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Abstract

Background: The protection of private data is a key responsibility for research studies that collect identifiable information from
study participants. Limiting the scope of data collection and preventing secondary use of the data are effective strategies for
managing these risks. An ideal framework for data collection would incorporate feature engineering, a process where secondary
features are derived from sensitive raw data in a secure environment without a trusted third party.

Objective: This study aimed to compare current approaches based on how they maintain data privacy and the practicality of
their implementations. These approaches include traditional approaches that rely on trusted third parties, and cryptographic,
secure hardware, and blockchain-based techniques.

Methods: A set of properties were defined for evaluating each approach. A qualitative comparison was presented based on
these properties. The evaluation of each approach was framed with a use case of sharing geolocation data for biomedical research.

Results: We found that approaches that rely on a trusted third party for preserving participant privacy do not provide sufficiently
strong guarantees that sensitive data will not be exposed in modern data ecosystems. Cryptographic techniques incorporate strong
privacy-preserving paradigms but are appropriate only for select use cases or are currently limited because of computational
complexity. Blockchain smart contracts alone are insufficient to provide data privacy because transactional data are public. Trusted
execution environments (TEEs) may have hardware vulnerabilities and lack visibility into how data are processed. Hybrid
approaches combining blockchain and cryptographic techniques or blockchain and TEEs provide promising frameworks for
privacy preservation. For reference, we provide a software implementation where users can privately share features of their
geolocation data using the hybrid approach combining blockchain with TEEs as a supplement.

Conclusions: Blockchain technology and smart contracts enable the development of new privacy-preserving feature engineering
methods by obviating dependence on trusted parties and providing immutable, auditable data processing workflows. The overlap
between blockchain and cryptographic techniques or blockchain and secure hardware technologies are promising fields for
addressing important data privacy needs. Hybrid blockchain and TEE frameworks currently provide practical tools for implementing
experimental privacy-preserving applications.
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Introduction

Background

Data Privacy Issues With New Technologies
The emergence of social networks, smartphones, wearable
devices, and internet of things (IoT) devices introduces
unprecedented avenues for the mass collection of personal data
about behaviors, biology, and health. The ubiquity of these
technologies presents novel challenges when considering how
to protect the privacy of individuals, and the potential to reveal
sensitive and identifiable information intentionally or
unintentionally has grown.

A recent Pew Research Center report found that physical
location data represent one of the most sensitive data types [1];
yet more than 1000 popular smartphone apps track precise
location data, some of which sell that data to third parties for
targeted ads or analytics [2]. Prompts that grant an app
permission to collect location data rarely reflect how the data
will be used, with specifics buried in an app’s privacy policy.
Although location companies claim that the data collected are
used to analyze aggregate patterns, not individual identities,
employees and clients still have access to raw data and could
identify users without their consent. Major telecommunications
carriers sell user location data, and reporters have shown that
data can be resold to a long chain of downstream companies.
The lack of regulation in this data ecosystem has resulted in a
black market for the sale of user location data [3].

Once a third party collects user data, it is difficult to guarantee
that the data are not misused or mishandled. Between 2013 and
2014, Cambridge Analytica collected social media data from
Facebook users for academic research, but later repurposed the
data for political advertising [4]. In the past decade, major data
breaches have exposed billions of user accounts [5]. There are
also several instances of malicious apps that directly expose
private information without user consent [6]. Regulatory efforts,
including the “right to be forgotten” directive under the General
Data Protection Regulation, aim to curb this trend in an effort
to protect user privacy [7].

These issues present difficulties for biomedical researchers
conducting studies that would otherwise benefit from
convenient, passive, and longitudinal methods of data collection
to identify novel biomarkers and develop digital therapeutics.
There is a need for an open and trusted method for sharing data
with untrusted third parties that ensures (1) posterior privacy,
where personal data are not shared beyond the study for which
the individual has consented and (2) that the data are only used
for the intended purpose of the study.

In this paper, we reviewed the current state of privacy-preserving
techniques for personal data, motivated by a location-sharing
use case with applications in health care. We compared
privacy-preserving techniques along several axes, including the
level of trust required in the research team, the generalizability
of the technique, and the availability of open source tool support.
It is our intention to provide a pragmatic road map to help
researchers make informed decisions about the utilization and
processing of sensitive personal data. We provide a reference

software implementation for the location-sharing example use
case, using one of the examined techniques for privacy
preservation.

Predictive Modeling in Health Care Using Biomedical
and Location Data
Smartphone phone usage, and geolocation data in particular, is
consequential for several health care applications. Location data
have already been used in a variety of applications in health,
for example, to monitor behavioral and environmental risk
factors [8,9], to improve disease management and treatment
delivery [10], and to inform public health policy in substance
abuse [11]. In a representative example, researchers found that
features extracted from global positioning system (GPS;
movement and locations) and phone usage (social
connectedness) strongly related to symptom severity in
depression. The availability of smartphone tools provides a
vector for continuous, passive assessments that could one day
augment current data collection methods in clinical
psychopharmacology [12]. However, it is important to stress
that although geolocation data can be valuable for health care
research, it is also one of the most fundamentally sensitive pieces
of personal information.

Feature Engineering
Feature engineering is the process of transforming raw data into
a representation that is amenable to machine learning algorithms.
For example, say you are building a system to forecast driving
time between two locations in a major metropolitan area. You
are given data that contain the date, time of day, and driving
time between the two locations for the previous year. The raw
date data (YYYY-MM-DD) are unlikely to be useful for
predicting drive time, but knowing whether the day is a weekday
or weekend may be very useful. A machine learning scientist
might write code that returns true if the date is a weekday and
false if it is a weekend. The newly engineered Boolean feature,
weekday, encodes important domain knowledge—that traffic
patterns are different on weekdays compared with
weekends—and may improve the accuracy of the predictions
from the machine learning model.

Historically, feature engineering has been a manual process,
based on the experience and domain expertise of the machine
learning scientist [13]. More recently, automated systems that
learn feature representations automatically from the data, such
as sparse coding and auto encoders, have demonstrated good
performance as the basis for deep learning models. Here, we
describe a framework for feature engineering that preserves the
privacy of identifiable data and is applicable to either manual
or automated feature engineering procedures.

Minimal Exposure Feature Engineering
Our approach is based on the premise of minimal exposure; that
participants should only reveal the minimal data required for
the study and researchers should only collect the data required
for the study. The feature engineering step of an analysis
pipeline offers an opportunity to limit exposure by transforming
identifiable, sensitive, or otherwise private data into deidentified
or anonymized features. This minimal exposure approach to
feature engineering creates a framework that benefits both

J Med Internet Res 2019 | vol. 21 | iss. 8 | e13600 | p. 2http://www.jmir.org/2019/8/e13600/
(page number not for citation purposes)

Jones et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


participants and researchers. By making it openly difficult for
researchers to obtain raw personal data, participants may feel
more willing to share their data and contribute to research
studies. At the same time, removing researcher data access may
simplify and expedite research studies by reducing the resources
diverted toward maintaining secured data servers and limiting

exposure to personally identifying information. In Figure 1, we
illustrate the approach whereby raw data and feature extraction
are encapsulated in a secure environment, removed from the
researchers who are primarily interested in the underlying
features.

Figure 1. A minimal exposure approach to feature engineering, where sensitive raw data are not exposed to a third party. As an example, reverse
geo-encoding is performed in a secure environment to extract a location category, which could be used to determine population models on prescription
refill adherence.

Interest in Blockchain Technology for Data Privacy
Over the course of 6 months in 2018, the landscape map of
blockchain projects within the health care sector tripled in size,
with nearly 150 projects that raised more than US $660 million
[14]. The most common function of health care and biomedical
blockchains is the management of data and digital assets (38%),
which includes identity management, patient data, health
systems operations data, and more [14]. This suggests that one
of the more popular applications of blockchain technology
centers around the idea that individuals may desire control of
their data as a way of feeling that their privacy and data are kept
more secure.

A blockchain consists of a distributed network of unaffiliated
computers (nodes) that maintain an immutable record of
transactions that are verified using a cryptographic protocol.
Blockchain networks are further characterized as public, private,
or consortium networks depending on who can participate in
the network, and how transactions are verified. In public
blockchains, transactions are verified and a global state of truth
(distributed ledger) is maintained by a trustless network. A
trustless network refers to a decentralized network with a
consensus protocol. The consensus protocol incorporates sender
authenticity via public key cryptography, game theory and
cryptoeconomic (digital currency) incentives, and computational
complexity to ensure that honest nodes are rewarded, and
dishonest nodes are penalized to maintain the canonical truth.
By making each transaction auditable and permissionless, public
blockchains ensure data integrity, trust, and verifiability.

Advances in blockchain technology have enabled the
deployment of rule-based, self-executing software code called
smart contracts. Smart contracts remove the need for
intermediaries by acting as predefined arbiters. In addition,
smart contracts are immutable and publicly verifiable when the
contract code is made public. The combination of smart
contracts with a trustless environment is what eliminates the
need for trusted third parties that are responsible for managing
private data. These features make smart contracts particularly
relevant to this study.

Aim of This Study
The aim of this study was to examine and compare current
privacy-preserving methods based on their ability to maintain
the privacy of personal shared data. Methods were compared
based on the level of trust required of a third party, and the
practicality of implementing these techniques framed as a feature
engineering step. This study also aimed to identify the more
promising techniques that researchers and software developers
can use when building applications concerned with preserving
data privacy.

The examination is set against a practical use case of collecting
location data from individual participants, from which
interesting features related to health can be extracted. To make
this example as accessible to researchers as possible, we provide
an open-sourced software project that implements one of the
examined techniques for the location sharing use case.

Methods

Primary Outcomes
The primary outcomes of this study are as follows:

1. Define a set of properties on which to evaluate the
privacy-preserving properties of each approach.

2. A qualitative comparison, grounded in a geolocation feature
engineering use case, of the privacy-preservation properties
of each approach.

3. A proof-of-concept software implementation for extracting
the category of a location from GPS coordinate data while
maintaining privacy using one of the more practical
blockchain techniques.

Literature Review
We conducted a review of literature, health care–related
blockchain use cases, and applied blockchain projects on the
Web. These techniques were identified using keyword searches
in electronic databases (Google Scholar and PubMed) and search
engine (Google) results. The keywords were privacy blockchain,
deidentification, and privacy feature engineering. The results
at the time of the search (January 2019) consisted of
methodologies described in a variety of formats, including 4
academic papers in peer-reviewed journals, 6 academic papers
in conference proceedings, 2 literature and product surveys, 1
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doctoral dissertation, 7 scientific journal preprints, 11 product
specifications, and 1 academic lecture materials.

The techniques were divided into the following categories: (1)
methods that rely on a trusted third party, (2) cryptographic
methods, (3) trusted execution environments (TEE), and (4)
methods incorporating blockchain. Examples about existing
implementations of each of these technologies are included in
Multimedia Appendix 1 [15-43].

Evaluation Properties
Data privacy laws [44-46] offer a regulatory perspective on the
several dimensions in which data privacy can be compromised.
Table 1 summarizes some of the key regulatory principles.

These regulatory guidelines make it clear that data privacy is
highly dependent on the responsibilities of trusted organizations,
and the capabilities of the technologies they implement. We
predict that future data-sharing systems will be informed by

these privacy guidelines and that a framework for evaluating
privacy-preserving technologies should map to these guidelines.
In this paper, each privacy-preserving approach is evaluated
based on the following properties:

1. The level of trust required in a third party because of the
following:
• Third-party access to raw data
• Participant visibility of data use
• Third-party ability to reuse data
• Centralization and single points of trust
• Potential for security vulnerabilities

2. The generalizability and implementation practicality of the
technique:
• Computational or communication complexity
• Implementation complexity
• Availability of developer tools
• Availability of open source tool support

Table 1. Data privacy laws in the European Union and the United States.

Summarized textSource and guideline

General Data Protection Regulation Article 5

Personal data collection is limited to what is necessary“data minimisation”

Personal data are processed in a transparent manner“lawfulness, fairness and transparency”

Personal data are collected with an explicit purpose, and further processing
adheres to the initial purpose

“purpose limitation”

Third parties are responsible for adhering to privacy laws“accountability”

Personal data are securely processed and there are protections against
unauthorized use

“integrity and confidentiality”

Health Insurance Portability and Accountability Act Privacy Rule

Health information cannot be used for purposes not directly related to
providing health treatment without an individual’s consent (with excep-
tions)

Limits who can view and share an individual’s health information

Health Information Technology for Economic and Clinical Health Act Subtitle D

Electronic medical records must be secured, and data breaches must be
reported

Data security of digital health information

Description of Geolocation Use Case
Like most complex data types, GPS data are typically
transformed before being used in an analysis through feature
engineering. There are 2 broad classes of geolocation features
that underlie most of the current health care research applications
of geolocation data.

Statistical Descriptors
They compute summary statistics from the raw GPS data. For
example, total distance traveled in a day, the variance in number
of locations visited, and the travel radius.

Semantic Descriptors
They combine the GPS data with a third-party geospatial
information system to determine location types, such as library,
gym, or house of worship or broad location themes (eg,
neighborhoods with high rates of crime defined by census data).

A few examples of application use cases that would use
geolocation features include replacing active monitoring tasks
[8-10,47-49], triggering just-in-time interventions [10,49,50],
and accessibility to health services [11,51]. Geospatial
applications that incorporate blockchain include the management
of IoT devices, crowd-sourced data collection, and emergency
response [52].

Reference to geolocation feature extraction will be made in the
Results and Discussion sections to ground the investigation in
a practical use case while evaluating different approaches for
preserving privacy.

Results

Trusted Third-Party Methods
In a traditional biomedical research setting, the protection of
human subjects is managed by an institutional review board
(IRB) at the research institution. The role of the IRB is to certify
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that research subjects are informed of the risks of participating
in research, data security guidelines are followed, and risks and
safeguards are clearly outlined and mitigated. In this model, the
research institution operates as a trusted third party with a
responsibility to protect patient data privacy. However, new
forms of research enabled by smartphone technology,
biosensors, and the routine collection of large datasets are
changing the nature of research and straining the traditional
process whereby a single institution can act as the trusted third
party [53]. In the following sections, we cover 2 conventional
approaches to privacy preservation that rely on a trusted third
party.

Server-Side Deidentification
A typical server-side data collection pipeline for a research
study will ingest raw participant data from a client-side
application and incorporate encryption, access control,
deidentification procedures, or some other method to ensure
that the raw data are not irresponsibly exposed. This approach
is straightforward to implement and can afford a research team
strict control over the feature engineering pipeline. Software
updates can be made server-side without the need to force users
to update client-side. However, a high degree of trust must be
placed in the research team, as private data are exposed at
several stages in the pipeline (Figure 2).

Figure 2. Server-side deidentification: (1) raw data may be exposed during feature extraction and analysis [54], (2) data access control is centrally
controlled and mutable, so there is no strict enforcement of how data will be used, and (3) deidentification procedures are often single-use custom
software implementations and are unlikely to be open sourced or certified to be thorough and secure. In the case of global positioning system location
data, the raw data itself can sometimes be combined with external sources of data (eg, social media) to identify an individual [55-57]. Secure storage
and deidentification are highlighted in gray to indicate steps in data pipeline that require trust with handling private data.

Client-Side Feature Extraction
Deployment of software that maintains raw data on device and
performs feature extraction locally is another viable method for
privacy preservation and increasingly a gold standard when it

comes to data collected on smartphones. Localizing data on a
device so that only the participant has access to it eliminates
the risk that third parties can expose, misuse, or repurpose the
raw data, but it relies on the integrity of the installed software
(Figure 3).

Figure 3. Client-side feature extraction, where the installed software is highlighted in gray to indicate that some level of trust is needed that the software
is secure and honest: (1) participants must maintain an updated version of the software so that the feature engineering is appropriate and secure and (2)
participants must trust software developers or software validators that the installed application is performing as intended. Open-source software can
increase visibility and provide stronger assurances of data privacy but practically requires additional security verification.

Cryptographic Techniques

Proxy Re-Encryption
Proxy re-encryption (PRE) is a technique in public-key
encryption that allows a proxy to delegate decryption access to
encrypted data from one party to another (Figure 4). An
important characteristic of PRE is that the proxy does not learn

any information about the contents of the encrypted data. As
such, it is a powerful data access control technique.

However, PRE is limited in its utility for privacy-preserving
feature engineering because data access control does not provide
a mechanism for posterior privacy. This still requires trust that
the research team will manage the decrypted data securely and
honestly.
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Figure 4. A participant can provide decryption rights to a researcher through proxy re-encryption. The researcher must still be responsible for secure
storage and deidentification of the data, along with posterior privacy.

Secure Multiparty Computation
Multiparty computation (MPC) is a class of cryptographic
protocols that emulate computations evaluated by a trusted party
but instead distributes trust among several parties (Figure 5).
MPC is best suited to feature engineering problems that compute
a result on aggregate data rather than a single participant’s data.
In addition, MPC suffers from being exponential in
communication (between parties), which limits performance.

Some implementations tackle private data sharing using MPC
protocols and attempt to mitigate security risk further by

supporting distributed storage architectures. However, these
distributed systems are typically limited in the number of nodes
and managed by a single organization (ie, single point of trust).
In theory, a single point of trust could have an agenda and exert
a degree of control over every node in the distributed network.
However, if all the nodes are controlled by a single organization,
it is feasible for the organization to access private user data.

The principle behind using a distributed network of computing
parties is that there is no single point of trust and is an important
one that will be revisited when examining blockchain methods.

Figure 5. Distributing trust among multiple parties with multiparty computation. In one type of multiparty computation, private data can be decomposed
into secret shares and stored on several computing nodes; reconstruction of the private data is only possible with all (or a majority) of the secret shares.
As shown in the figure, this alleviates the issue with secure storage of the data but does not secure the data once it is reconstructed. Trust is still required
when reconstructing a single participant's private data and is highlighted in gray.

Homomorphic Encryption
Homomorphic encryption (HE) is a form of encryption where
a computation on encrypted data will produce the same result
as performing the computation on the unencrypted data before
encryption. This can be formalized as illustrated in Figure 6.
There are different schemes of HE, including partial and fully
HE; partial homomorphic encryption (PHE) indicates one or

more operations can be run on encrypted data and preserve
homomorphic properties, while any arbitrary computation is
possible when dealing with fully homomorphic encryption
(FHE). HE is strong from a privacy-preserving standpoint
because a participant can maintain exclusive ownership rights
over data but potentially limits the feasibility of feature
extraction (Figure 7).
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Figure 6. Equation illustrating property of homomorphic encryption, where E(x) represents the encryption of data x.

Figure 7. Typical client-server homomorphic encryption (HE) pipeline. Raw data ownership is maintained client-side but inaccessible to other parties.
HE is limited for the feature engineering use case because it requires decryption as a last step. If researchers are provided the ability to decrypt the
feature data from step 5, then they would also have the ability to decrypt the raw, sensitive data from step 1.

In a data-sharing context, HE may be suitable in specific use
cases for feature extraction when the encrypted data vector is
an interesting feature itself. There is also a broader applicability
for privacy-preserving feature extraction when features from
individual participants are not required, and data can be
aggregated in the encrypted domain. However, the applicability
of HE is not suitable for general purpose feature engineering in
its current state and depends on the nature of the data and of the
feature extraction. For example, resolving a location type from
a GPS coordinate is not computable but rather the result of a
lookup function. HE would not serve this kind of scheme.

Another major hurdle in the adoption of HE is the increased
computational complexity of processing encrypted data,
resulting in extremely long processing times. Sophisticated
computations cannot be achieved with PHE, and FHE suffers
from very low computational performance [17]. This makes all
but the simplest operations impractical using HE.

Zero-Knowledge Proof
A zero-knowledge proof (ZKP) is a cryptographic method
whereby a Prover convinces a Verifier whether some

mathematical statement is true or false, without revealing any
underlying data. Privacy preservation is built into ZKPs, making
it a strong approach for handling private data.

ZKPs can be further classified based on 2 kinds of statements
that should be proved in zero knowledge: statements about facts
(eg, that a participant’s GPS coordinate corresponds to a
hospital) and statements about knowledge (eg, that a
participant’s GPS coordinate is known) [19]. The latter kind is
a ZKP of knowledge and is the most common application of
ZKPs, which is identification and authentication (eg, password
authentication). However, in the context of feature engineering,
it is the former type of problem that extracts some metadata that
is relevant.

The ZKP concept closely mirrors the minimal exposure
framework described in Figure 1. To address the geolocation
feature extraction use case, a data pipeline as shown in Figure
8 could be implemented.
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Figure 8. Hiding global positioning system (GPS) coordinates behind a simplistic zero-knowledge proof (ZKP) implementation. Practically, this looks
like a simplistic black box whereby the ZKP is a subroutine that performs feature extraction without revealing the raw GPS coordinate to the researcher.
For example, this subroutine could consist of implementing a lookup table that maps GPS coordinates to category of location. The challenge then lies
in careful implementation and permeability of this subroutine to ensure security of the data (highlighted in gray). A malicious party should not be able
to identify a participant’s GPS coordinates through a process of elimination by trying several inputs. The analogue would be trying to guess a password
via brute force.

As ZKPs more broadly correspond to a variety of techniques,
it is difficult to recommend it summarily for general feature
extraction problems, and they should instead be evaluated on a
case-by-case basis. In addition, some common challenges
include implementation and computational complexity.
Sometimes, they still require a trusted third party to prove a
statement [58]. It is our view that ZKPs hold potential as
building blocks for privacy-preserving protocols but is currently
an active area of research [59] rather than a practical and
accessible tool for implementation.

Trusted Execution Environments
A TEE (also referred to as secure hardware enclave) is a
chip-level hardware design in modern processors that enables
isolated execution over confidential data. Figure 9 illustrates
how TEEs could encapsulate private raw data without exposing
to the researcher. A major benefit of TEEs is that they have
little performance overhead over native computations, making
them practical for a wide range of applications [25], while
providing guarantees that malicious applications cannot tamper
with the computations running on secure enclaves.

An important consideration when using TEEs is the very real
risk of hardware vulnerabilities that can be exploited. In early
2018, hardware vulnerabilities in modern commercial processors
were reported that can expose private data to rogue processes
(Meltdown) or attacks on processors that perform branch
prediction (Spectre) [61]. Another vulnerability (Foreshadow)
explicitly affected Intel SGX processors [62], bringing to
question how trustworthy a secure enclave can be. In an effort
to address these concerns, emerging open-source TEE projects
argue that security by obscurity in commercial designs is
insufficient and that community-driven, open security will lead
to more reliable designs [25].

Another criticism of TEEs regarding data privacy is that
practical applications might use a single or handful of TEEs,
which centralizes the management of data. The thought is that
it is still a “very strong assumption to require all participants to
globally trust a single or handful of (TEE) processors” [63]. To
address this limitation, some projects have emerged that
incorporate blockchain with TEEs to decentralize the network
of computing nodes. This approach will be examined further in
the next section on blockchain methods.

Figure 9. A trusted execution environment (TEE; highlighted in gray) provides data privacy through encapsulation. Security features include memory
isolation, memory encryption, isolated architecture, and secure key provisioning. A remote attestation process follows to verify correct execution of a
program and provide a proof of origin [60]. A level of trust is still required in TEEs (highlighted in gray) because of the risk of hardware exploits.
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Blockchain Methods

Private and Consortium Blockchains
Private and consortium blockchain networks limit who can
participate in the network, usually by creating access controls
that are managed by highly trusted entities. Often, additional
rules are included to create a permissions system, control which
nodes can verify transactions, and make transaction data private

to the parties involved. The last of the reasons is particularly
appealing in a privacy-centric data–sharing context, but it comes
at the price of placing trust in the maintainers of the private
network. However, the very same feature that makes public
blockchains so appealing—a trustless, decentralized network
state secured by cryptoeconomic incentives—is missing from
private blockchains and is illustrated in Figure 10.

Figure 10. Private blockchain where it represents a secure data environment but requires similar trust as other centralized techniques (participant
consent to release data, trusted parties). For this reason, the entire private blockchain network is highlighted in gray.

Public Blockchain Smart Contract
Smart contracts on a public blockchain are small, modular pieces
of software that cannot be changed once they are deployed on
the network. This is an advantageous quality for
privacy-preserving software, because a user of the smart contract
is guaranteed that their data will always be processed the same
way. The functionality of deployed smart contracts is verifiable
when the smart contract code is made public.

However, the first important acknowledgment when considering
traditional public blockchains (eg, Ethereum) for data sharing
should be that input data uploaded to a public blockchain is
publicly visible and permanently recorded. This allows for all

fund senders and recipients, all transaction data, and the state
of every contract variable to be visible to any observer, as
illustrated in Figure 11.

One argument is that blockchains offer privacy because the
originator and recipient of data transactions are described only
by a randomly generated account address. Therefore,
pseudonymity is possible if participants generate new addresses
for each transaction. However, Web trackers have shown it is
possible to deanonymize users by analyzing transactions [64],
and in the case of certain sensitive data such as GPS coordinates,
it is possible to reidentify a large fraction of users by comparison
with other structured data available (eg, from social media)
[33,55-57].
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Figure 11. Public blockchain implementation, where transaction data are public. The entire network is highlighted in gray to indicate data exposure.
The standard workaround is to ensure that any sensitive data recorded are encrypted. As a result, it is generally impractical to run feature extraction on
a smart contract and would require some off-chain computation on a centralized server that requires trust.

Privacy-Preserving Blockchains Incorporating
Zero-Knowledge Proofs
The allure behind incorporating ZKPs with a public blockchain
is to enable data privacy while maintaining the benefits of
blockchain: no single point of trust and immutability of
transactions. One implementation of this technique that captured
public attention was the ability to hide the origin, destination,
and amount in a cryptocurrency transaction [18,34,35].

The idea of extending ZKPs on blockchain to include smart
contract logic would be a powerful catalyst for
privacy-preserving, trustless applications. A blockchain proposal
called Hawk [33] uses ZKPs to verify transactions and executes
private smart contracts off-chain. Unfortunately, Hawk cannot
guarantee posterior privacy because it relies on a minimally
trusted manager, which is disincentivized from revealing
sensitive data during transactions but provides no guarantees
after the transactions are complete. In addition, the Hawk paper
has yet to materialize into a usable software release. Similarly,
there are also no details that describe if and when private smart
contracts on Ethereum will be available in the near future.

The limitation of ZKP computational complexity is heightened
in the context of blockchain, which requires the technology to
be deployed at the distributed scale. ZKPs on blockchain is an

active research area, making private data sharing and feature
engineering in this context inaccessible for the time being. An
application for sharing GPS coordinate data using ZKPs with
blockchain smart contracts will have to wait for the technology
to develop.

Privacy-Preserving Blockchains Incorporating Trusted
Execution Environments
In an effort to encourage less data siloing, platforms are
emerging that hybridize TEEs and blockchain smart contracts.
This approach boasts the strengths of modular, immutable
software with isolated computation environments so that the
data pipeline is transparent and secure. This technique is
illustrated in Figure 12.

Nevertheless, this approach still hinges on the security of the
underlying TEE hardware and its vulnerabilities. Platforms that
incorporate blockchain and TEEs are new technologies, and
experimental by nature, so underlying security threats remain
to be uncovered.

This approach also provides benefits in terms of implementation
practicality and accessibility. The Oasis [32] and Enigma [36]
projects are developer friendly, releasing documentation,
tutorials, and testnets on which to develop and deploy
applications.
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Figure 12. Blockchain that incorporates confidential smart contracts on trusted execution environments (TEEs) for feature extraction. Similar to single
TEEs, the risk of hardware exploits should not be ignored.

Software Implementation of Location-Sharing Use
Case
In this paper, generalizability and practicality of implementation
were two of the evaluation criteria used when comparing
privacy-preserving techniques. To further evaluate our findings
that the hybrid blockchain-TEE technique provides a practical
platform for developing privacy-preserving software, we
implemented a proof-of-concept software application that
addresses the location-sharing use case that frames this paper.
This use case is based on the scenario where a research study
participant shares useful features about their location data with
a third-party research team, without revealing their raw GPS
coordinates.

The implementation consists of the following:

1. A smart contract deployed on the Oasis Devnet.
2. A smartphone (iOS) app with a graphical user interface for

participants and third parties to interact with the smart
contract.

Confidential smart contracts on the Oasis Devnet enable private
transaction data and private smart contract state (Table 2), which
are used to maintain participant confidentiality and can be used
to conceal a participant’s raw geolocation data. The Oasis
Devnet manages per-session encryption keys that are used to
encrypt communication between a client and smart contract
instance, such that nobody else can view the unencrypted
transaction data [65].

Figure 13 illustrates user interactions with the deployed smart
contract. The contract provides a publicly accessible method
for participants to post their timestamped location data.
Participant identity is kept confidential by maintaining a private
mapping in the smart contract state between participant wallet
address and a participant identifier.

The smart contract also provides a publicly accessible method
for third parties to register a geocoordinate with a predetermined
category of location (ie, hospital, gym, or pharmacy). Third
parties can query the smart contract to view participant visits
to categories of location. This data could be used to build a
model of participant visits to registered pharmacies, for example.

Table 2. Information visibility on Oasis Devnet.

InformationVisibility

Public • Transaction sender address (ie, participant wallet address and third-party wallet address)
• Transaction recipient address (ie, smart contract address)
• Transaction value transaction (ie, amount in DEV, the Oasis Devnet token used to fund transactions)

Private • Transaction argument data (ie, raw GPSa coordinate data)
• Transaction result data (ie, returned feature data)
• Method name called by a transaction (ie, “postParticipantLocation”)
• Smart contract state (ie, mapping of participant wallet addresses to participant ID)
• Event data (not used for this prototype; events (logs) can be emitted in response to transactions)

aGPS: global positioning system.
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Figure 13. Implementation of the proof-of-concept software application that would address a location sharing use case. A participant, identified by an
identifier im, would (1) post their raw identifying location data, dm,n, along with its respective timestamp, tm,n using their iOS device. A third party,
from another iOS device, is able to (2) post a raw location data, dz, with a respective feature, fz. For example, a feature such as the category of a location
like the string Hospital or Pharmacy. If the location data, dm,n, posted by the participant matches the location data, dz, posted by the third party then
the participant’s respective timestamp, tm,n, is mapped to that respective feature, fz. The participant is, at any time, able to (3) set the sharing permission,
sm, of all of their previously posted timestamps, tm,0…tm,n, and associated features, fm,0…fm,n, to third parties. The participant is also able to (4) get
all of their previously posted timestamps, tm,0…tm,n, and associated features, fm,0…fm,n. The third party is also able to (5) get these same timestamps,
tm,0…tm,n, and associated features, fm,0…fm,n if and only if the participant has granted permission, sm=true.

The smart contract is currently deployed on the Oasis Devnet
as a traditional smart contract, not as a confidential smart
contract. Only confidential smart contracts run on TEEs and
maintain the privacy of smart contract state values and
transactional data. However, the library (web3swift) for
deploying smart contracts from an iOS smartphone app does
not yet support confidential smart contract deployment to the
Oasis Devnet at the time of this writing. We plan to implement
support for this in the near future when web3swift library
support is available.

In addition, we hope this proof-of-concept software can serve
as a starting ground for future research interested in privacy
preservation for feature engineering use cases. Additional details
about the software design, development stack, implementation,
and trade-offs are described in a tutorial manuscript currently
under review [66]. The software source code is publicly
available on GitHub at HD2i/GeolocationSmartContract [67]
and HD2i/Geolocation-iOS [68]. Full details on the usage are
included with the software.

Discussion

Comparison of Privacy-Preserving Methods
We have found that conventional methods that rely on a trusted
third party for securing participant data generally fall short of
providing full guarantees that sensitive data cannot be accessed
for unintended purposes. Participants must provide a high degree
of trust in researchers that use server-side deidentification
procedures and maintain data warehouses themselves. Numerous
data breaches on centralized servers in the past decade have
illustrated that the responsible question to ask oneself is when,
rather than if, private information will be exposed. To combat
this, researchers should try to limit the exposure of raw data. A
valid approach is to instead perform client-side feature extraction
on a personal device under the control of each participant, such
as a personal smartphone or private data server. The main
drawback to this approach is a high burden for researchers to
develop secure, validated software; meanwhile, participants still
need to trust that the software is only collecting the intended
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data and that there are no other data collection routines present
that are only described in the fine print of a privacy policy.

Several sophisticated classes of cryptographic techniques exist
that provide privacy-preserving methods, and this is an active
area of research. PRE can be used for access control to encrypted
data, but it falls short of guaranteeing posterior privacy. Secure
MPC removes the need for a trusted third party when collecting
encrypted data from 2 or more parties and computing aggregate
results. However, practical implementations concerned with
performance rely on a small number of computing nodes that
are managed by a single party, which requires trust in the
operators, software, and the security of the computing nodes.
HE is considered a holy grail of privacy-preserving methods,
under which computations can be performed on private data in
the encrypted space. However, there are few use cases where
encrypted data can be used as a feature, or applications are
limited by computational performance. ZKPs are a broad class
of cryptographic techniques that provide powerful guarantees
of data privacy but need to be evaluated for a particular
application. At a superficial level, they can be used for
authentication, but other applications usually incur
implementation and computational complexity.

Advances in computing hardware have enabled
privacy-preservation through the design of TEEs. These
chip-level designs create an isolated memory space where
computations can be performed on sensitive data. However, as
with software data breaches, it is difficult to guarantee that no
hardware vulnerabilities can be exploited. In addition, a
participant must still trust that the software running on the TEE
computing node is the one advertised.

The previous 3 approaches all share a common element: the
feature extraction runs on a centralized server or computing
node that is managed by a trusted third party. Although some
methods provide higher levels of data security, there is still a
shortcoming in terms of visibility. Participants must trust that
a third party is doing what it says it is doing, and nothing else.
This is where blockchain technology provides a unique benefit.

Blockchains provide a trustless environment that features
visibility and immutability by running on a decentralized
network that is secure from tampering through cryptoeconomic

incentives. In addition, they offer the unique benefit of being
immutable pieces of software (smart contracts) that can be
verified to do exactly what is promised if the contract code is
made public. Of course, this is only guaranteed in public
blockchains, where private or consortium blockchains tend to
incorporate trusted parties and are more centralized.
Unfortunately, blockchains were designed for security and data
integrity but not for data privacy.

The combination of cryptographic techniques and TEEs with
blockchain addresses the single point of trust weakness and
holds the highest potential for trustworthy privacy-preserving
platforms. Two promising hybrids are blockchains incorporating
ZKPs and blockchains incorporating TEEs. Blockchain with
ZKPs has been successful in providing transactional privacy
with cryptocurrency, but it has not developed to the same level
for smart contract data privacy. Blockchain with TEEs is a
developing technology, but it has reached a level of maturity
where developers can begin to develop and deploy real
applications on these platforms. Naturally, potential hardware
vulnerabilities on these platforms do not make this approach
ideal; however, until cryptographic methods like FHE can be
widely applied at scale, blockchains with TEEs seem to be the
best approach available currently. In addition, we found that
robust developer documentation and tools were available, which
makes this approach accessible for product implementations as
well. Our software implementation for the geolocation use case
was in part encouraged by the practical direction and developer
support provided by the Oasis platform and illustrates that
privacy-preserving methods are realizable today on
nonproduction developer networks. However, it is important to
stress that blockchains with TEE developer networks are
experimental at the time of this submission, and a conservative
approach should be taken.

Table 3 summarizes our findings and attempts to qualitatively
compare each approach in terms of how much trust must be
placed in other entities. In addition, a rough indication of each
method’s practicality (based on implementation and
computational complexity) is defined. Examples of real-world
implementations or developing projects for each method are
also identified; more detail is provided in Multimedia Appendix
1. Finally, the major limitations of each method are summarized.
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Table 3. Comparison of trusted third party, cryptographic, and blockchain approaches to data privacy for research studies.

ExamplesLimitationsPracticalityLevel of trustMethod

Strava GPSa devicesCentralized; vulnerable to data reuse and
data breaches; no visibility

MediumHighServer-side deidentification

Apple device predictive
keyboard; Open
PDS/SafeAnswers

No visibilityMediumMediumClient-side feature extraction

NuCypher pyUmbralOnly for data access control; vulnerable to
data reuse and data breaches

LowHighProxy re-encryption

Jana, Sharemind, Partisia,
Sepior

Specific use cases; centralized; no visibility;
communication complexity

MediumLowMultiparty computation

NuCypher nuFHELimited operations or extremely low perfor-
mance

LowLowHomomorphic encryption

zk-SNARKSpecific use cases; centralized; no visibility;
implementation and computational complex-
ity

LowLowZero-knowledge proof (ZKP)

Intel SGX, ARM TrustZone,
Keystone Project

Potential for hardware vulnerabilities; no
visibility

MediumLowTrusted execution environment (TEE)

Hyperledger FabricPseudocentralized; depends on designMediumMediumPrivate or consortium blockchain

EthereumOnly for data access controlMediumHighPublic blockchain smart contract

ZCash, HawkProof of concept, no software release
available

LowHighPublic blockchain with ZKPs

Enigma, OasisPotential for hardware or other vulnerabili-
ties; nonproduction stages

MediumLowestPublic blockchain with TEE

aGPS: global positioning system.

Limitations
In the introductory section on minimal exposure feature
engineering, we identified that the feature engineering step in
an analysis pipeline offers an opportunity to limit exposure and
remove identifiable features. Although we promote this
framework for minimizing the exposure of private data where
possible, we recognize that not all feature engineering problems
are amenable to deidentification. In these scenarios, we
recommend that data security safeguards be in place, including
encryption and secured servers.

Transactions on a public blockchain network have an inherent
cost, which the parties involved in the transaction must pay for
in cryptocurrency. How large this financial cost is varies based
on the value of the cryptocurrency and on the congestion of the
network at any given time, so no quantifiable amount is provided
here. The cost may be a significant consideration for practical
implementations, but our focus was on identifying methods that
maintain privacy.

When posting transactions to any internet-connected network,
including public blockchains, a reasonable concern is that a
participant would reveal their internet protocol (IP) address,

which itself is a piece of identifying information. One
workaround to this concern would be to implement an internet
request proxy (eg, a thin-client of the Tor software), which can
relay internet traffic to conceal a user’s location and usage [69].
However, the authors have not implemented this feature, and
it is left to future work.

Conclusions
We believe that the boundaries of data privacy are being pushed
forward with blockchain technology. The fundamental limitation
of privacy-preserving protocols that run on a single point of
trust with centralized servers is addressed by immutable smart
contracts. As different cryptographic and software techniques
overlap with blockchain, stronger guarantees of privacy become
possible. In particular, we think the combination of blockchain
with TEEs seems like a practical and forward-thinking approach
to privacy-preserving feature engineering. This conclusion is
supported by our development and deployment of a
proof-of-concept private geolocation data-sharing software on
a hybrid blockchain-TEE developer platform. However, no
system is free from all vulnerabilities and should be thoroughly
tested when interacting with highly sensitive, private data such
as GPS coordinates or other biomedical data.
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Abbreviations
FHE: fully homomorphic encryption
GPS: global positioning system
HE: homomorphic encryption
IoT: internet of things
MPC: multiparty computation
PHE: partial homomorphic encryption
PRE: proxy re-encryption
TEE: trusted execution environment
ZKP: zero-knowledge proof
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