, even when applying novel corrective
approaches, including a proposed denormalization scheme. We envision qualitative analyses to be a more practical use of Google
Trends in the context of lifestyle disease surveillance. For the quantitative analyses, the highest utility of using Google Trends is
in the context of transfer learning where low-resource countries could benefit from high-resource countries by using proxy models.
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Introduction

Background and Prior Work
Public health surveillance is the systematic collection, analysis,
and interpretation of health-related data to be used by those
responsible for preventing and controlling disease and injury
[1]. One of the most common examples of public health
surveillance involves what is known as disease surveillance.
Disease surveillance is traditionally accomplished through a
system of manual surveys, or mandatory reporting by the doctors
to the government. However, such a system is costly, prone to
missing new and rare events, and has a high time lag. Hence,
in the past decade, there has been an increase in the use of
Web-based data for disease surveillance with the goal of
supplementing, not replacing, traditional methods.

One of the first applications of Web-based disease surveillance
was the tracking of influenza using Web-based search behavior.
A seminal study on this was carried out by Ginsberg et al [2]
in the creation of Google Flu Trends (GFT). The purpose of
GFT was to monitor health-seeking behavior by analyzing
Google search queries to track influenza-like illness (ILI) in a
population. Although, the system shut down in 2015 for
overestimating the influenza epidemics [3], it started a whole
line of research using Google Trends to nowcast anything from
US presidential elections [4], to fertility rates [5], stock prices
[6], box office sales [7], and other economic indicators [8]. But
more than anything, it set a precedent for using Web search data
for nowcasting and monitoring diseases [9].

Most of the work on disease surveillance focuses on fast-moving
infectious or communicable diseases where the goal is to predict
the disease outbreak as early as possible [10]. In this domain,
previous work includes using data for predicting influenza in
South China [11], using Google Trends to determine relationship
between sexually transmitted infection (STI)–related search
engine trends and STI rates [12], and the use of other search
engines such as Yahoo for surveillance of influenza in the
United States [13].

However, noncommunicable diseases (NCDs) or lifestyle
diseases, such as obesity, smoking, diabetes, depression, or lack
of physical activity, account for a far larger share of both the
US and global health care system’s cost. According to the World
Health Organization, lifestyle diseases are responsible for around
70% of all deaths globally every year [14]. In the United States,
the economic burden of obesity-related diseases alone is around
US $190 billion [15]. This makes tracking of these diseases
important for timely allocation of resources and implementation
of interventions such as taxation, policy changes, or public
health campaigns. However, the current traditional methods of
surveillance used in the United States are costly, labor-intensive,
and time-consuming. In the international setting, most countries
do not even have such surveillance systems, and lack data and
statistics about population behavior and disease risk factors.
This has triggered researchers to use data on the Web, and

specifically Web search activity as a proxy to predict the
prevalence of NCDs.

Google Trends is one of the most popular tools for analyzing
Web search activity. Research in the domain of using Google
Trends covers anything from the prediction of suicide risks,
depression, shared migraine experiences, and stress in a
population [16-21] to monitoring of nonsuicidal self-injury rates
[22], correlational studies between Google Trends and actual
suicide risk and rates [23-27], influence of seasons on the
incidences of depression [28], study of psychological and social
factors affecting internet searches related to suicide [29],
seasonality in seeking of mental health information [30], low
validity of Google Trends in forecasting suicidal risk [31], the
infoveillance of cancer incidence rates [32,33], mortality rates
[34], obesity [35], diabetes [36], dental caries [37-39], the
behavioral forecasting and awareness of alcohol consumption
rates, and drugs [17], seasonal variation in
ophthalmology-related diseases [40], geographical variance in
stroke prevalence [41], and a multitude of other relevant
literature, a survey of which can be found in [9].

Existing Challenges in Modeling Noncommunicable
Diseases With Google Trends Data
As illustrated above, the literature on the infodemiology and
infoveillance of NCDs is extensive and diverse. However,
almost all of it suffers from a fundamental problem when trying
to build models—the scarcity of data. This is primarily a
consequence of the slow-moving nature of most of the NCDs,
as well as the lack of resources to conduct finer temporal
surveillance. As a result, the surveillance data for lifestyle
diseases are typically available on an annual basis as opposed
to weekly basis for ILI. It is important to note that even if the
finer temporal surveillance was possible, owing to the
slow-moving nature of the NCDs, there would not be discernible
changes in the data points to conduct any useful analysis as, for
example, obesity rates are unlikely to change week over week.
Notwithstanding the data scarcity issues in the temporal
surveillance, most of the background literature still falls back
on using time-series data to do some version of correlational
studies. These analyses span across countries, states, cities, or
metro areas. However, because Google Trends data are only
available starting 2004, most of the temporal correlational
studies for NCDs will have only as many data points as years
passed since 2004: a maximum of 15 data points for a given
location. This results in nonrobust time-series-based approaches
as they are subject to overfitting. Another major limitation of
these studies is the ad-hoc keyword selection. More concretely,
most of the aforementioned literature resorts to using
hand-picked keywords as features for the target variable at hand.
This introduces an a priori bias and subjectivity in the predictive
system, as well as the evaluation.

To deal with the first problem on the limitations of the temporal
data, a few studies have tried to use state-level data to fit US
national-level trends. In this regard, a relevant research was

J Med Internet Res 2020 | vol. 22 | iss. 1 | e13347 | p. 2http://www.jmir.org/2020/1/e13347/
(page number not for citation purposes)

Memon et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


carried out by Sarigul and Rui [35] on nowcasting obesity. They
used manually selected terms and their correlations to predict
regional obesity prevalence by modeling regional as well as
temporal variations in the Google Trends data. However, their
methods use ad-hoc keyword selection and tend to use a fitting
approach without predictive out-of-sample evaluations.

Another relevant study has used spatial data to predict temporal
trends. This research was carried out by Nguyen et al [42] and
uses linear regression model along with Lasso regularization,
modeling regional variation for different NCDs to predict
prevalence by state for a particular target year. One novel
contribution of their study is the semiautomated keyword
selection process using semantically related terms as keywords.
Unlike other studies, they perform an out-of-sample evaluation.
However, one of their key shortcomings is the lack of an
appropriate denormalization model as explained as follows:
Although they train a model across space, they, then, apply it
across time, without accounting for the fact that, within a given
year, the spatial data are independently normalized by Google.
Hence, although the individual spatial trends might be
appropriate to track with these data, the national-level model
would miss out on national trends in time. As an example, if
the national search intensity for terms predictive of NCDs was
to double from 2014 to 2015 with the relative spatial distribution
remaining constant, then spatial data alone would not pick up
such a temporal trend. In fact, it would treat 2014 exactly as
2015. To account for such national temporal variations, Phillips
et al’s study on the relationship between state-level search
behavior and the cancer incidence in the United States [32] uses
time in years as a continuous covariate to control for temporal
trends. However, due to the fundamental intricacies of the way
Google normalizes its data, discussed in the next section, such
an approach is not likely to generalize.

A very small subset of the background literature
[30,31,37-40,43] explicitly tests the application of their models
to other countries or geographic regions. In essence, most of
the previously proposed surveillance models or techniques
remain inconclusive in their generalizability to other spatial
reference frames. To correct for this, we explore the utility of
our approach in the international setting by using a transfer
learning framework.

Finally, all of the literature on the surveillance of NCDs using
Google Trends leaves out obvious yet important evaluation
criteria: a comparison of their results to the trivial last year
equals this year baseline. This is going to be one of the key
themes of this paper while we evaluate the validity of Google
Trends to predict the prevalence of NCDs.

A brief summary of the comparison of previous literature on
the lifestyle disease surveillance using Google Trends in relation
to our contribution across several metrics is presented in Table
1. The first column represents the literature surveyed; the second
column represents if the literature used any sort of automation
in terms of keyword selection; the third column surveys the
type of data used in the study; the fourth column represents the
inclusion of data denormalization if applicable; the fifth column
surveys the type of evaluation used; the sixth column shows if
the study compared its evaluation with a trivial baseline; the
seventh column describes the geographical setting the study
was based on; and the eighth column describes if any secondary
evaluation of the proposed methodology is shown for a different
geographical setting. In terms of the cell values, x represents
missing; N/A represents not applicable; and ✓ represents
available.
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Table 1. A survey and comparison of previous literature across different metrics.

Generalizability to
other geographical
setting

Geographical set-
ting

Comparison to
trivial baseline

Predictive
evaluation

Data denormaliza-
tion

GT data typeBootstrapping key-
word selection

Studies

✓cUnited States, the
United Kingdom,

N/AIn-sampleN/AbTemporalxaLeffler et al
[40]

Canada, and Aus-
tralia

xWorldwideN/AIn-sampleN/ATemporalxYang et al
[28]

xUnited StatesxIn-sampleN/ATemporalxMcCarthy
[18]

xJapanN/AIn-sampleN/ATemporalxHagihara et
al [24]

xJapanN/AIn-sampleN/ATemporalxSueki [25]

xUnited StatesN/AIn-sampleN/AState-levelxWalcott et al
[41]

xTaipei City, Tai-
wan

N/AIn-sampleN/ATemporalxYang et al
[23]

✓United States,
and Australia

N/AIn-sampleN/ATemporalxAyers [30]

xItalyN/AIn-sampleN/ATemporalxBragazzi
[22]

xGermanyN/AIn-sampleN/ATemporalxBraun and
Harréus [44]

xUnited StatesN/AIn-sampleN/ATemporalxBreyer and
Eisenberg
[36]

xUnited StatesxIn-sampleN/AState-levelxGunn III and
Lester [21]

✓United States,
Australia, Ger-

N/AIn-sampleN/ATemporalxIngram
Plante [43]

many, the United
Kingdom, and
Canada

xUnited StatesN/AIn-sampleN/AState-levelxWillard and
Nguyen [45]

xItalyxIn-sampleN/ATemporalxBragazzi
[46]

xWorldwideN/AIn-sampleN/ATemporalxBrigo et al
[47]

xEngland and
Wales

N/AIn-sampleN/ATemporalxBruckner et
al [26]

xUnited StatesxIn-samplexState-levelxSarigul et al
[35]

xKoreaN/AIn-sampleN/ATemporalxSong et al
[29]

xUnited StatesxOut-of-sam-
ple

xState-level✓Nguyen et al
[42]

xTaiwanxIn-sampleN/ATemporal✓Wang et al
[48]

xUnited StatesxIn-sampleN/AState-levelxMa-Kellams
et al [19]

xUnited StatesxOut-of-sam-
ple

xState-levelxParker et al
[17]
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Generalizability to
other geographical
setting

Geographical set-
ting

Comparison to
trivial baseline

Predictive
evaluation

Data denormaliza-
tion

GT data typeBootstrapping key-
word selection

Studies

xUnited StatesN/AIn-sampleN/ATemporalxBurns et al
[16]

xItalyxIn-sampleN/ATemporalxCervellin et
al [49]

xUnited StatesN/AIn-sampleN/ATemporalxHassid et al
[50]

✓United States,
United Kingdom,
Australia, and
Brazil

N/AIn-samplexTemporal✓Lotto et al
[38]

xUnited StatesxOut-of-sam-
ple

N/AState-level,
temporal

✓Ojala et al
[5]

xUnited StatesxIn-sampleN/ATemporalxRicketts and
Silva [34]

✓United States,
Germany, Aus-
tria, and Switzer-
land

N/AIn-sampleN/ATemporal✓Tran et al
[31]

xUnited StatesxIn-sampleN/ATemporalxWehner et al
[33]

✓United States,
United Kingdom,
Germany, Brazil,
France, India,
Italy, Japan

N/AIn-samplexTemporal✓Aguirre et al
[37]

xWorldwidexIn-sampleN/ATemporalxArendt [27]

xUnited StatesxIn-samplexState-levelxChandler
[20]

xAustraliaxIn-sampleN/ATemporalxCoogan et al
[51]

xUnited StatesxIn-samplexState-levelxPhillips et al
[32]

✓10 South Ameri-
can Countries

N/AIn-samplexTemporal✓Cruvinel et
al [39]

✓United States✓Out-of-sam-
ple

✓State-level,
temporal

✓This study d

ax: missing.
bNot applicable.
c✓: available.
dThe values in italics signify how our study compares to those from the past literature across different metrics.

In summary, we identified the following key issues in the
aforementioned background literature:

1. Ad-hoc keyword selection.
2. Overfitted temporal analysis.
3. Spatial analysis without appropriate denormalization.
4. Insufficient predictive evaluation.
5. Lack of evidence for generalization to other countries.
6. Failure to compare results to trivial baselines.

Study Objectives
The insufficient evaluation metrics, and methodological errors
in the background review, set out a motivation to validate the

use of Google Trends for nowcasting NCDs. Hence, in this
study, we had 3 key objectives:

1. To use a corrective approach to first rectify the
methodological shortcomings of the previous literature.

2. To study the limitations and promises of Google Trends in
the context of its accuracy and robustness to predict national
lifestyle disease trends.

3. To experimentally test the generalizability of this approach
to other similar countries.
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Methods

Study Design
The methods we used for our study differ from previous work,
as explained above, in (1) how we select search terms for Google
Trends to limit cherry picking, (2) how we denormalize Google
Trends data to overcome certain limitations, (3) the focus on
an out-of-sample evaluation rather than in-sample model fit,
(4) the inclusion of a trivial baseline for comparison, and (5) a
transfer learning setup to evaluate cross-country generalizability.

Terminology
To facilitate understanding of the description of our
methodology, we have defined a set of key terms that we used
frequently in this paper. These terms and their definitions are
as follows:

Offline Target Variable
This refers to the variable of interest that we are monitoring. In
our case, we monitored diabetes, obesity, and exercise.

Offline Data
For any offline target variable (such as diabetes), offline data
are the actual regional or national prevalence of the condition.
Although offline target variable refers to the name of the
variable we are monitoring—say, Diabetes—offline data refers
to actual numerical values pertaining to that variable—say, US
state-level diabetes prevalence rates in 2014.

Spatial Data
For the purpose of this paper, spatial data refer to Google
Trends’ Web search intensity for a given year and a particular
keyword normalized across different US states.

Temporal Data
Temporal data refer to Google Trends’US Web search intensity
for a particular keyword normalized across different years.

Offline Data Collection
For each of the target variables, we collected the offline data
across 15 years from 2004 to 2018 each year separately. This
includes data for the 50 states (including Washington, DC and
excluding Hawaii as offline data for Hawaii were unavailable
for the year of 2004). For prevalence rates, we used the Center
for Disease Control and Prevention’s Behavioral Risk Factor
Surveillance System (BRFSS) [52].

Keyword Selection
In this phase, we used 3 tools for the keyword selection: (1)
Google Correlate, (2) related search queries, and (3) Semantic
Link, a Web-based service to find related terms. A subset of the
resulting keywords from each of the 3 sources is presented in
Table 2.

We bootstrapped the keyword selection process as follows,
starting from a set of seed terms.

Table 2. The subset of unpruned keywords for different target variables.

Related QueriesSemantic LinkGoogle CorrelateTarget variable

diabetes symptomsinsulinwhen i get upDiabetes

signs of diabetespolyphagiasell avon

prediabetesketoacidosismedicine for dogs

icd 10cholesterolvery weak

icd 10 type 2 diabeteshypertensionsugar level

food delivery near meabdominalcatherines.comObesity

lose fatanorexiadresses plus size

myfitnesspalBMIsims 3 games

indeed.comappetitelose 100 pounds

pizza deliveryADHDdresses plus

my fitness palexercisestransportation optionsExercise

workoutaerobicbest bike

iPodjoggingbike laws

quinoa gluten freegymsbike repair

how to exercisemusclesbike frame size

Seed Terms
For each target variable, we used 1 or 2 seed terms. For diabetes,
we chose diabetes and diabetic, for obesity, we chose obesity
and obese, and for exercise, we chose exercise. These seed terms
were, then, used to generate other cooccurring terms in English
Wikipedia using Semantic Link [53] as mentioned in the study

by Nguyen et al [42]. Other methods to enhance related terms,
such as those described in the study by Lampos et al [54] on
using word embeddings could also be used.

Google Correlate
Google Correlate is a tool that takes either a temporal or a spatial
series as input and returns a ranked list of Web search queries
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that are correlated across time or space [55]. For our purposes,
we used the offline data for the year 2015 to determine top 30
to 40 keywords that strongly correlate across all the US states
including Washington, D.C. We, then, pruned many of those
keywords as has been described later.

Related Search Queries
We used a combination of the keywords selected in the
aforementioned methods in Google Trends to output-related
search queries.

Pruning
One of the most common methods to avoid overfitting is by
using dimensionality reduction or by using regularized models.
However, these methods do not guard against keywords with
spurious correlations. For example, the query sims 3 games in
Table 2 is one of the top 10 spatially correlated keywords for
obesity. A less obvious example is the search term,
catherines.com. Catherines is a store selling plus-size clothing
and so search volume for catherines.com has an arguable causal
connection to obesity. However, its search volume is also tied
to its market share, which can change over time. As such, it
might be a robust feature for a spatial-only model, but we
decided to remove such branded search terms for temporal
analysis. Finally, apart from removing nonsensical and branded
search terms, we also removed any keywords with low search
volume. All these selections are made in an effort to reduce
overfitting and increase model robustness across time. A list of
all the postpruning keywords used for this study for each of the
target variables can be found in Multimedia Appendix 1.

Google Trends Data Collection
We used Google Trends to collect 2 kinds of data: spatial and
temporal. For spatial data, we used each keyword-year
combination as a query to Google Trends to get across-state
data, that is, 50 data points for each keyword and each of the
15 years, 2004-2018. For temporal data collection, we collected
data across the 15 years at the US national level rather than at
the state level. This was done to reduce the required data
collection effort by a factor of 50. Note that the state-level
temporal trends are implicitly collected already as we have (1)
state-level relative volumes within a given year, as well as (2)
US national-level temporal trends across the years. We have
explained how we combine these 2 types of data points to create
a spatio-temporal model in following sections.

As Google Trends does not provide an official application
programming interface, other than their export as .csv option,
we made use of Python’s pytrends [56] package, which can be
used to retrieve data from Google Trends. Regardless of which
method is used to obtain the data, one caveat is that Google
Trends’ data are not stable and that repeatedly asking for the
same data can return different results. Concretely, since Google
search volume index is calculated by a sampling method, the
results even for historic data can fluctuate day to day [31,57].
To limit such fluctuations and instability in the search data,
similar to [31], we sample and average each data point 10 times
across time with a gap of a day between each sample for the
United States, and 3 times across each sample for Canada.

Another important detail is that Google Trends results for an
individual term such as diabetes include search phrases such as
diabetes insulin or insulin diabetes [58]. This can create
collinearity for the results for different terms, which has to be
taken into account when and if doing a post hoc feature analysis.

Google Trends Data Normalization
For both privacy and business reasons, Google Trends does not
show absolute search volumes but only normalized search
intensity, and it is important to understand the process of this
normalization [59]. One of our contributions is a data calibration
mechanism, which is based on a proper understanding of the
underlying normalization procedure.

Concretely, search intensity is different from absolute search
volume in that it measures the relative interest in a search term,
that is, the fraction of all searches in the reference temporal or
spatial unit. One desired consequence of this is that as Google’s
user base grows over time, the search intensity does not trivially
increase, making it potentially comparable across time.

Another point to understand is that there is a certain interplay
between the search terms. For example, if the search volume
for the keyword justin bieber was to go up 10-fold, with
everything else remaining constant, then the relative search
intensity for other terms would still drop (slightly), even though
their absolute search volume remains unchanged.

The search intensity is normalized across time or across space
depending on the mode of data collection. For example, when
collecting temporal data across several years for the query
tomacco, Google returns data such that the period with the
highest relative search intensity corresponds to an arbitrary
reference value of 100. All other temporal units are normalized
with respect to this absolute maximum of 100, meaning that a
value of 30 means that in a corresponding time unit, the relative
fraction of searches matching the criteria was only 30% of what
it is during the peak. Similarly, when getting search data across
spatial units such as US states, the state with the highest search
intensity is assigned a value of 100, and all other spatial units
are normalized relative to the search intensity of that peak
location.

In our setting, we combined data across both space and time.
The primary reason behind doing that is to increase the number
of training instances in an effort to compensate for the
slow-moving nature of the NCDs. This, in turn, helps us to learn
a national generalizable model. Combining spatial and temporal
data requires undoing Google’s normalization for the following
reason: within each year, data are normalized independently
across space. Thus, the value of 100 in year 2014 for the state
of California cannot be compared with the value of 100 in the
year 2015 for the state of Texas. From 2014 to 2015, the overall
search volume may have gone up or down, and spatial data
alone do not reveal such information. By appropriately
combining the spatial data with temporal trends, we are able to
effectively undo Google’s normalization to correctly juxtapose
the data for 2014 next to the data for 2015 such that a relative
increase in numbers actually corresponds to a relative increase
in search intensity.
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To reconstruct the state-level contribution to the national value,
we need to take into account the actual absolute search volume
from each of the states. As those data are not available to us,
we approximated that using the following 2 steps:

(1) To undo the effect of spatial and temporal normalizations,
we chose 2004 as a reference year r to rescale and denormalize
year-state values as in equation (1) in Figure 1.

Here is the denormalized scalar value for year y and state s.
Furthermore, G signifies that the data were collected via Google
Trends, Gl represents that data are spatial (where l stands for
location), that is, normalized across the US states by Google,
represents the year, s represents the state, and Gl (xys) represents
a single state-level data point for the year y obtained from
Google Trends. Gt represents that data are temporal (where t
stands for time), Gt (zy) represents the value of the corresponding
keyword at the national level in year y across time, that is,
normalized across the different years, Gt (zr) represents the
across-time value of the corresponding keyword in the reference

year r, where for our purposes, r=2004. ∑n
i Gl (xri) represents

the sum of the regional distribution of the corresponding
keyword in the reference year 2004 where n is the number of

states. ∑n
i Gl (xyi) represents the sum of the regional distribution

of the corresponding keyword in the year y.

(2) Another important insight to realize is that different regions
in the United States contribute differently to the US national
trends because of differences in absolute search volume. Regions
with large populations, and large numbers of Google search
users, such as California or New York, will have more of an
impact on the national trend than regions with small populations.
However, the relative search intensities normalize for different
numbers of issued Google searches. Hence, to debias our data
on the population level, after following step 1, we adjusted each

value by a product of the population in each state multiplied by
the internet penetration to get an approximate number of Google
search users in each state. We collected the internet penetration
rates from the BRFSS site [52]. Note that we do not need to
have an absolute number of Google users. For our method to
work correctly, all that matters is that we have a relative multiple
of that (unknown) number.

As both state-level populations and internet penetration can
change over time, ideally, we would want to use different
correction factors for each year. However, as we observed that
both population sizes and internet penetration rates increased
fairly uniformly across all states, the correction factors for
different years were correlated at the level of approximately
.99. For this reason, we chose to apply only a single, static, set
of state-level correction factors from the year 2015.

After following the denormalization procedure, we were left
with a matrix where each year-state value can be compared with
each other year-state value in a meaningful manner. This
allowed us to, effectively, multiply our training data across
different years and different states.

With steps 1 and 2, our final formula was as shown in equation
(2) in Figure 1, where all the terms are same as the equation
(1). Pri represents the population size for the reference year r
and state i. Pyi represents the population size for the year y and
state i. Iri represents the internet penetration for the reference
year r and state i. Iyi represents the internet penetration for the
year y and state i

Note that the final output x̂ys is a scalar, indexed by both year
y and US state s.

For an example-based explanation of the denormalization
process, see Multimedia Appendix 2 [60].

Figure 1. The equations for the proposed denormalization framework.
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Regression Modeling
Even after our approach for obtaining our year-state data matrix,
we did not have sufficient data to fit complex prediction models
such as deep neural networks [61]. Hence, we fit (regularized)
linear regression models to predict slow-moving trends such as
diabetes, obesity, and exercise rates for the 50 states in the
United States. We used Python’s scikit [62] library to fit our
linear regression models. Concretely, given y as the ground

truth and as the prediction, we fit a model of the form:

̂=wx+b (1

by minimizing the loss L

L=( − )2+λ (2)

where x represents the feature set, w represents the unknown
parameters, and b represents the bias.

To avoid overfitting, and to yield a simpler and interpretable
model, we used Lasso [63] as the shrinkage, which combines
ordinary least-square regression with an L-1 regularization. We
also experimented with Ridge regression (without consulting
the testing set) [64] but the cross-validated performance on the
training set was similar, and Lasso regression gave a sparser
model. Lasso requires a regularization parameter λ to govern
the trade-off between more complex models with better
performance on the test data (=small λ) and simpler models
with potentially better performance on unseen data (=larger λ).

In this paper, the optimal λ was determined by using k-fold
cross validation, optimizing for the negative mean squared error.
Feature values were standardized to have zero mean and unit
variance. For our purposes, we used k=12 corresponding to the
number of years in the training set (2005-2016).

Training, Validation, and Testing Phase
For the training phase, we used data from 2005 to 2016. We
trained and cross validated our model using a k-fold
cross-validation where k=12. For diabetes, obesity, and exercise,
each year had 50 data points, one for each state (including the
District of Columbia and excluding the state of Hawaii). In total,
the training was performed using 600 data points. Note that we
did not include data points from 2004 in our experiments. This
is done to have a consistent training and test set as our proposed
methods require a lag where data from 2004 is used in creating
a feature vector for 2005, and similarly for following years.

We later tested each of our models trained on data from 2005
to 2016 on the years 2017 and 2018, and calculated the mean
absolute error (MAE), root mean squared error (RMSE),
symmetric mean absolute percentage error (SMAPE) [65],
Spearman’s Correlation Coefficient (rho), and Pearson’s
Correlation Coefficient (R).

We emphasize that, during development, we never looked at
the results on the test set, and so none of our design decisions
were influenced by them to safeguard against implicit
overfitting. This is one of the key shortcomings of the previous
literature, most of which employ in-sample evaluation.

Alternate Approaches
We performed 6 different approaches for each of the 3 target
variables for the US region. We have defined these 6
experiments in detail as follows.

Trivial Baseline
For evaluation purposes, we used the trivial last year equals
this year baseline. With this in mind, we used 2016’s prevalence
as a prediction for 2017, and 2017’s prevalence as a prediction
for 2018. We, then, computed the MAE, RMSE, SMAPE, rho,
and R, to be used as baseline for evaluation purposes.

Spatial Model
We extended the methodology presented in Nguyen et al’s paper
[42] of applying a national spatial-only model to temporal
dimension. This becomes our secondary baseline.

Spatio-Temporal Model
This experiment is based on our main methodological
contribution where we used a corrective approach to first
neutralize the effect of Google’s normalization as a
preprocessing step, and, then, trained the model. We called it
Spatio-Temporal to signify the use of both spatial and temporal
Google Trends data.

Multivariate Model
To boost the performance of our spatio-temporal model, we
used the trivial baseline as a covariate. More concretely, we
extended our spatio-temporal model to use the actual prevalence
of the previous year as an auxiliary feature to predict the
prevalence of the current year. We called the extended model
multivariate to signify the inclusion of the covariate.

Lagged Multivariate Model
While training the previous model, we made a crude assumption
that the population search behavior for any particular year is
correlated to the prevalence of that year. However, we realized
that it may be possible for the search behavior of any year to
be predictive of the next year. As an example, search behavior
in 2017 may be more predictive of 2018 prevalence than of
2017. To test this theory, we experimented by shifting our time
window for the multivariate regression.

Hierarchical Lagged Multivariate Model
One of the simplifying assumptions we made while training the
previous models is that the predictive pattern of Google Trends
is the same across all states. This assumption may, however,
not be valid. In particular, each state might have a different base
prevalence rate for the health condition being modeled. To
incorporate subnational bias terms, we explicitly included the
state ID as a covariate. We did this by extending the feature
vector to include a one-hot vector of 50 states. By doing this,
we implicitly modeled a hierarchical distribution where we
considered national trends, as well as subnational trends.

Transfer Learning
We tested the generalizability of our methodology across
countries by conducting 2 further experiments for the prevalence
of diabetes and obesity in Canada. We collected the Google
Trends data for Canada in a similar fashion as we did for the
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United States. The offline health statistics for diabetes and
obesity were collected from the Statistics Canada site [66]. One
limitation pertaining to these statistics was that, starting from
2015, the collection strategy and the design of the sampling
process for synthesizing statistics has changed, rendering
pre-2015 data incomparable to post-2015. Therefore, we dealt
with these 2 periods of data separately in our experiments. A
second point to note is that diabetes and obesity statistics for
Canada are not available for 2004 and 2006. We, therefore,
collected the offline data from 2007 onward only. Owing to
these 2 limitations and the need to have 1 separate year for the
lagged models, our training set for Canada included data from
2008 to 2012 with each year containing 10 data points, 1 per
Canadian province. We used data from 2013 and 2014 as a test
set. Owing to the change in sampling methods and the limited
number of years, we did not train a separate model for
2016-2018. However, we reported the results for these years as
a test set.

Cross-Country Generalizability of the Method
In the first set of experiments in the context of transfer learning,
we used the same set of experiments that we conducted for the
United States, to make predictions for Canada.

Cross-Country Generalizability of the Model
For the second set of experiments, we trained our lagged
multivariate model on the United States on 14 years (from 2005
to 2018) to test across Canada. The purpose for this experiment

was 2-fold. First, we wanted to test the generalizability of our
trained model across other similar countries by using Canada
as a proxy. Second, we wanted to test the reliability of applying
the models in such a fashion to other countries where offline
data might not be available. We have briefly described the
importance of this step later in the Discussion section.

Results

Evaluation
For the evaluation of our experiments, we measured the
performance of different models over 5 metrics: MAE, RMSE,
SMAPE [65], rho, and R. To compute the correlation
coefficients, we concatenated the predictions across all the test
years and used those to compute a global correlation.

To test for statistically significant improvements in the MAE,
we conducted a one-sided paired t test across each set of
experiments in relation to the trivial baseline. We also computed
statistical tests for each extension such that the spatio-temporal
model gets compared with the spatial model, the multivariate
spatio-temporal model gets compared with the spatio-temporal
model, and so on. We do this to evaluate the gain, if any,
obtained by each extension.

US Based Models
A detailed evaluation of our experiments on the United States
can be found in Table 3. The best way to interpret the results is
to read the values for each statistic from left to right.
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Table 3. A detailed evaluation of 5 different experiments across the 3 target variables for the region of the United States.

Hierarchical lagged multi-
variate spatio-temporal
model

Lagged multivariate
spatio-temporal model

Multivariate spatio-
temporal model

Spatio-temporal
model

Spatial mod-
el

Trivial base-
line

Target variable

Diabetes

0.55 c0.62 c0.65 c0.72 b0.810.72MAEa

0.72 c0.80 c0.81 c0.911.00.92RMSEd

5.24 c6.04 c6.23 c7.137.636.94SMAPEe

0.93 c0.89 c0.88 c0.870.89 c0.87Spearman rho

0.94 c0.91c0.91 c0.880.900.90Pearson R

Obesity

1.08c0.99 c1.242.092.811.20MAE

1.40c1.33 c1.592.563.281.55RMSE

3.51c3.22 c4.036.969.313.88SMAPE

0.95 c0.930.94 c0.850.870.93Spearman rho

0.95 c0.94c0.94 c0.860.860.93Pearson

Exercise

1.95 c2.36 c2.47 c3.122.32 c2.89MAE

2.40 c2.83 c2.90 c3.752.75 c3.32RMSE

2.62 c3.16 c3.32 c4.113.11 c3.85SMAPE

0.80 c0.77 c0.71c0.81 c0.73 c0.68Spearman rho

0.81 c0.78 c0.72c0.80 c0.74 c0.69Pearson R

aMAE: mean absolute error.
bThe values in italics signify an improvement in the performance in comparison to the previous method.
cThe method beat the trivial baseline.
dRMSE: root mean squared error.
eSMAPE: symmetric mean absolute percentage error.

Toward our first research objective to correct the methodological
shortcomings of the previous literature, we developed a
spatio-temporal model for nowcasting lifestyle diseases. We
observed that the spatio-temporal model performs better than
the spatial model for diabetes and obesity but not for exercise.
The performance improvement over the spatial method for
diabetes in terms of the MAE (0.81-0.72) and RMSE (0.91-0.81)
was 11% (P=.06), whereas the improvement for obesity was
26% in MAE (2.81-2.09) and 22% in RMSE (3.28-2.56;
P<.001). However, only the results for obesity are significant.
Both of these improvements in MAE are statistically significant.

To improve upon the spatio-temporal model, we, then, trained
a multivariate spatio-temporal model, by using the previous
year’s prevalence as a covariate in combination with features
from Google Trends. This improves the performance over the
spatio-temporal model decreasing the error for diabetes by 10%
in MAE (0.72-0.65) and 12% in RMSE (0.91-0.81), obesity by
41% in MAE (2.09-1.24) and 38% in RMSE (2.59-1.59), and
exercise by 21% in MAE (3.12-2.47) and 23% in RMSE
(3.75-2.90). Of these improvements, diabetes was not significant

(P=.08), but both obesity and exercise were statistically
significant (P<.001 and P=.001, respectively).

In the next set of experiments, we shifted our dependent
response variable by 1 year to test for a time lag in the impact
of search behavior on disease statistics. We called this the lagged
multivariate spatio-temporal model. In comparison with the
multivariate spatio-temporal model, this model improves
performance on diabetes by 5% in MAE (0.65-0.62) and 1% in
RMSE (0.81-0.80), on obesity by 20% in MAE (1.24-0.99) and
16% in RMSE (1.59-1.33), and on exercise by 4% in MAE
(2.47-2.36) and 2% in RMSE (2.90-2.83). The improvement
was statistically significant for diabetes and obesity (P=.02 and
P<.001), but not for exercise (P=.17).

Finally, to account for subnational trends, we trained a
hierarchical lagged multivariate spatio-temporal model where
we included the state ID as a covariate. In comparison with the
lagged model, we got a performance improvement on diabetes
and exercise, but a decrease in performance on obesity. For
diabetes, the MAE improves by 11% (0.62-0.55) and RMSE
by 10% (0.80-0.72). For exercise, the MAE improves by 17%
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(2.36-1.95) and RMSE by 15% (2.83-2.40). Whereas for obesity,
the performance deteriorates by 8% in MAE (0.99-1.08) and
by 5% in RMSE (1.33-1.40). For both diabetes and exercise,
the performance improvement was statistically significant
(P=.01 and P=.02).

In terms of the overall improvement over the trivial baseline,
our best models (ie, hierarchical lagged multivariate
spatio-temporal model for diabetes, and exercise, and lagged
multivariate spatio-temporal model for obesity) result in 24%
improvement in MAE (0.72-0.55) and a 22% improvement in
RMSE (0.92-0.72) for diabetes; 18% improvement in MAE
(1.20-0.99) and a 14% improvement in RMSE (1.55-1.33) for
obesity, and 34% improvement in MAE (2.89-1.95) and a 28%
improvement in RMSE (3.3-2.40) for exercise. All of these
improvements are found to be statistically significant (P<.001
for diabetes, P=.001 for obesity, and P<.001 for exercise). The
SMAPE, Spearman rho, and Pearson R follow similar trends.

Transfer Learning
For the experiments for our transfer learning framework, we
evaluated (1) cross-country generalizability of the method
(training and evaluating models just for Canada) and (2)
cross-country generalizability of the model (taking a
trained-on-US model and evaluating it for Canada). We
summarized the results achieved for each of the proposed
methods in Tables 4-6.

Whereas for the US case, most of our methods beat the trivial
baseline, this is not the case for either of the 2 transfer settings.

For the approach of retraining a Canada-specific model, we
hypothesized that this is due to data scarcity with fewer data
points for a given year (10 vs 50) and fewer years to train on
(2008-2012 vs 2005-2016) being available compared with the
US case. For some of the experiments (eg, diabetes model
trained on 2008-2014 and tested on 2016-2018) where we beat
the baseline, the improvements were only marginal. A detailed
set of evaluation can be found in Tables 4 and 5.

Although the approach of applying the trained-on-US model to
Canada fails to beat the trivial this-year-is-same-as-last-year
baseline, we expect the highest utility of such approaches to be
reliable when health statistics for the target country are
unavailable. For this scenario, our results showed promise by
achieving an average Spearman and Pearson correlation of 0.70
for diabetes, and 0.91 and 0.92 for obesity by using a pretrained
model of a similar country (which, in our case, is the United
States). We believe that these results are encouraging and worth
replicating for developing countries.

Table 6 shows the results for the transfer learning framework
across the 2 target variables for Canada for generalizability of
the US trained model. We report the performance of the
US-based model trained for the years 2005 to 2018 on Canada
for the test years 2008-2014. We separately also report the
performance of the model on the years 2016-2018 and
2012-2013 for the readers to compare the performance of the
model trained on the United States to the model trained on
Canada, both tested on the same test set.

Table 4. Results for the transfer learning framework across the 2 target variables for Canada for generalizability of the method trained over the years
2008-2012, and tested on the years 2013 and 2014.

Hierarchical lagged multi-
variate spatio-temporal
model

Lagged multivariate spa-
tio-temporal model

Multivariate spatio-
temporal model

Spatio-temporal
model

SpatialTrivial base-
line

Target variable

Diabetes

0.610.660.70 b0.830.800.54MAEa

0.730.810.861.000.960.66RMSEc

8.649.6410.1812.1011.577.64SMAPEd

0.790.760.720.620.680.86Spearman

0.810.760.740.590.640.85Pearson

Obesity

1.811.591.571.741.681.31MAE

2.451.872.022.802.561.66RMSE

7.886.927.248.057.315.81SMAPE

0.850.890.870.850.820.89Spearman

0.910.950.950.860.860.95Pearson

aMAE: mean absolute error.
bThe values in italics signify an improvement in the performance in comparison to the previous method.
cRMSE: root mean squared error.
dSMAPE: symmetric mean absolute percentage error.
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Table 5. Results for the transfer learning framework across the 2 target variables for Canada for generalizability of the method trained over the years
2008-2014, and tested over the years 2016-2018.

Hierarchical lagged multi-
variate spatio-temporal
model

Lagged multivariate spa-
tio-temporal model

Multivariate spatio-
temporal model

Spatio-temporal
model

SpatialTrivial Base-
line

Target variable

Diabetes

0.74c0.68 c0.71 c0.75 b,c0.820.84MAEa

0.99c0.86 c0.93c0.93 c1.04 c1.07RMSEd

10.05c9.00 c9.37 c9.78 c10.74 c11.16SMAPEe

0.78c0.78 c0.76c0.84 c0.82 c0.69Spearman

0.78 c0.77 c0.76c0.82 c0.80 c0.7Pearson

Obesity

5.692.623.398.727.981.57MAE

5.923.383.8698.42.37RMSE

20.718.3611.7333.5929.594.99SMAPE

0.95 c0.930.920.890.860.93Spearman

0.95 c0.910.93 c0.90.880.91Pearson

aMAE: mean absolute error.
bThe values in italics signify an improvement in the performance in comparison to the previous method.
cThe method beat the trivial baseline.
dRMSE: root mean squared error.
eSMAPE: symmetric mean absolute percentage error.
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Table 6. The results for the transfer learning framework across the 2 target variables for Canada for generalizability of the US trained model.

ObesityDiabetesCross-country generalizability of the US-based model

Lagged multivariate modelTrivial baselineLagged multivariate modelTrivial baseline

Train years: 2005-2018 (US); test years: 2008-2014 (Canada)

1.781.530.880.68MAEa

2.161.961.100.92RMSEb

8.206.9112.659.9SMAPEc

0.900.900.770.81Spearman

0.910.910.740.76Pearson

Train years: 2005-2018 (US); test years: 2016-2018 (Canada)

1.541.571.290.84MAE

2.252.371.491.07RMSE

4.924.9916.0411.16SMAPE

0.920.930.590.69Spearman

0.910.910.600.70Pearson

Train years: 2005-2018 (US); test years: 2013-2014 (Canada)

1.311.310.910.54MAE

1.60 d1.661.120.66RMSE

5.765.8113.107.64SMAPE

0.900.890.740.86Spearman

0.950.950.740.85Pearson

aMAE: mean absolute error.
bRMSE: root mean squared error.
cSMAPE: symmetric mean absolute percentage error.
dThe values in italics signify improvement in performance over the trivial baseline.

Discussion

Principal Findings and Contributions

Value and Validity of Modeling Noncommunicable
Diseases
The slow-moving nature of NCDs compared with the relatively
faster moving trends in search behavior makes it a hard problem
to perform lifestyle disease surveillance using Google Trends.
The background literature reports overly optimistic results in
this arena. This is potentially a consequence of what is known
as the positive result bias [67] in the scientific community,
leading to claims that most published research findings may be
false [68,69]. We show in this work that in addition to the
methodological shortcomings, none of the previous studies
compares its results to the trivial last year equals this year
baselines, which, surprisingly, is hard to beat. In this study, we
empirically test the feasibility of the task by experimenting
across different methods for 3 target variables. Our experiments
are ordinal in nature as each subsequent experiment is an
extension of the previous one. Although most of our latter
extensions beat the trivial baseline, modeling NCDs is not a
trivial problem. The main challenge of the problem lies in the
scarcity of ground truth data, which is typically only available

on an annual basis. Even if the data were available on a finer
granularity, the inherent nature of NCDs, such as diabetes and
obesity, does not allow for discernible monthly or weekly
variation. Even the relative year-to-year changes are low which
is why the correlation coefficients for the trivial baselines are
high, and hard to beat. As a result, we anticipate a
low-to-moderate value in modeling the estimation of NCDs, as
well as in the validity of Google Trends for nowcasting lifestyle
diseases.

The lack of validity of Google Trends in the given context can
be partly attributed to changes in Web search behavior across
time. As an example, Web search users might long have realized
the potential to use Google for navigational queries, instead of
having to remember and type exact website URLs. However,
the use for informational queries in the health domains is likely
to be still growing, also as Google adds new features, trying to
answer common health-related questions directly on the search
result page. A related but similar reason is that the meaning and
perception of terms themselves can change over time. In
linguistics, this phenomenon is known as the semantic shift [70]
describing how the senses of words drift over time. A typical
example of that is the word Gay which evolved from its meaning
of lighthearted and joyous in the 1900s to homosexual in the
1990s [71]. With increasing popularity of social media sites and
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Web-based tools, Web-based content is being produced
expeditiously, leading to relatively frequent semantic shifts.
Accounting for these complex phenomena with the scarcity of
data is already a difficult problem. Additional limitations of the
Google Trends framework make it an even challenging issue.
These limitations include the changes in geolocation assignment
applied to Google Trends in 2011, Google Trends’normalization
scheme, and, finally, instability of search indices of a given
keyword on different days [31,57].

As for the first limitation, in 2011, Google implemented
significant improvements in the geolocation of search queries
(a note on the Web interface for Google Trends says: “An
improvement to our geographical assignment was applied from
1/1/2011.”) To account for these changes, in the earlier set of
experiments for this study (not reported in this manuscript), we
limited our training set to data from 2011 onward only.
Unfortunately, none of our experimental models beat the trivial
baseline. In the current set of experiments, we include the years
from before 2011 to boost the performance, assuming that the
geolocation assignment at the state level was not affected by
the changes. We observe that this, in fact, is true and that more
data helps learn better models. On the surface, this is not an
interesting finding as machine learning models are inherently
data hungry. However, we hypothesize that the boost in
performance may also be attributed to learning semantic and
usage shifts in data. By including a wider time window, we
believe our models may implicitly be selecting features that are
shift-independent, and pruning out features that are not. For
example, the keyword slim, which was part of our
obesity-related models, was assigned a weight of zero. Since
Google Trends provides related topics for each keyword,
entering the keyword slim yields topics such as slim-fit pants
and Plexus along with Xbox-Console and PlayStation 3. This

indicates that the keyword slim is used in 2 different contexts:
obesity and slim console games. There was a potential semantic
shift after 2010 when Xbox 360 slim model was released [72],
and it is possible that our model was able to capture it given a
wider time window, resulting in pruning it out.

A final limitation of Google Trends in the context of this study
is the instability of search indices. We observe that repeatedly
asking for the same data from Google Trends’ can return
different results. To correct for this, like [31], we resolve
potential data instability issues by averaging data points
collected across 10 consecutive days for the United States, and
across 3 consecutive days for Canada.

Model Selection and Learning
In our experiments, we observe that a time-lagged multivariate
model, which uses both ground truth and search data from the
past year to nowcast the current year, improves over our
previous, simpler methods. This suggests that the implications
of the search behavior are observed in the NCD prevalence of
later year rather than the immediate one. A final extension to
our models is the use of state-ID as a covariate to model a
hierarchical distribution. The inclusion of these state-level
offsets significantly improves the results for diabetes and
exercise. One interesting observation is that almost all of our
models seem to underestimate the rate of NCDs. This is apparent
in Figure 2, which shows how the models consistently
underestimate the prevalence of obesity. We observe the same
behavior across the other target variables. A potential reason is
that of users moving away from the keywords used in this study
as a consequence of a change in search behavior. This ties back
to the discussion on the semantic and search behavior changes
of users across time.

J Med Internet Res 2020 | vol. 22 | iss. 1 | e13347 | p. 15http://www.jmir.org/2020/1/e13347/
(page number not for citation purposes)

Memon et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. The comparison of the errors of 6 different methods for the target variable obesity for the year 2018 for each state. (Note: The bars represent
the simple error [ie, ground truth prediction] for each state, and not the predicted diabetes or obesity rates. Therefore, the height of the bars is only
comparable within each state and not comparable across states as the scale is not fixed. As most bars are above zero, this indicates that in most cases,
the models underestimate the ground truth obesity rates.).

Geographical Transfer Learning
This work is one of the very few to test the geographical
generalizability of the proposed method. We use Canada as a
test case as it is close to the United States, and is one of the very
few English-speaking countries to have reliable state-level
statistics. On the basis of our evaluation, most of the models
trained on Canada do not beat the baseline. This can again be
attributed to the scarcity of data as in comparison with the
United States, Canada has only 10 provinces and the usable
data are only available starting 2007. Despite the failure to beat
the baseline, we see opportunities for public health monitoring
in countries where the public health monitoring system is less
developed and so the otherwise trivial baseline cannot be
applied. In particular, it seems feasible to monitor relative
across-state or across-year trends, rather than absolute
prevalence rates. Extending our approach to countries with low
resources comes with certain challenges though as, exactly due
to their lack of trustworthy data, it is hard to have an objective
evaluation of the system performance.

Proactivity Versus Reactivity
In terms of the health-related behavior, the user search behavior
can be weakly classified into 2 categories: proactive and
reactive. Proactive search behavior is when the search is derived
from curiosity and awareness. This usually defines users who
are cautious about their health with an interest in preventing a
health condition. Reactive, on the other hand, defines behavior,
which is corrective where users are seeking help to treat or
manage their health problems. In the case of diabetes and obesity
in the United States and Canada, we observe that predictive
search terms indicate a highly reactive behavior, with diabetes

symptoms, diabetic diet, and exercise carrying higher absolute
weights (and, hence, higher significance). This potentially
indicates that it is mostly users affected by a condition who
show interest. If this interpretation holds, this points toward a
need to carry out public health interventions to try to change
the information seeking to be more proactive.

Keyword Selection Using Google Correlate
For our study, we tried to limit the risk of overfitting by
following a robust keyword selection process both in the
preprocessing phase as well as the modeling phase. As a
preprocessing step, we used Semantic-Link, Google
Trends–related keywords, and Google Correlate as tools to
select the best set of features. This is one of the key strengths
of our study where we combine semantically connected,
cooccurring, and correlated terms to create a diverse keyword
list. In the context of NCDs, this is the first study to utilize the
strength of Google Correlate in the process of keyword selection.
An interesting case study in this context is that of obesity-related
keywords, a subset of which is shown in Table 2. One of the
top keywords is dresses plus size, which is also included in the
L1 regularized model. Although it is a fairly intuitive keyword
in hindsight, it would have been challenging to discover it
without Google Correlate. Although we do not perform an
in-depth analysis of the keywords in this study, we encourage
researchers to use pseudo bootstrapping approaches in their
keyword selection process to perform richer analysis. In terms
of Google Correlate, unfortunately, a note on the Web interface
says: “Google Correlate will shut down on December 15th 2019
as a result of low usage,” as a result of which it will not be
available for future researchers.
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Limitations
Currently, our approach is agnostic to word semantics and we
just explore what is predictive of a particular NCD without
accounting for anomalies. In this context, recent methods on
the use of word embeddings may be useful to curb inconsistent
patterns of associations. It would also be useful if we can
explicitly capture the semantic or behavior shifts in time, and
make it part of the model. This warrants use of sophisticated
dynamic network analysis tools and other time-series models.

One more potential limitation of this study is the inability to
test our methodology on other countries. Although we show
promising results for Canada, it would have been preferable to
test our methods to other English, and even
non-English–speaking countries. This limitation was primarily
a consequence of the unavailability of state-level ground truth
for many countries.

Finally, one limitation pertaining to our data collection process
is that while like [31], we resolve potential data instability issues
by averaging data points collected across 10 consecutive days
for the United States, we use only 3 data points for Canada. We
do this in the interest of time, as the experiments for Canada
are more preliminary. Nonetheless, to get a sense of whether
variation between days might affect the overall conclusions, we
conducted a day-to-day test-retest reliability analysis across 3
days from Google Trends data for Canada, using Spearman and
Pearson correlation. We computed the correlation coefficient
between each set of data collected on day 1 and day 2, and
between data collected on day 2 and day 3. For day 1 and day
2, we found an average Spearman and Pearson correlation of
0.85 and 0.86 for temporal data, and of 0.84 and 0.88 for the
spatial data. For day 2 and day 3, we found an average Spearman
and Pearson correlation of 0.85 and 0.86 for temporal data, and
of 0.84 and 0.89 for the spatial data. Given that (1) the
day-to-day correlations are very high, and that (2) we
nevertheless average across 3 days, we do not expect our
conclusions for Canada to be affected by using data points from
only 3 rather than 10 days.

Future Research Directions
Using Google Trends for nowcasting or estimating the
spatio-temporal prevalence of NCDs may not always be of
significant value due to the scarcity of data, uncertainty of search
behavior, and the changes in usage of different keywords across
time. However, there are still several fronts that remain
unexplored.

In terms of the NCDs, using Google Trends for qualitative
research is an overlooked territory. In this context, feature
analysis is a promising venue where tracking, investigating, and
discovering different keywords could help policy makers or
governments make better decisions.

In terms of the qualitative analysis, it might also be useful to
employ Google Trends for analyzing NCD-related events. In
this context, events could be described as short-term (or
single-day) phenomenon. A popular example of that is initiating
and monitoring public health campaigns and interventions. For
health campaigns, it is useful to conduct both prehoc and posthoc
analyses. Prehoc analyses include determining the target

audience, and baseline search behaviors of people. On the other
hand, posthoc analyses characterize changes in the search
behavior triggered by the target event. Examples of related work
in the context of public health awareness campaigns can be
found in [73-76].

Another promising future direction includes the use of
task-specific modeling techniques where the domain knowledge
about the task at hand could be used to craft better machine
learning models. In our study, we use the state-ID as a proxy
to model hierarchical distribution with different country-level
and state-level behaviors. However, our models are still
rudimentary and one could potentially employ more
sophisticated models, such as hierarchical linear models [77],
or neural regression trees [78], to model different hierarchies.
In our study, we model the hierarchy based on the state-ID. The
state, in this case, is treated as a cluster selected a priori to the
modeling based on the domain knowledge. One could also try
to find optimal clusters (such as group of similar states) or
partitioning of the data simultaneously while modeling the
problem itself. This can be achieved by using techniques such
as nearest neighbors [79] or other tree-based approaches such
as those shown in [78,80]. An added advantage of the
hierarchical models is their increased interpretability resulting
in some qualitative insights. Such models also allow us to
optimize feature selection on subnational levels while modeling
a national distribution, improving the overall robustness.
Clustering approaches could also lead to directed public health
interventions by providing cluster-specific insights.
Governmental public health interventions would be much more
effective if they target the right audience, and in a right and
directed manner, taking into account the local search behavior.

In summary, we believe that despite limited promise for
quantitative NCD surveillance, Google Trends still holds value
in relation to NCDs, particularly for qualitative analyses or for
monitoring the effect of public health campaigns. Finally, in
terms of other fast-moving trends, any useful spatio-temporal
national-level surveillance using Google Trends necessitates
the use of appropriate denormalization such as the one shown
in this work.

Conclusion
In this paper, we first review the methods presented in the
background literature. We present a comprehensive table where
we compare the literature across different metrics. One of the
surprising findings of our study is the absence of evaluation
against trivial baselines in all of the reviewed papers. We
furthermore, highlight the methodological shortcomings of the
most relevant research papers. In the second part of the paper,
we use a corrective approach to improve upon the background
work. Specifically, we explore the feasibility of using Google
Trends for nowcasting the prevalence of lifestyle diseases in
the context of diabetes, obesity, and exercise. To undo the effect
of Google Trends’ normalization, we propose a novel
spatio-temporal denormalization scheme. That combined with
the trivial baseline as a covariate beat the previously set baseline
methods in the background literature for most of the target
variables. We further improve upon that model by shifting the
time window by 1 year, and then including a state-ID as a
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covariate. Our best models beat the trivial baseline with a
significant improvement in performance. We, however, realize
that this requires both abundant data, as well as creative
modeling strategies. Furthermore, we extend upon our formative
work to show generalizability of our methodology and trained

models in the international setting, setting a cornerstone for
using such transfer learning-based approaches in low-resource
countries. Finally, we propose various possible future paths
researchers can take to conduct both quantitative and qualitative
analyses using Google Trends.
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