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Abstract

Background: Blockchain has the potential to disrupt the current modes of patient data access, accumulation, contribution,
exchange, and control. Using interoperability standards, smart contracts, and cryptographic identities, patients can securely
exchange data with providers and regulate access. The resulting comprehensive, longitudinal medical records can significantly
improve the cost and quality of patient care for individuals and populations alike.

Objective: This work presents HealthChain, a novel patient-centered blockchain framework. The intent is to bolster patient
engagement, data curation, and regulated dissemination of accumulated information in a secure, interoperable environment. A
mixed-block blockchain is proposed to support immutable logging and redactable patient blocks. Patient data are generated and
exchanged through Health Level-7 Fast Healthcare Interoperability Resources, allowing seamless transfer with compliant systems.
In addition, patients receive cryptographic identities in the form of public and private key pairs. Public keys are stored in the
blockchain and are suitable for securing and verifying transactions. Furthermore, the envisaged system uses proxy re-encryption
(PRE) to share information through revocable, smart contracts, ensuring the preservation of privacy and confidentiality. Finally,
several PRE improvements are offered to enhance performance and security.

Methods: The framework was formulated to address key barriers to blockchain adoption in health care, namely, information
security, interoperability, data integrity, identity validation, and scalability. It supports 16 configurations through the manipulation
of 4 modes. An open-source, proof-of-concept tool was developed to evaluate the performance of the novel patient block
components and system configurations. To demonstrate the utility of the proposed framework and evaluate resource consumption,
extensive testing was performed on each of the 16 configurations over a variety of scenarios involving a variable number of
existing and imported records.

Results: The results indicate several clear high-performing, low-bandwidth configurations, although they are not the strongest
cryptographically. Of the strongest models, one’s anticipated cumulative record size is shown to influence the selection. Although
the most efficient algorithm is ultimately user specific, Advanced Encryption Standard–encrypted data with static keys, incremental
server storage, and no additional server-side encryption are the fastest and least bandwidth intensive, whereas proxy re-encrypted
data with dynamic keys, incremental server storage, and additional server-side encryption are the best performing of the strongest
configurations.

Conclusions: Blockchain is a potent and viable technology for patient-centered access to and exchange of health information.
By integrating a structured, interoperable design with patient-accumulated and generated data shared through smart contracts
into a universally accessible blockchain, HealthChain presents patients and providers with access to consistent and comprehensive
medical records. Challenges addressed include data security, interoperability, block storage, and patient-administered data access,
with several configurations emerging for further consideration regarding speed and security.
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Introduction

Overview
Health care is a data-intensive domain with vast amounts of
information generated, accessed, and disseminated daily.
Unfortunately, patient records are typically isolated in
institution-centric electronic health records (EHRs), resulting
in fragmentation with consequences ranging from inefficient
care coordination to lack of critical information during
emergencies [1-3]. Interoperability requirements were instituted
as a remedy, but a system supporting comprehensive patient
record integration remains elusive. Furthermore, the Office of
the National Coordinator for Health Information Technology
(ONC), in a 2015 Congressional report, detailed how technology
vendors and providers limit patient access, by what has since
been codified as information blocking [4,5]. Thus, not only do
patient data remain disjointed but also barriers erected by data
holders dissuade patient engagement and information exchange,
culminating in the loss of agency. Blockchain technology
coupled with nationally recognized interoperability standards
(eg, Fast Healthcare Interoperability Resources, FHIR) has been
presented as a viable solution to the said concerns [1-3,6-24].

Traditional health information exchange follows 1 of the
following 3 models: push (sending information from 1 location
to another), pull (extracting information from a source), or view
(peering into a system). Although these practices technically
achieve health information exchange, they are not sustainable,
en masse solutions to patient-centered care. Thus, Halamka et
al [23] proposed blockchains are a fourth model, with a stated
goal of restoring patient agency [3,24].

Blockchains are distributed and decentralized repositories of
information secured by various cryptographic primitives. Ideally,
participants (eg, patients, providers, and payers) upload data to
the chain in a secure, authenticated fashion. The result is a
comprehensive medical record accessible by those with patient
permission as enforced by smart contracts. As participants only
need to communicate with the blockchain using recognized
interoperability standards (eg, FHIR), once trust is established,
all information is securely exchanged. That is, instead of having
multiple points of connection, document formats, and exchange
protocols to follow (each a security risk and potentially costly
to address), a universally accessible blockchain minimizes the
overall risk to the participating entity while simultaneously
enriching information exchange and patient engagement.

More specifically, deploying blockchain in health care is
suggested to break down information exchange barriers inherent
in disparate, siloed EHR systems; empower patients through
data consolidation and access controls and enabling (eg, secure
and verifiable authorizations, form completion, discharge
instruction review, and patient-generated data contribution);
improve quality of care while reducing costs and fraud; promote

data integrity, validation, and provenance; track medical devices
and pharmaceuticals; facilitate clinical trial accountability and
auditability; and support research through access to large-scale,
longitudinal, aggregated patient records [3,6-22]. Virtually, all
previous works are proof of concepts or pilots, endeavoring to
address the information security, interoperability, data integrity,
identity validation, and scalability concerns hindering adoption
[3,6-19].

Herein, we submit technical solutions to address these concerns,
culminating in a detailed framework and open-source
proof-of-concept tool—HealthChain —for a patient-centered
blockchain. In the Methods section, HealthChain’s components
are defined and, when appropriate, compared with an immutable
blockchain design. Contributions include a mixed-block
blockchain, redactable patient blocks, amendable smart
contracts, adoption of proxy re-encryption (PRE) for granting
and revoking data sharing rights, formulation of a 2-party PRE
decryption (2PD) scheme to facilitate mediated exchange, 4
configurable modes of operation, and a comprehensive set of
experiments.

Blockchain Applications in Health Care
Heralded as a disruptive technology, blockchain research has
intensified in recent years. Researchers and developers in health
care have proposed, conceptualized, and implemented
blockchain-based platforms to transform patient data sharing
and information interoperability.

OmniPHR is a patient-centered blockchain emphasizing the
distributed and interoperable principles of personal health
records (PHRs). Patient data are recorded in encrypted,
hierarchical blocks signed by the inserting entity (eg, provider,
patient, or medical device). As data may be stored off-chain,
OmniPHR maintains location pointers [25]. Another well-known
system—MedRec—was conceived by researchers at Harvard
and MIT. This Ethereum-based system links global patient
identities to records held by providers. MedRec authenticates
participants and stores provider pointers and record hashes (for
data integrity). Patients interface with providers through MedRec
to view data through smart contracts. Furthermore, patients
manage third party access through the creation of smart contracts
[3,23,24]. FHIRChain, developed by Zhang et al [2], is a
blockchain-based architecture faceted in accordance with the
secure and scalable sharing requirements of the ONC’s Shared
Nationwide Interoperability Roadmap [26] and leverages the
emerging FHIR standard [27]. As with MedRec, data are stored
off-chain and accessible through pointers and smart
contract–controlled access tokens. In addition to interoperability,
Kuo et al’s [28] ModelChain performs privacy-preserving
machine learning in the blockchain [28,29].

Beyond patient-centric applications, other blockchain solutions
have been presented in a health care setting including supply
chain management [1,12,17,30-32], clinical research and data

J Med Internet Res 2019 | vol. 21 | iss. 8 | e13592 | p. 2http://www.jmir.org/2019/8/e13592/
(page number not for citation purposes)

Hylock & ZengJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.2196/13592
http://www.w3.org/Style/XSL
http://www.renderx.com/


monetization [14,16,33-36], medical and research fraud
detection [34,35,37], public health surveillance [13,18,20,38],
and managing internet of (healthy) things [12,39-43].

Background and Terminology

Consensus and Hashing
A consensus algorithm is a protocol followed by the blockchain
when determining the truthfulness and timeliness of blocks
under consideration. On reaching consensus, blocks are accepted
or rejected. There are many consensus algorithms from which
to choose proof of work [44], proof of stake [45,46], proof of
elapsed time [47,48], or Kafka [47,49]—a discussion of each
is outside the scope of this work, and we refer the reader to the
supplied references for further exploration.

Each block is identified by a hash, which is essentially a unique
and verifiable fingerprint (Figure 1). A 1-way cryptographic

hashing function produces said hash, representing the content
of a message. In blockchain, the message consists of block data
and the previous block’s hash; the inclusion of the latter creates
an unbreakable bond (ie, chain; Figure 2). Hashing functions
satisfy 2 key principles: (1) each input has a distinct output (ie,
uniqueness), and (2) a given input has the same output (ie,
verifiability).

Point 1 seeks to prevent collisions —a phenomenon where 2
distinct messages have the same hash. Attackers can
theoretically exploit collisions by forging blocks with desirable
modifications (eg, a financial transfer), replacing authentic
blocks as the forged hashes are verifiable (point 2)—this is an
oversimplification but suitable for illustrative purposes. Thus,
it is imperative to use hash functions without known
vulnerabilities or collisions.

Figure 1. Block schematic with sample financial data and hashes.

Figure 2. Blockchain diagram with several blocks, including the foundational genesis block, and noted hash connections.

Chameleon Hashing
Before Ateniese et al’s redactable blockchain [50], a block was
axiomatically held as immutable. The authors, however, made
several keen observations as to when mutability was desirous
if not mandatory to comply with the legal, regulatory, and
general usability requirements. These include legal violations
(eg, illicit content or intellectual property rights infringements),
amending changes to information (eg, avoiding data
fragmentation [see section on Patient Blocks]), patching
executable code (eg, debugging smart contracts or removing an
embedded virus), expunging data (eg, right to be forgotten,
General Data Protection Regulation, or privacy breach), and
allowing for blockchain consolidation (eg, a merger)
[7,8,15,50-52].

Chameleon hashing was posited as a viable alternative to
traditional functions. As proposed by Krawczyk and Rabin
[53-55], chameleon hashing satisfies the 2 hashing principles
while introducing a trapdoor, allowing for efficient generation
of collisions by the possessor of the trapdoor (ie, private) key.

However, without the said key, collisions are just as unlikely
as nontrapdoor functions [50,53-55].

Smart Contracts
Smart contracts are autonomous transactions executed when
stipulated terms of an agreement are met [3,22,51,52,56-59].
The creation of such contracts arose from the need to engender
trust in an inherently untrustworthy environment. For instance,
if some condition is met, how can one guarantee each party will
comply with the agreement? Once executed, it will carry out
the specified terms without fail.

Smart contracts, popularized by cryptocurrencies such as Bitcoin
and Ethereum, have many practical applications in health care.
Patients, for instance, can provide authorization through smart
contracts to participate in studies or share information. They
can codify rules leading to patient notification, for example,
data accessed or communication received. They can also be
used as a form of context-based access control, stipulating access
rights to covered entities, business associates, and subcontractors
[3,21,22].
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Proxy Re-Encryption
PRE enables the delegation of decryption rights by a delegator
to a delegatee through an intervening proxy [60-63]. The notion
is quite intuitive and shown in Figure 3. A user, for example,
Alice, encrypts a message forming a ciphertext. Bob requests
a re-encryption key to facilitate decryption of Alice’s ciphertext
without exposing either party’s secret information. PRE has
been generally deployed in the cloud [63-70] for network storage
[60], distributed file systems [71], email forwarding [65,71],
and information exchange [72]. In health care, it has been
suggested to safeguard patient data and identities in cloud-based
systems [73,74], secure mobile health monitoring and telehealth

[66-68,75], and control disclosure of information in PHRs [65]
and health information exchanges [72].

Most PRE schemes use elliptic curve cryptography (ECC)
[76-80], an asymmetric cryptosystem (Federal Information
Processing Standard [FIPS] 186-4 [81]). Advancements in
quantum computing [82-85] and modern attacks [86-88],
however, foreshadow its demise. One promising replacement
is quantum-resistant lattices [71,89-95]. Kirshanova [71] and
Kim and Jeong [93] have recently published frameworks for
implementing PRE using lattices. Thus, as we enter a
postquantum age, so too will PRE, ensuring its longevity.

Figure 3. Proxy re-encryption process overview.

Methods

Proposed HealthChain Framework
Herein, an overview of the HealthChain framework is presented
in Textbox 1. Specific details are provided in the proceeding
subsections.

Patient Centered
As a patient-centric framework, HealthChain presents patients
with a holistic view of their medical record, restoring agency
through interaction. It encourages the accumulation,
modification, generation, and review of information; ensures
data integrity; authenticates identities; promotes unambiguous
exchange; and executes user-granted access rights through smart
contracts. Thus, HealthChain does not suffer from the common
ailments plaguing PHR adoption such as data security and
validity concerns, interoperability challenges, trust, and
technological barriers to adoption [96-98]. Of note, HealthChain

is not intended to replace EHRs but to serve as an interface
between patients and third parties (eg, providers or payers).

Permissioned Blockchain
HealthChain is defined as a permissioned blockchain; only
trusted parties (eg, hospitals, research institutions, universities,
and government agencies) have the authority to manipulate the
blockchain within a private network. These parties form a
consortium (eg, a Regional HealthChain Organization) to
manage the HealthChain, ensuring compliance with, for
example, relevant statutes (eg, Health Insurance Portability and
Accountability Act of 1996, HIPAA) and interoperability
standards. Permissioning is further extended to patients, who
are validated by a consortium member before account creation;
this process can imitate those for patient portals. Although
permissioning is a HealthChain requisite, a specific
implementation is not. Thus, adopters may incorporate any
system of choice.

Textbox 1. The 6 components of the HealthChain framework.

1. Patient centered

2. Permissioned blockchain: nodes and users

3. Interoperability: nationally recognized interoperability standards

4. Mixed-block blockchain: log and patient blocks

5. Smart contracts: permissioned interoperability

6. Health Insurance Portability and Accountability Act of 1996 and HealthChain: legal requirements and supporting components
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Interoperability
Patient-managed health information systems must conform to
nationally recognized interoperability standards to be successful
[99,100]. Using proprietary or lesser known standards (if at all)
erects interoperability barriers, diminishing utility and adoption.
Although any standard(s) is acceptable in this framework, HL7
FHIR [27] is recommended.

Although not yet federally required, HL7 FHIR is, according
to the 2019 Interoperability Standards Advisory by ONC, under
consideration for 26 interoperability needs [100]. Furthermore,
ONC’s Interoperability Proving Ground (an open community
platform for sharing interoperability projects) indicates 21.3%
(96/450) of projects use FHIR. Notable participants include

Allscripts, the American Medical Association, Cisco,
NewYork-Presbyterian Hospital, OpenHIE, the Sequoia project,
and the US Department of Veterans Affairs [101]. Apple has
also invested in FHIR for their PHR app [102]. Clearly, the
anticipation is standard acceptance, thus our selection.

Mixed-Block Blockchain
The proposed blockchain integrates 2 semantically distinct block
types: log and patient, each detailed in subsequent sections. The
distinction lies in block redaction or editability. Patient blocks
are proposed to be redactable, whereas log blocks are not. Figure
4 augments Figure 2 to account for the 2 types. As detailed, the
architecture is unaffected. A simple flag in each block
distinguishes the types.

Figure 4. Mixed-block blockchain adaptation of Figure 2.

Log Blocks

Log blocks are an immutable, historical account of operations
on the blockchain, such as added patients and blocks, patient
block modification metadata, and the issuance and execution
of smart contracts. Hence, traditional hashing algorithms (eg,
Secure Hash Algorithm [SHA]-256) suffice. In addition, as the
data are not sensitive (ie, contain no identifying information),
encryption is unnecessary. Thus, log blocks are added to the
blockchain following contemporary means (eg, through
consensus).

Patient Blocks

Structurally, patient blocks consist of plaintext metadata (eg,
unique identifier, type flag, patient’s anonymous identifier,
timestamp, hash, and the issuing miner’s identifier and
signature), encrypted patient data, and smart contracts.
Principally, they adhere to Ateniese et al’s redaction scheme
[50] and are established and updated as follows.

When a patient requests an account, an authorized node prepares
a block and submits it through a selected consensus method for
inclusion. This represents the only instance of consensus in the
patient block process (Figure 5, account flow). Once accepted,
the patient assumes control. Block alterations are hashed, signed,
and broadcasted to the network. Nodes validate the transactions
and apply the addendums (Figure 5, redact flow). Multimedia
data require special handling, as their large size
disproportionately (likely prohibitively) consumes bandwidth
and computational resources. We adopt the methodology in
MedRec [3], where data remain at the source with a location
reference stored in the block for ad-hoc retrieval. Throughout

this process, transactions in the form of logs are collected. As
stated in the previous section, log blocks are added following
a traditional consensus methodology and the chain amended
(Figure 5, log flow).

Redaction addresses 3 shortcomings of immutable blocks and
patient transaction isolation. The first is data fragmentation.
Immutable blockchains insert new transactions in
contemporaneous blocks, splintering medical records, which
are collections of temporal events, rather than isolated, for
example, financial, transactions (Figure 6, initial and subsequent
flow). Retrieval, consequently, necessitates (1) blockchain (or
a potentially corruptible, off-chain index) scanning by nodes to
recover and transmit encrypted fragments and (2) decrypting
and reconstituting said fragments by requesters (Figure 7). The
greater the fragmentation, the more resource intensive the
process. Redaction, as implemented in HealthChain, colocates
patient information (Figure 5, redact flow), minimizing overall
system effort (Figure 7). Second is immutability itself.
Legitimate modifications (eg, adding encounter notes, modifying
medical histories, or removing incorrect user-generated data)
are simulated in immutable blockchains through new
transactions. Requesters must apply these transactions in the
proper temporal order (eg, overwrite older data with newer) to
reconstruct consistent records. Resources (ie, time, space, and
bandwidth) are thus depleted with each modification. Redaction
modifies data in place, nullifying this effect. The third, and final,
shortcoming is consensus. Modifications produce new blocks
necessitating consensus. Redactions to established blocks avoid
this costly process, conserving time, effort, bandwidth, and
storage for users and nodes.
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Figure 5. Patient account (ie, block) establishment, redaction, and logging processes in HealthChain.

Figure 6. Initial and subsequent patient data entry in a traditional blockchain.
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Figure 7. Information retrieval in an immutable blockchain versus HealthChain.

Hashing Redactable Blocks

Once appended to the blockchain, a block’s hash cannot change;
otherwise, the chain breaks. Redaction, therefore, precludes
traditional hash functions (eg, SHA-256) as, by definition,
different inputs produce distinct hashes. Hence, the deployment
of chameleon hashing.

Ateniese et al [50] identified several chameleon hash
formulations suitable for blockchains. Here, public-coin
chameleon hashing (PCCH) is applied. PCCH uses public-key
cryptography for verification (using public keys) and redaction
(by generating collisions with private keys). In terms of security,
PCCH hashes are as hard to forge as nontrapdoor functions.
Hence, PCCH maintains a secure and valid state in redactable
blockchains [50].

Block Encryption

Classified as electronic protected health information under the
HIPAA, patient data must be encrypted (45 Code of Federal
Regulations [CFR] section 164.304) per the US Department of
Health and Human Services–issued guidelines (Health
Information Technology for Economic and Clinical Health
13402(h)(2)). These guidelines reference National Institute of
Standards and Technology Special Publication 800-111, which
recommends the Advanced Encryption Standard (AES),
although any FIPS-approved cryptosystem (eg, ECC) is
acceptable [103]. Any selection must be mindful of the proposed
framework, which includes information exchange.

Traditional symmetric (eg, AES) and asymmetric (eg, ECC)
primitives are insufficient as they compel 1 of the 3 insecure or
infeasible information exchange solutions [69]. The first is
exchanging secret information. This jeopardizes data integrity
(through altering, corrupting, or re-encrypting data) and digital
identities (secured by private keys). Second, originators (eg,
patients) can re-encrypt data under requester public keys.
Although secure, originators must be omnipresent and dedicate
considerable personal resources to the process; otherwise,
sharing ceases. Finally, third parties can represent originators
for re-encryption. However, this exposes plaintext and secret

information to the said third parties. As a potential solution to
these challenges, we endorse PRE.

PRE facilitates information exchange through dedicated third
parties without exposing sensitive information. Beyond
proposing PRE, we identified 4 operations critical to securing
and validating stored and exchanged data in the proposed
framework: (1) encryption and decryption, (2) re-encryption,
(3) sign and verify (eg, digital signatures), and (4) encrypt sign
and decrypt-verify (eg, encrypted sign and verify). AFGH (so
named for the authors’ last names) [60] is the chosen PRE
scheme as it fulfills operations 1 and 2 and encourages the
formulation of 3 and 4. In addition, its re-encryption keys are
unidirectional (decrypt only), noninteractive (no secret
information exchanged), and nontransitive (cannot combine
keys to forge privileges) [60]; Multimedia Appendix 1 provides
a more thorough introduction.

Operations 1 and 2 are instrumental in securing and sharing
sensitive information and are the foundation of any PRE scheme.
Operation 3 facilitates message authentication and data integrity.
A message signed (ie, encrypted) by a sender using its private
key can be verified (ie, decrypted) by anyone with its public
key. As only the sender has its private key, verification proves
authenticity and integrity. Multimedia Appendix 1 offers our
posited sign and verify AFGH modification. Operation 4 unites
1 and 3 to protect sensitive, signed messages. Signed messages
are encrypted with the recipient’s public key, ensuring only it
can decrypt before verification. Multimedia Appendix 1 presents
the conceived encrypt-sign and decrypt-verify AFGH extension.

Moreover, some PRE-derived ciphertexts (eg, ElGamal based
[104] in AFGH) are malleable. This is advantageous when
optimizing, for instance, data rekeying, which amounts to
multiplication in ElGamal, instead of decrypt-encrypt in AES.
In addition, it is compulsory for homomorphic encryption, that
is, computation on ciphertexts. Although this is an active area
of research, fully homomorphic schemes (ie, those that add and
multiply) are presently impractical [94,95,105-111]. The
research, however, is progressing, with lattices emerging as a
promising area [94,95,105,106]. Lattices, therefore, have the
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potential to bring postquantum, fully homomorphic encryption
to this framework.

PRE is traditionally deployed for key exchange [60,76]. Data
are encrypted using, for example, AES, and the key encrypted
and exchanged through PRE. An alternative, as proposed herein,
is PRE-encrypted data. Both have merits and were extensively
tested. Table 1 compares these approaches by 4 properties. We
focus on PRE implementations over elliptic curves (ECs)
because of their prominence [76-80].

EC PRE is slower and larger than AES because of key and
bilinear map sizes. EC keys are twice AES for the same

cryptographic strength—for example, EC-256 equates to
AES-128 [112]. Bilinear maps (see Multimedia Appendix 1)
are even larger—for example, up to 3072 bits for EC-256
[112-115]. Consequently, the system uses more space and time,
hindering performance. Furthermore, AFGH eliminates
re-encryption data integrity concerns through decrypt-only keys
[60], a property unsupported by AES. Finally, the malleable
AFGH cipher supports dynamic rekeying (ie, altering encryption
keys) through multiplication, instead of the delegator having to
decrypt, encrypt, and retransmit all data as under AES.

Table 1. A comparison of Advanced Encryption Standard encrypted blocks with proxy re-encryption encrypted keys to proxy re-encryption encrypted
blocks.

PREb block encryptionAESa block encryptionProperty

SlowerFasterEncrypt and decrypt speed

LargerSmallerSize of ciphertext

Decrypt onlyDecrypt and encryptKey operations

MultiplicationDecrypt then encryptRekeying ciphers

aAES: Advanced Encryption Standard.
bPRE: proxy re-encryption.

Smart Contracts
Smart contracts herein enable conditional information exchange.
Their mutability (from patient block storage) permits
modification and revocation without duplicate, conflicting, or
vulnerable contracts remaining on the blockchain. During
instantiation, a template is automatically populated (once
authorization is furnished); no programming is necessary. On
execution, an engine hardcoded into the server platform applies
a series of instructions, given a contract’s parameters. There are
several reasons for this approach. The proposed smart contracts
are structurally uniform (eg, identifiers and signatures of
involved parties, terms, and re-encryption keys), eliminating
the need for arbitrary code support. Furthermore, logical errors
[56-58] and exploitable vulnerabilities [51,52,58,59] in
programmed contracts can compromise patient data. An
automated, templatized design with a parameterized, hardcoded
engine eliminates these vulnerabilities.

Figure 8 demonstrates the smart contract initiation process, in
which a re-encryption key is created and stored in a signed
contract on the delegator’s block. Figure 9 shows the execution
of the contract generated in step 1 by the delegatee in step 2,
facilitating data decryption. In this example (and proof of
concept), data are stored as FHIR messages for direct
interoperability with capable systems. This represents a basic
application of PRE to smart contracts. It is, however, insecure.

Although granting access with PRE is simple, revoking it is not.
Consider the following, 2 parties enter into a 1-week smart

contract. If the delegatee notes the re-encryption key during
valid execution, nothing explicitly prevents it from decrypting
the delegator’s block after contract termination.

A naïve refinement to close this vulnerability is implementing
PRE as originally defined—proxies decrypt delegator data, then
encrypt for delegatees [61]. However, as numerous studies have
concluded, proxies cannot be trusted with delegator private keys
and plaintext [65,70,90,116]. Another approach is subkeying
by, for instance, time [60,117-119]. Each period has a unique,
random variable to which all ciphertexts and re-encryption keys
are bound. It is argued that this ensures delegatees cannot access
new information. However, if a contract is terminated within a
period, new information will be available as access is not
revoked, only confined. In addition, one must manage many
keys, data are fragmented over time, and interperiod
interoperability is cumbersome.

To address revocation, we submit 2PD (Multimedia Appendix
1), a variant of the original formulation [61] whereby data
decryption requires 2 parties with complementary re-encryption
keys. Figures 10 and 11 adapt Figures 8 and 9, respectively, to
2PD. In premise, the intermediary (eg, node; an augmented
proxy, thus the distinction) applies its re-encryption key to the
delegator’s data (as it is malleable), producing a ciphertext
discernable to the delegatee alone. In terms of security,
intermediaries no longer require private keys, and its
re-encryption key does not expose plaintext. Furthermore,
delegatee re-encryption keys cannot decrypt data on the
blockchain, thus realizing revocation.
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Figure 8. Smart contract initiation using standard proxy re-encryption.

Figure 9. Smart contract execution using standard proxy re-encryption. FHIR: Fast Healthcare Interoperability Resources.

Figure 10. Smart contract initiation using 2-party proxy re-encryption decryption.
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Figure 11. Smart contract execution using 2-party proxy re-encryption decryption. FHIR: Fast Healthcare Interoperability Resources; PRE: proxy
re-encryption.

There are several additional 2PD factors to consider. First, it
demands an intermediary be semitrusted in that it will not
maliciously alter the hardcoded smart contract engine or
distribute keys to unauthorized entities. As our framework
implements a permissioned blockchain, intermediaries (ie,
nodes) are inherently trustworthy. That said, private keys and
plaintext are withheld to deter collusion and improper data use.
Second, re-encryption keys must mathematically prohibit
manipulation resulting in forged privileges. This is imparted by
AFGH’s nontransitive property [60]. Finally, re-encryption key
retrieval mandates intermediary and delegatee consent without
revealing said keys. Encrypt-sign layering, as documented in
Figures 10 and 11, provides such support, as 1 layer must be
decrypt verified by the opposing entity (ie, consent) and the
final layer by the intended recipient, simultaneously averting
unilateral access and key exposure.

Health Insurance Portability and Accountability Act of
1996 and HealthChain
Administrative rule 45 CFR section 164.524 grants patients the
right to request copies of their records, which are to be delivered
in the form and format requested by the individual, if they are
readily producible in such as format (45 CFR section
164.524(c)(2)(i)). With the growing acceptance of HL7 FHIR
(section Interoperability), one can envisage a future with it being
readily producible. Thus, the proposed framework can leverage
patient access rights through FHIR to seamlessly communicate
with health information systems, eliminating the burden of
ad-hoc data extraction, manual data entry, and data
transformation placed on users and providers.

Systems in this space must be HIPAA compliant. Table 2 maps
facets of the posited framework to pertinent HIPAA
administrative rules, suggesting compliance. A thorough
assessment, however, must be conducted before deployment.
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Table 2. Health Insurance Portability and Accountability Act of 1996 administrative rule specifications (privacy rule and security rule) and submitted
HealthChain components supporting compliance.

HealthChainRule: 45 CFRa section 164Specification

Smart contracts, sign and verify, and encrypt-sign and decrypt-verify:
confidential communications and verifiable requests and authorizations

508, 510Authorization and revocation (PRb)

Smart contracts, sign and verify, and encrypt-sign and decrypt-verify:
confidential communications and verifiable requests and authorizations

522(a)(1)Restriction requests (PR)

Smart contracts, sign and verify, and encrypt-sign and decrypt-verify:
confidential communications and verifiable requests and authorizations

526Amendments (PR)

Encrypt-sign and decrypt-verify: message integrity, verifiable identity,
and encryption

522(b)(2)Confidential communications (PR)

Unique encryption and hashing key pairs, sign and verify, and encrypt-
sign and decrypt-verify: verifiable identity (key possession and signing)
and patient block hashes and patient block encryption

312(a)(2)(i)Unique user authentication (SRc)

Unique encryption and hashing key pairs, sign and verify, and encrypt-
sign and decrypt-verify: verifiable identity (key possession and signing)
and patient block hashes and patient block encryption

312(a)(2)(iv)Encryption and decryption (SR)

Unique encryption and hashing key pairs, sign and verify, and encrypt-
sign and decrypt-verify: verifiable identity (key possession and signing)
and patient block hashes and patient block encryption

312(c)(1)Integrity (SR)

Log blocks312(b)Audit controls (SR)

Sign and verify, encrypt-sign and decrypt-verify, re-encryption key layer-
ing, and delegatee re-encryption: verifiable identity (verification algorithms
and construction of the delegatee re-encryption process)

312(d)Person or entity authentication (SR)

Patient block encryption, intermediary re-encryption, sign and verify, and
encrypt-sign and decrypt-verify (layering): verifiable identity and transfer
of encrypted data only by design

312(e)(1), (2)(i), and (2)(ii)Transmission security—integrity controls
and encryption (SR)

aCFR: 45: Code of Federal Regulations.
bPR: privacy rule.
cSR: security rule.

Experimental Design
The experimental design facilitates the examination of
HealthChain’s novel components. Additional services such as
permissioning and consensus along with a comprehensive
distributed network were not evaluated for the following reasons.
First, although essential to the framework’s practical
implementation (whereas here we are exploring new
functionality), no improvements to those areas were proposed
in this work; hence, testing is unwarranted. Second, ancillary
services and an arbitrarily sized experimental network inject
considerable overhead (potentially orders of magnitude above
the measured item) into the process, rending the subject of
analysis indistinguishable from noise. As such, we intentionally
limited the components implemented in the proof of concept to
only those necessary to successfully evaluate the processes
defined in the subsequent sections.

Regarding experimental block operations, recall that as patient
blocks are generated during account initialization, all subsequent
actions necessitate redactions to said block section Patient
Blocks). Therefore, all experiments conducted herein are
redactions.

Configurable Modes
HealthChain operations are dictated by 4 configurable modes
(see Multimedia Appendix 2 for a detailed summary). The first

is the 2-option block encryption mode: (1) AES-encrypted data
with PRE-encrypted key (denoted as A) and (2) PRE-encrypted
data (signified by P), as defined and justified in section Block
Encryption.

The second is the storage mode with 2 possibilities: full block
(F) and incremental (I). Full block incorporates all data into a
single block. Incremental, in all but 1 case (see next mode),
transmits only new and modified entries or removal instructions.
Table 3 compares the 2 options over 6 properties. Full block
transmits 1 block (ie, transaction), which is more efficient than
multiple blocks. Cipher padding in full block mode is negligible,
whereas potentially considerable in incremental mode
(cumulative padding). Record isolation is trivial in incremental
mode as each is its own entry. Full block masks transactions in
an encrypted block, making isolation and metadata attacks
difficult. Regarding transmission speed and size, incremental
mode may be smaller and thus faster if only transmitting
minimal changes relative to the medical record. Finally, a single
block is bound in size by the storage mechanism (eg, a database
byte array attribute). Larger medical records may require
multiple blocks, fragmenting the information and increasing
the complexity of management. Incremental does not suffer
from this limitation.
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Table 3. Comparison of full block and incremental storage mode options.

IncrementalFull blockProperty

1 or more1Transactions

Potentially considerableNegligibleCipher padding

YesNoRecord isolation

Potentially fastSlowSpeed of transmission

Potentially smallLargeSize of transmission

Third is encryption key mode, with static (S) and dynamic (D)
choices. Static mode encrypts a patient block using the same
key in perpetuity, whereas dynamic mode re-encrypts data under
a new one with each update. Dynamic mode enhances security,
as compromised information is of limited use, but consumes
more resources. AES-encrypted data in incremental block
storage (AI) mode requires the patient to re-encrypt and transmit
all data. Being malleable, PRE-encrypted data in incremental
storage (PI) mode encrypts updates using a new key, sending
them and a scalar to a node for appending and rekeying,
respectively.

Server-side encryption mode is the last mode: simply on (Y) or
off (N). If enabled, the server encrypts (by block encryption
mode) user data using an ephemeral key for each entry, renewed
under the dynamic key policy (does not impact PRE operations).
This protects against improper access by dynamically rekeying
accessed entries.

Tables 4 and 5 present listings of configurable mode
abbreviations and descriptions used in our experiments by AES
and PRE encryption respectively. Refer to Multimedia Appendix
2 for more details.

Table 4. Advanced Encryption Standard (AES) configurable experimental mode abbreviations and descriptions.

DescriptionMode

AES-encrypted data, full block storageAF

AES-encrypted data, incremental storageAI

AES-encrypted data, dynamic encryption key full block storageADF

AES-encrypted data, dynamic encryption key incremental storageADI

AES-encrypted data, static encryption key full block storageASF

AES-encrypted data, static encryption key incremental storageASI

AES-encrypted data, full block storage no server-side encryptionAFN

AES-encrypted data, full block storage server-side encryptionAFY

AES-encrypted data, incremental storage no server-side encryptionAIN

AES-encrypted data, incremental storage server-side encryptionAIY

AES-encrypted data, dynamic encryption key, full block storage, no server-side encryptionADFN

AES-encrypted data, dynamic encryption key, full block storage, server-side encryptionADFY

AES-encrypted data, dynamic encryption key, incremental storage, no server-side encryptionADIN

AES-encrypted data, dynamic encryption key, incremental storage, server-side encryptionADIY

AES-encrypted data, static encryption key, full block storage, no server-side encryptionASFN

AES-encrypted data, static encryption key, full block storage, server-side encryptionASFY

AES-encrypted data, static encryption key, incremental storage, no server-side encryptionASIN

AES-encrypted data, static encryption key, incremental storage, server-side encryptionASIY
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Table 5. Proxy re-encryption (PRE) configurable experimental mode abbreviations and descriptions.

DescriptionMode

PRE-encrypted data, full block storagePF

PRE-encrypted data, incremental storagePI

PRE-encrypted data, dynamic encryption key full block storagePDF

PRE-encrypted data dynamic encryption key incremental storagePDI

PRE-encrypted data, static encryption key full block storagePSF

PRE-encrypted data, static encryption key incremental storagePSI

PRE-encrypted data, full block storage no server-side encryptionPFN

PRE-encrypted data, full block storage server-side encryptionPFY

PRE-encrypted data, incremental storage no server-side encryptionPIN

PRE-encrypted data, incremental storage server-side encryptionPIY

PRE-encrypted data, dynamic encryption key, full block storage, no server-side encryptionPDFN

PRE-encrypted data, dynamic encryption key, full block storage, server-side encryptionPDFY

PRE-encrypted data, dynamic encryption key, incremental storage, no server-side encryptionPDIN

PRE-encrypted data, dynamic encryption key, incremental storage, server-side encryptionPDIY

PRE-encrypted data, static encryption key, full block storage, no server-side encryptionPSFN

PRE-encrypted data, static encryption key, full block storage, server-side encryptionPSFY

PRE-encrypted data, static encryption key, incremental storage, no server-side encryptionPSIN

PRE-encrypted data, static encryption key, incremental storage, server-side encryptionPSIY

Experiments
A total of 5 system dimensions are measured over 16 mode
combinations for AES-128 and EC-256: transmission size,
network latency, client processing time, server processing time,
and smart contract execution.

Transmission size refers to the number of bytes sent from client
to server. Typical consumer internet connections have low
upload rates as households consume more content than
contribute; thus, upload bandwidth is a concern. Scalability for
users with metered connection is also of interest, as they may
incur costs associated with overages or plan adjustments.

Network latency assesses the effect internet-based transmissions
have on the proposed framework. The results are analyzed
independently and integrated into client processing time and
smart contract execution.

Client processing time represents the time devoted by clients
to, for example, insert records, generate synchronization
instructions, regenerate smart contracts (if dynamic keying),
compute block hashes, and broadcast the previous to the
blockchain.

Server processing time is the time incurred by servers during,
for example, AES PRE key renewing (dynamic AES),
instruction application (all), PRE scalar multiplication
(PDIN/Y), and smart contract updating (all dynamic).

Smart contract execution measures the time required to run a
smart contract. The process uses 2PD and writes the output to
a zipped file on the delegatee’s machine.

Datasets
Each of the 16 mode combinations was evaluated by insertion
and scaling costs. Insertion costs are determined by adding
records en masse to a clean system instance (only contains the
account request profile). Insights are garnered on cost
amortization and limits associated with bulk and single record
processing without existing record influences (eg, re-encryption
and retransmission), which may direct policy on block
synchronization. Moreover, 4 datasets of observations (1 per
day) were synthetically generated for testing (Table 6). Each
was statically sized at 400 bytes for record-level evaluation. As
each record is of identical size, cryptographic processing time,
cipher length, and bytes transmitted are comparable by record
across the various configurations.

Scaling is scrutinized by gauging the effect existing records
have on insertions. As this system accumulates records, these
experiments facilitate the examination of existing medical
records on overall performance. For insertion, care was taken
to avoid interaction between new and existing data. Here, the
reverse is of interest on how existing data affect record
insertions. The results inform decisions on configuration
selection and synchronization strategy. Testing began by
instantiating a system with 1 of the 3 datasets (Table
6)—representative of small, medium, and large patient records
from a deidentified instructional medical database [120]. Then,
the 4 insertion datasets were applied, with the average per record
reported as an indicator of general performance.
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Table 6. Number of records and byte range per record by experimental dataset (all records were formatted as Health Level-7 Fast Healthcare
Interoperability Resources [FHIR] JSON messages using HAPI FHIR).

NotesBytes/record (average)RecordsExperiment

1 day4001Insertion

30 days40030Insertion

1 year400365Insertion

4 years4001461Insertion

26 encounters, 33 conditions, 145 medication requests, and 130 observations395-761 (581)334Scaling

27 encounters, 159 conditions, 624 medication requests, and 135 observations395-768 (675)945Scaling

109 encounters, 119 conditions, 2029 medication requests, and 104 observations394-770 (732)2361Scaling

Testing Environment
The testing environment aligns with the minimal requirements
defined in the Experimental Design section. In its simplest form,
HealthChain is a medium of information exchange between an
entity (eg, patient) and a server (eg, node). Every process in
HealthChain can be reduced to a series of entity-server
interactions; therefore, our testing environment emulates this
2-machine structure.

The first machine is a Lenovo T540p running Windows 7
Enterprise with 16 GB of memory, an Intel i7-4800 MQ
processor, and a wired, consumer internet connection. The
second is a Dell Optiplex 9010 running Linux Mint 17.1 with
8 GB of memory, an Intel i7-3770 processor, and a wired,
business internet connection. Communication rates
(download/upload in megabits per second [Mbps]) are as
follows: 32.1/5.9 and 955.4/176.3 Mbps for each respective
machine [121].

To facilitate direct processing time comparisons between client
and server, 1 machine (the Lenovo) assumed both roles. This
colocation, however, failed to address networking concerns.
Thus, experiments incorporating transmission costs (ie, client
processing time and smart contract execution) were duplicated
using both machines, which are situated 5 miles apart. These
times replaced those in the 2 identified measures for a more
realistic outcome while still affording client and server relative
performance comparisons.

Proof-of-Concept Implementation
The proof of concept facilitates the examination of the novel
HealthChain elements as specified in section Experimental
Design; it is not a production-ready blockchain system. The
realization of the proposed framework requires the blending of
the components defined herein with an existing blockchain
technology such as Hyperledger Fabric or Ethereum. The proof
of concept consists of 2 systems and 2 libraries written primarily
in Java 8 and JSP and uses HAPI FHIR for document formatting
[122] (Multimedia Appendix 3).

The first system, HealthChainServer, instantiates a single node
that, for instance, establishes the blockchain, processes patient
account requests, validates and manages patient identities and
block transactions, supports 2PD, and transmits updates to
patients (eg, the latest encounter). A multinode system (and
therefore broadcasting capabilities) is unnecessary for testing.

In addition, log blocks are not examined as they are a trivial
extension to existing blockchain technologies.

The second system, HealthChainWebClient, is a simple
JSP-enabled version of the Gentelella Alela template [123].
Through the Web portal, patients can, for example, request
accounts, create and manage smart contracts, manually add
records, import and export FHIR messages, and receive updates
(eg, from a participating hospital). It was through the file upload
feature that experimental data were added, which were then
transmitted to the server over a socket connection. Although
sufficient for testing, a robust, security-focused, application
programming interface–driven approach (such as the one
developed using SMART on FHIR [124]) should be
implemented before use in production.

Regarding libraries, the first provides chameleon hash support
by way of PCCH [50] as outlined in the section on Hashing
Redactable Blocks. The second realizes PRE through AFGH
[60] (using, as a foundation, the Java Pairing-Based
Cryptography library [jPBC] [113]) as justified in the section
on Block Encryption.

Results

Transmission Size
Here, transmission size is analyzed by insertion (Figure 12) and
scaling (Figure 13). Server-side encryption does not impact
transmission, hence its exclusion.

In Figure 12, PDI and PSI are nearly double the others (in
overall and per record transmission size). Both have
789−400=389 bytes of padding (ie, wasted space) per record
inserted, thus the disparity with all AES configurations. In
addition, PDF and PSF are in line with AES (about 2% larger)
rather than PDI and PSI. This is attributable to the full block
generation process, as all records are fused into one, then divided
into 789-byte ciphers, markedly reducing padding (see the
section on Dataset Effects on Cipher Size). Furthermore, by
365, all ciphers near saturation (ie, negligible padding and
amortized overhead).

Regarding overhead, dynamic options include 9137 bytes per
smart contract (one here), ADI and ADF incorporate a new
397-byte AES PRE key, PDI uses a 384-byte scalar, and all
send a 96-byte block hash.
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To scaling (Figure 13), ASI, PDI, and PSI are unaffected by the
number of existing records (only transmit modifications),

requiring 416, 789, and 810 bytes on average of encrypted data
per added record, respectively.

Figure 12. Transmission size in kilobytes and bytes per record by the number of records inserted. ADF: AES-encrypted data, dynamic keys, full block
storage; ADI: AES-encrypted data, dynamic keys, incremental storage; AES: Advanced Encryption Standard; ASF: AES-encrypted data, static keys,
full block storage; ASI: AES-encrypted data, static keys, incremental storage; PDF: PRE-encrypted data, dynamic keys, full block storage; PDI:
PRE-encrypted data, dynamic keys, incremental storage; PRE: proxy re-encryption; PSF: PRE-encrypted data, static keys, full block storage; PSI:
PRE-encrypted data, static keys, incremental storage.

Figure 13. Transmission size in kilobytes per record added given an existing record set. ADF: AES-encrypted data, dynamic keys, full block storage;
ADI: AES-encrypted data, dynamic keys, incremental storage; AES: Advanced Encryption Standard; ASF: AES-encrypted data, static keys, full block
storage; ASI: AES-encrypted data, static keys, incremental storage; PDF: PRE-encrypted data, dynamic keys, full block storage; PDI: PRE-encrypted
data, dynamic keys, incremental storage; PRE: proxy re-encryption; PSF: PRE-encrypted data, static keys, full block storage; PSI: PRE-encrypted data,
static keys, incremental storage.

Dataset Effects on Cipher Size
AES and PRE cipher sizes are dissected in Tables 7 and 8 for
incremental and full block encryption modes, respectively.
Comparisons are drawn at the record level; thus, overhead bytes
were removed (see the section on Transmission Size and 231
bytes for the patient record generated during account activation).

AES is slightly larger on average than the underlying data
(0.7%-4.1%) regardless of mode. PRE incremental is extensively
padded (26.5%-97.3%), whereas minimal in full block mode
(3.1%-5.2% beyond 1 insertion). Thus, PRE is subject to
extreme variability, relative to AES, on input file size.
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Table 7. Incremental storage: byte range per file and average Advanced Encryption Standard- and proxy re-encryption-encrypted cipher sizes by dataset
(insertion and scaling).

PREb average (difference, %)AESa average (difference, %)Bytes/file range (average)Dataset

789 (97.3)416 (4.0)400130,365, and 1461

802 (38.0)585 (0.6)395-761 (581)334

840 (24.3)679 (0.7)395-768 (675)945

926 (26.5)737 (0.7)394-770 (732)2361

aAES: Advanced Encryption Standard.
bPRE: proxy re-encryption.

Table 8. Full block storage: total bytes per dataset and average Advanced Encryption Standard- and proxy re-encryption-encrypted cipher sizes by
dataset (insertion and scaling).

PREb average (difference, %)AESa average (difference, %)Total bytesDataset

789 (97.3)416 (4.0)4001

12,624 (5.2)12,368 (3.1)12,00030

153,066 (4.8)150,112 (2.8)146,000365

613,053 (4.9)600,848 (2.8)584,4001465

200,406 (3.4)196,304 (1.3)193,815334

658,026 (3.1)644,688 (1.1)637,934945

1,779,981 (3.0)1,744,032 (0.9)1,727,7142361

aAES: Advanced Encryption Standard.
bPRE: proxy re-encryption.

Network Latency
Network latency is analyzed in isolation to understand
client-to-server (Figures 14 and 15) and server-to-client (Figure
16) effects. For insertion costs, Figure 14, incremental PRE
grows at about twice the pace of others, proportional to cipher
size (Tables 7 and 8). In addition, by 365 in Figure 15, the Mbps
transmitted saturate the connection, whereupon ADI/ASI and
PDI/PSI stabilize at 0.6 and 1.1 milliseconds per fragment (ie,
a single record or full block), respectively. Regarding scaling
(Figure 14), ASI, PDI, and PSI are constant, whereas full block
and ADI grow as they reprocess all entries per update.

Figure 16 examines server-to-client transmissions as anticipated
during record downloads from participating entities (eg, clinics)
and intermediate smart contract results (if a delegatee). Data
include the insertion sets as well as existing with 1461 additions
to demonstrate scale. Transmission time depends on the block
encryption (cipher size) and storage (padding effects) modes.
AF, AI, and PF are indistinguishable from one another, whereas
PI is on average 55% slower because of larger, excessively
padded ciphers. Regarding bandwidth, a limit at approximately
18.4 Mbps (3.4 times the update limit in Figure 15), first
experienced by the larger PI, is revealed. This corresponds to
increased trajectories in time.
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Figure 14. Client-to-server network latency in seconds per inserted record (ie, insertion) and seconds per record added given an existing record set (ie,
scaling) — includes connection establishment, termination, and transmission time. ADF: AES-encrypted data, dynamic keys, full block storage; ADI:
AES-encrypted data, dynamic keys, incremental storage; AES: Advanced Encryption Standard; ASF: AES-encrypted data, static keys, full block storage;
ASI: AES-encrypted data, static keys, incremental storage; PDF: PRE-encrypted data, dynamic keys, full block storage; PDI: PRE-encrypted data,
dynamic keys, incremental storage; PRE: proxy re-encryption; PSF: PRE-encrypted data, static keys, full block storage; PSI: PRE-encrypted data, static
keys, incremental storage.

Figure 15. Client-to-server network latency (transmission only) measured in megabits per second and milliseconds per fragment by the number of
records inserted. ADF: AES-encrypted data, dynamic keys, full block storage; ADI: AES-encrypted data, dynamic keys, incremental storage; AES:
Advanced Encryption Standard; ASF: AES-encrypted data, static keys, full block storage; ASI: AES-encrypted data, static keys, incremental storage;
PDF: PRE-encrypted data, dynamic keys, full block storage; PDI: PRE-encrypted data, dynamic keys, incremental storage; PRE: proxy re-encryption;
PSF: PRE-encrypted data, static keys, full block storage; PSI: PRE-encrypted data, static keys, incremental storage.
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Figure 16. Server-to-client network latency (transmission only) measured in milliseconds and megabits per second by the number of records transmitted
to the client. AES: Advanced Encryption Standard; AF: AES-encrypted data, full block storage; AI: AES-encrypted data, incremental block storage;
PF: PRE-encrypted data, full block storage; PI: PRE-encrypted data, incremental storage; PRE: proxy re-encryption.

Client Processing Time
Client processing time is explored for insertions (Figure 17)
and scaling (Figure 18). Server-side encryption does not impact
client performance, hence its exclusion. For these tests, the
client and server are the same machine (for relative comparison),
whereas the transmission time is taken from the network latency
experiments.

All configurations require a similar amount of time per Figure
17. The quickest are the static full block approaches, followed
by dynamic full block (2% slower), static incremental (8%

slower), and dynamic incremental (12% slower) approaches.
Per record, by 365, all are within 5 milliseconds and narrowing.

Concerning scaling (Figure 18), network latency accounts for
24% to 27% of the overall cost at 1 existing record, dropping
precipitously to 1% to 4% by 365. Beyond 365, ASI, PDI, and
PSI are constant time as only new and modified information
are processed. Although the others are 4 to 9 milliseconds apart,
ASF and PSF tend to be slightly faster. However, by 2362, ASI,
PDI, and PSI are 68% to 71% more efficient than the other
methods.

Figure 17. Client processing time in seconds and milliseconds per record by the number of records inserted. ADF: AES-encrypted data, dynamic keys,
full block storage; ADI: AES-encrypted data, dynamic keys, incremental storage; AES: Advanced Encryption Standard; ASF: AES-encrypted data,
static keys, full block storage; ASI: AES-encrypted data, static keys, incremental storage; PDF: PRE-encrypted data, dynamic keys, full block storage;
PDI: PRE-encrypted data, dynamic keys, incremental storage; PRE: proxy re-encryption; PSF: PRE-encrypted data, static keys, full block storage; PSI:
PRE-encrypted data, static keys, incremental storage.
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Figure 18. Client processing time in milliseconds per record added given an existing record set. ADF: AES-encrypted data, dynamic keys, full block
storage; ADI: AES-encrypted data, dynamic keys, incremental storage; AES: Advanced Encryption Standard; ASF: AES-encrypted data, static keys,
full block storage; ASI: AES-encrypted data, static keys, incremental storage; PDF: PRE-encrypted data, dynamic keys, full block storage; PDI:
PRE-encrypted data, dynamic keys, incremental storage; PRE: proxy re-encryption; PSF: PRE-encrypted data, static keys, full block storage; PSI:
PRE-encrypted data, static keys, incremental storage.

Server Processing Time
Server insertion costs are presented in Figure 19. Full block
approaches process insertions the fastest. The order is in tens
of milliseconds for AES (19-65 milliseconds), and PRE without
server-side encryption (14-53 milliseconds). PRE with
server-side encryption is measured in the 111 to 199
milliseconds range. ASIN and PSIN extend nearly uniformly
from 7 to 889 milliseconds over the sets, with a slight dynamic
keying penalty of 12 to 42 milliseconds. ADIY and ASIY are
roughly 40% to 70% costlier than ADIN and ASIN. PDIY and
PSIY are the slowest, reaching 4.5 seconds at 1461 insertions.
Per record, incremental methods level off at 365, whereas full

block approaches continue to decline at a rate greater than 57%
at 1461.

Regarding scaling (Figure 20), ASIN, ASIY, PSIN and PSIY
are constant time. ASIN and PSIN take 0.6, ASIY 1.1, and PSIY
3.1 milliseconds per record. The rest are affected in various
ways by existing records. The quickest configurations are
ADFN, ADFY, ASFN, ASFY, PDFN, and PSFN. By 2362,
they are just shy of ASIN and PSIN. PDFY and PSFY are
minimally affected by existing records, with times ranging from
0.3 to 1.1 milliseconds. PDIN is next at roughly 0.7 to 3.6
milliseconds. ADIN and ADIY increase sharply from 0.7 to 6.9
milliseconds and 1.1 to 9.1 milliseconds, respectively. PDIY,
at 3.5 to 6.1 milliseconds, is cheaper than ADIY at 945 and
ADIN around 1800.
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Figure 19. Server processing time in seconds and milliseconds per record by the number of records inserted. ADFN: AES-encrypted data, dynamic
keys, full block storage, no server-side encryption; ADFY: AES-encrypted data, dynamic keys, full block storage, server-side encryption; ADIN:
AES-encrypted data, dynamic keys, incremental storage, no server-side encryption; ADIY: AES-encrypted data, dynamic keys, incremental storage,
server-side encryption; AES: Advanced Encryption Standard; ASFN: AES-encrypted data, static keys, full block storage, no server-side encryption;
ASFY: AES-encrypted data, static keys, full block storage, server-side encryption; ASIN: AES-encrypted data, static keys, incremental storage, no
server-side encryption; ASIY: AES-encrypted data, static keys, incremental storage, server-side encryption; PDFN: PRE-encrypted data, dynamic keys,
full block storage, no server-side encryption; PDFY: PRE-encrypted data, dynamic keys, full block storage, server-side encryption; PDIN: PRE-encrypted
data, dynamic keys, incremental storage, no server-side encryption; PDIY: PRE-encrypted data, dynamic keys, incremental storage, server-side encryption;
PRE: proxy re-encryption; PSFN: PRE-encrypted data, static keys, full block storage, no server-side encryption; PSFY: PRE-encrypted data, static
keys, full block storage, server-side encryption; PSIN: PRE-encrypted data, static keys, incremental storage, no server-side encryption; PSIY:
PRE-encrypted data, static keys, incremental storage, server-side encryption.

J Med Internet Res 2019 | vol. 21 | iss. 8 | e13592 | p. 20http://www.jmir.org/2019/8/e13592/
(page number not for citation purposes)

Hylock & ZengJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 20. Server processing time in milliseconds per record added given an existing record set. ADFN: AES-encrypted data, dynamic keys, full block
storage, no server-side encryption; ADFY: AES-encrypted data, dynamic keys, full block storage, server-side encryption; ADIN: AES-encrypted data,
dynamic keys, incremental storage, no server-side encryption; ADIY: AES-encrypted data, dynamic keys, incremental storage, server-side encryption;
AES: Advanced Encryption Standard; ASFN: AES-encrypted data, static keys, full block storage, no server-side encryption; ASFY: AES-encrypted
data, static keys, full block storage, server-side encryption; ASIN: AES-encrypted data, static keys, incremental storage, no server-side encryption;
ASIY: AES-encrypted data, static keys, incremental storage, server-side encryption; PDFN: PRE-encrypted data, dynamic keys, full block storage, no
server-side encryption; PDFY: PRE-encrypted data, dynamic keys, full block storage, server-side encryption; PDIN: PRE-encrypted data, dynamic
keys, incremental storage, no server-side encryption; PDIY: PRE-encrypted data, dynamic keys, incremental storage, server-side encryption; PRE:
proxy re-encryption; PSFN: PRE-encrypted data, static keys, full block storage, no server-side encryption; PSFY: PRE-encrypted data, static keys, full
block storage, server-side encryption; PSIN: PRE-encrypted data, static keys, incremental storage, no server-side encryption; PSIY: PRE-encrypted
data, static keys, incremental storage, server-side encryption.

Smart Contract Execution
Smart contract execution by time and per record is assessed in
this section, with results conveyed in Figure 21. Encryption key
mode is not a factor in smart contract execution, as there is only
1 re-encryption key for all data; thus, it is not reported. As with
the server-to-client network latency experiments, data include
insertion and existing with 1461 additions sets.

In absolute terms, AFN, AFY, and AIN are the fastest, followed
by PFN and PFY (progressing from 1% to 20% slower), AIY
(23%-183%), PIN (46%-854%), and PIY (94%-1679%).
Incremental server-side encryption is considerably expensive,
doubling PRE and tripling AES times. Network latency accounts
for around 9% of incremental and 19% of full block time. Per
record, AIY, PIN, and PIY noticeably level-off by 365, and
AFY, PFN, and PFY by 1461. AFN and AIN, however, descend
beyond 3822 (2361+1461) at 2%.
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Figure 21. Smart contract execution time in seconds and milliseconds per record by the number of records processed. AES: Advanced Encryption
Standard; AFY: AES-encrypted data, full block storage, server-side encryption; AFN: AES-encrypted data, full block storage, no server-side encryption;
AIN: AES-encrypted data, incremental block storage, no server-side encryption; AIY: AES-encrypted data, incremental storage, server-side encryption;
PFN: PRE-encrypted data, full block storage, no server-side encryption; PFY: PRE-encrypted data, full block storage, server-side encryption; PIN:
PRE-encrypted data, incremental block storage, no server-side encryption; PIY: PRE-encrypted data, incremental storage, server-side encryption; PRE:
proxy re-encryption.

Discussion

Principal Findings
Figure 22 integrates pertinent results into a single visual for
high-level performance analysis of client and server insertion
(per record insertion cost given n loaded records) and scaling
(per record insertion cost given n existing records) operations.
Proceeding from top to bottom is client time in milliseconds
(ie, section on Client Processing Time), server time in
milliseconds (ie, section on Server Processing Time), and size
in kilobytes (ie, section on Transmission Size).

The impracticality of full block approaches is apparent from
the patient’s vantage point. Whether inserting or scaling, block
formation and transmission are resource intensive. For those
with basic computers or mobile devices, or those operating on
metered or low-bandwidth networks, these options should be
avoided.

Catering to constrained environments are ASIN, PSIY, PDIN,
PDIY, PSIN, and PSIY. ASIN, ASIY, PSIN, and PSIY are
constant in bytes and server processing time, with decreasing
client processing time because of network latency amortization
over an otherwise constant process. PDIN and PDIY are constant
in bytes and amortize latency as do the previous but irregular
for the server (ie, server-side rekeying). Overall, ASIN and
ASIY are the top performers. They require minimal time and
bandwidth for record insertion, hold constant when scaling, and
quickly execute smart contracts (refer to the section on Smart
Contract Execution for details). The compromise is security.
Static approaches, although fast, are susceptible to attacks (see
the section on Smart Contracts and Multimedia Appendix 1).

Dynamic selections are more secure as data are continually
rekeyed, preventing decryption by old or compromised keys.
ADIN and ADIY are arguably the worst and operationally
infeasible, as rekeying requires (1) the client to decrypt, encrypt,
and transmit all information with each update and (2) the server
to replace the existing block with the new, server-side–encrypted
data.

PRE incremental methods are byte intensive because of
excessive padding of the small experimental files and slow
during smart contract execution. This is mostly mitigated
through full block approaches. Unlike AES, the variability of
PRE cipher size is vast. It has the potential to be compact and
efficient or bloated and wasteful. PSIN and PSIY are subject
to the same static key vulnerabilities as ASIN and ASIY and
are more expensive. One must decide if cipher malleability
justifies increased resource expenditure.

PDIN and PDIY are the only viable dynamic options. Server
processing is insignificant for record insertions (a few
milliseconds) but rises with scale. From 1 to 2361, PDIN is 1%
to 7% and PDIY 4% to 11%, the magnitude of the client. Server
processing is projected to eclipse client by around 40,000 and
37,000 records for PDIN and PDIY respectively. However, with
appropriate hardware and in-memory databases, this cost can
be reduced. Compared with ASIN and ASIY, both are
marginally slower on the client, but roughly twice in bytes and
latency.

Ultimately, several candidates emerge. ASIN and ASIY for
speed, PSIN and PSIY for malleability, and PDIN and PDIY
for malleability and security. Refer to Table 9 for a detailed
comparison.
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Figure 22. Relative comparison of client and server processing time in milliseconds and transmission size in kilobytes per record by insertion and
scaling. ADFN: AES-encrypted data, dynamic keys, full block storage, no server-side encryption; ADFY: AES-encrypted data, dynamic keys, full block
storage, server-side encryption; ADIN: AES-encrypted data, dynamic keys, incremental storage, no server-side encryption; ADIY: AES-encrypted data,
dynamic keys, incremental storage, server-side encryption; AES: Advanced Encryption Standard; ASFN: AES-encrypted data, static keys, full block
storage, no server-side encryption; ASFY: AES-encrypted data, static keys, full block storage, server-side encryption; ASIN: AES-encrypted data, static
keys, incremental storage, no server-side encryption; ASIY: AES-encrypted data, static keys, incremental storage, server-side encryption; PDFN:
PRE-encrypted data, dynamic keys, full block storage, no server-side encryption; PDFY: PRE-encrypted data, dynamic keys, full block storage,
server-side encryption; PDIN: PRE-encrypted data, dynamic keys, incremental storage, no server-side encryption; PDIY: PRE-encrypted data, dynamic
keys, incremental storage, server-side encryption; PRE: proxy re-encryption; PSFN: PRE-encrypted data, static keys, full block storage, no server-side
encryption; PSFY: PRE-encrypted data, static keys, full block storage, server-side encryption; PSIN: PRE-encrypted data, static keys, incremental
storage, no server-side encryption; PSIY: PRE-encrypted data, static keys, incremental storage, server-side encryption.

Table 9. Comparison of practical configurations by cipher malleability; security; insertion, scaling, and smart contract execution time; and transmitted
bytes.

PDIYfPDINePSIYdPSINcASIYbASINaProperty

YesYesYesYesNoNoCipher malleability

YesYesNoNoNoNoSecurity—dynamic keying

YesNoYesNoYesNoSecurity—server-side encryption

Fast if >30Fast if >30FastFastFastestFastestClient insertions time

LargestLargestLargestLargestSmallestSmallestClient insertions bytes

SlowestFastSlowSlowestSlowFastServer insertions time

Fast, constantgFast, constantgFastest, constantgFastest, constantgFastest, constantgFastest, constantgClient scaling time

Small, constantSmall, constantSmall, constantSmall, constantSmallest, con-
stant

Smallest, con-
stant

Client scaling bytes

Very slowSlowerSlower, constantFast, constantSlow, constantFast, constantServer scaling time

SlowestSlowestVery slowVery slowFastestFastestSmart contract execution

aASIN: Advanced Encryption Standard–encrypted data, static keys, incremental storage, no server-side encryption.
bASIY: Advanced Encryption Standard–encrypted data, static keys, incremental storage, server-side encryption.
cPSIN: proxy re-encryption–encrypted data, static keys, incremental storage, no server-side encryption.
dPSIY: proxy re-encryption–encrypted data, static keys, incremental storage, server-side encryption.
ePDIN: proxy re-encryption–encrypted data, dynamic keys, incremental storage, no server-side encryption.
fPDIY: proxy re-encryption–encrypted data, dynamic keys, incremental storage, server-side encryption.
gConstant time if latency, which is amortized over records, is not factored.
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Limitations
Our study has the following limitations. First, the results are
consistent with AES-128 and EC-256 alone. It is impossible to
extrapolate the effects a change may have. Second, the small
experimental files resulted in excess PRE cipher padding.
Although the records were legitimate, EHR data may produce
different results. Third, only 1 smart contract, which dynamic
options regenerate during an update, was present for testing.
With many contracts and few existing records, overall
performance may diminish. In addition, smart contract
regeneration was not optimized as the entire contract was
reproduced and transmitted instead of just the re-encryption
keys. This modification has the potential to decrease the size
by 41%. Finally, server-side encryption only operates in
dynamic mode. A static or periodic (eg, daily or after x number
of transactions) option would reduce server-side processing at
the expense of security. This will especially benefit PRE
schemes, as they suffer a tremendous penalty under the weight
of rekeying data after each read.

Conclusions and Future Work
In this study, a proof-of-concept patient-centered
blockchain—HealthChain—was presented. The posited
framework promotes patient engagement and facilitates secure,
mediated information exchange between patients and providers.

Redactable patient blocks, by way of chameleon hashing, were
introduced to minimize data fragmentation, allow for in-place
editing, and reduce resource consumption. PRE, smart contracts,
and HL7 FHIR form the foundation of our proposed information
exchange model, along with our 2PD PRE scheme and signature
methods. A total of 16 experimental configurations were
examined over 5 system dimensions by the cost of record
insertion and scaling. Results indicate ASIN was the fastest and
least bandwidth intensive, whereas PDIY was the best
cryptographically, although the ultimate configuration rests
with implementers and their desired level of speed and security.

Furthermore, 3 areas are targeted for future work. First,
Barreto-Lynn-Scott [125] and Kachisa-Schaefer-Scott [126]
EC families will be explored as potential replacements for the
outdated jPBC curves. Second, as the proof-of-concept client
tool is a deployed Web service on a client’s machine (sufficient
for testing), practical application necessitates an architectural
redesign, wherein clients access HealthChain through a hosted,
browser-based system. Hence, the cryptographic services will
be ported to JavaScript for client-side execution, ensuring
plaintext and generated secrets remain unexposed to nodes.
Finally, we integrate our solution into Hyperledger Fabric to
make use of their consensus, permissioning, and
communications infrastructure.
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AF: AES-encrypted data, full block storage
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AIY: AES-encrypted data, incremental storage, server-side encryption
ASI: AES-encrypted data, static keys, incremental storage
ASIN: AES-encrypted data, static keys, incremental storage, no server-side encryption
ASIY: AES-encrypted data, static keys, incremental storage, server-side encryption
CFR: Code of Federal Regulations
EC: elliptic curves
ECC: elliptic curve cryptography
EHR: electronic health record
FHIR: Fast Healthcare Interoperability Resources
FIPS: Federal Information Processing Standard
HIPAA: Health Insurance Portability and Accountability Act of 1996
jPBC: Java Pairing-Based Cryptography library
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ONC: The Office of the National Coordinator for Health Information Technology
PCCH: Public-coin chameleon hash
PDF: PRE-encrypted data, dynamic encryption key full block storage
PDI: PRE-encrypted data, dynamic keys, incremental storage
PDIN: PRE-encrypted data, dynamic keys, incremental storage, no server-side encryption
PDIY: PRE-encrypted data, dynamic keys, incremental storage, server-side encryption
PF: PRE-encrypted data, full block storage
PFN: PRE-encrypted data, full block storage, no server-side encryption
PHR: personal health record
PI: PRE-encrypted data, incremental storage
PIN: PRE-encrypted data, incremental block storage, no server-side encryption
PIY: PRE-encrypted data, incremental storage, server-side encryption
PRE: proxy re-encryption
PSF: PRE-encrypted data, static keys, full block storage
PSI: PRE-encrypted data, static keys, incremental storage
PSIN: PRE-encrypted data, static keys, incremental storage, no server-side encryption
PSIY: PRE-encrypted data, static keys, incremental storage, server-side encryption
SHA: Secure Hash Algorithm
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