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Abstract

Background: Recent advances in mobile technologies for sensing human biosignals are empowering researchers to collect
real-world data outside of the laboratory, in natural settings where participants can perform their daily activities with minimal
disruption. These new sensing opportunities usher a host of challenges and constraints for both researchers and participants.

Objective: This viewpoint paper aims to provide a comprehensive guide to aid research teams in the selection and management
of sensors before beginning and while conducting human behavior studies in the wild. The guide aims to help researchers achieve
satisfactory participant compliance and minimize the number of unexpected procedural outcomes.

Methods: This paper presents a collection of challenges, consideration criteria, and potential solutions for enabling researchers
to select and manage appropriate sensors for their research studies. It explains a general data collection framework suitable for
use with modern consumer sensors, enabling researchers to address many of the described challenges. In addition, it provides a
description of the criteria affecting sensor selection, management, and integration that researchers should consider before beginning
human behavior studies involving sensors. On the basis of a survey conducted in mid-2018, this paper further illustrates an
organized snapshot of consumer-grade human sensing technologies that can be used for human behavior research in natural
settings.

Results: The research team applied the collection of methods and criteria to a case study aimed at predicting the well-being of
nurses and other staff in a hospital. Average daily compliance for sensor usage measured by the presence of data exceeding half
the total possible hours each day was about 65%, yielding over 355,000 hours of usable sensor data across 212 participants. A
total of 6 notable unexpected events occurred during the data collection period, all of which had minimal impact on the research
project.

Conclusions: The satisfactory compliance rates and minimal impact of unexpected events during the case study suggest that
the challenges, criteria, methods, and mitigation strategies presented as a guide for researchers are helpful for sensor selection
and management in longitudinal human behavior studies in the wild.
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Introduction

Overview
Recent advances in portable consumer technologies have led
to a surge in the development of electronic devices [1] for
monitoring and tracking human activity, wellness, and behavior.
Aided by the ubiquity of personal smartphones, Bluetooth, and
Wi-Fi, many devices currently on the market can discreetly
collect physiologic and behavioral signals and upload the
information to remote servers. Because of the growing support
for distributed and personalized sensing, diverse research
communities are taking a keen interest in this field, empowering
the coordination of research studies of populations outside the
laboratory and in natural home or work environments (also
known as studies in the wild) [2]. For research into everyday
human behavior, such as daily routines, studies conducted in
natural settings can yield more relevant and insightful data than
those performed in the laboratory [3-8].

Several factors need to be considered for the collection of data
in natural human settings using sensing devices. Different
sensors have different sampling rates, power restrictions, and
communication capabilities. Participants also have their own
habits and daily routines into which the sensors and the data
collection procedures need to be embedded. A data collection
framework designed to operate in the wild should therefore be
flexible enough to accommodate different data communication
channels and be capable of capturing information from different
people with different needs at different times. These factors and
a host of other challenges mentioned in this work complicate
the data collection process and ultimately affect the quality of
data available for analysis.

Background
Several previous studies have described some of these
challenges [9-11] and offered strategies for mitigating them
[12-15]. Other works offer data collection plans for particular
fields of study that address the unique concerns of their research
areas [16,17]. This paper subsumes many of the challenges and
suggestions from these other works and aims to provide a
comprehensive collection of methods and suggestions that help
researchers address the challenges related to sensor selection
and management in research studies. It specifically focuses on

longitudinal studies aiming to unobtrusively capture and assess
aspects of human experience and natural behavior; thus, it
assumes a participatory study framework instead of a
provocative approach [2]. Some examples of unobtrusive human
behavior studies are StudentLife [6], AffectiveROAD [18], and
a dataset on emotion recognition from wearable physiological
sensing [19].

Objectives
Figure 1 illustrates a sequence of research program states at
various stages for these types of studies. The scope of this paper
covers the preplanning stages pertaining to sensor selection and
the stages during a study related to sensor and data management.
The key assumptions were as follows: (1) researchers already
have a clear research objective in mind and have researched
previous literature to develop a sense of the types of
physiological and behavioral signals that may be helpful in
achieving the goals and (2) researchers have surveyed the
landscape of sensing technologies and are beginning to design
a study protocol and select the appropriate sensors.

To the best of the authors’ knowledge, this paper represents a
first attempt to present a comprehensive guide for selecting and
managing sensors for in situ research studies. The guide is based
on a survey of related work [9-15] and the authors’ experiences
in designing a multiweek research study. It describes the main
challenges that differentiate longitudinal and unobtrusive [20]
studies in the wild from studies conducted in controlled
laboratory settings. It also provides an overview of modern
portable sensing capabilities and information workflows and
outlines a general data collection framework that leverages an
internet-enabled infrastructure for real-time data collection and
feedback. It enumerates several criteria (or dimensions) that
researchers should consider when designing a data collection
protocol using portable sensors for a known participant
population, and discusses the manner in which these dimensions
can affect human subjects’ concerns and data quality.
Furthermore, it illustrates a snapshot of some of the many
consumer technologies and products available for sensing in
the wild as of mid-2018. This case study employs all the criteria
and methods discussed, evaluating these with respect to
participant compliance and the number of notable unplanned
events occurring during data collection.

J Med Internet Res 2019 | vol. 21 | iss. 8 | e12832 | p. 2http://www.jmir.org/2019/8/e12832/
(page number not for citation purposes)

Booth et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. An overview of the general scientific process for human research studies involving sensing.

Methods

Overview
This section discusses the challenges involved in designing
protocols and using sensors to collect data about human behavior
in the wild, presenting a general-purpose framework that
researchers can use for envisioning and orchestrating sensor
data flow. This framework subsumes the most common
information flows provided by modern sensing technologies.
This section also presents an exposition of the various criteria
and dimensions for which all sensors should be evaluated before
the beginning of the data collection period, as well as a snapshot
summary of many modern consumer technologies and products
available for each type of sensing. The checklist form in
Multimedia Appendix 1 provides a concise checklist of the
challenges in this section. The authors’ hope is that researchers
will use this checklist in their discussions and planning about
protocol design to help account for the numerous sensing
challenges.

Challenges and Risk Mitigation Strategies
Studies conducted outside of controlled laboratory settings are
of interest to researchers, as participants can be examined in
their day-to-day environments where natural behaviors occur.

Nevertheless, in the wild, many potentially confounding
variables cannot be fully controlled, yielding unpredictable
sources of variability alongside logistical difficulties. Some
challenges in this kind of data collection are mitigated through
careful planning and effective communication before the study
begins. Other challenges are predictable, but they occur
spontaneously, and they must be managed reactively with the
aid of semiautomated systems. This section highlights the
primary difficulties that are unique to studies in the wild and
suggests strategies to help overcome them.

Sensor Logistics, Deployment, and Maintenance
One of the foremost difficulties is the logistical burden of
deploying and maintaining sensors. As research teams have
limited direct control over the environment for in situ studies,
they should be aware of the different potential sensor failure
modes and have a plan for quickly detecting and recovering
from them.

Sensor failure is often inevitable, especially for studies
conducted at scale, and an effective solution is to simply replace
the devices by preplanning to streamline this process. For
example, arranging to have trained personnel available to meet
with participants in their environment to swap defective devices
can minimize data losses because of downtime. For sensors
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deployed in the environment itself (as opposed to wearable
sensors), devising a mounting scheme that will allow for easy
replacement may also help.

To aid the tracking of the status of all sensors in a large study,
planning in an upfront manner to create semiautomated tools
that monitor the state of each sensor as often as possible can
help identify failures quickly, report them to personnel for
maintenance, and further decrease data collection downtime
[21]. Moreover, the use of automated tools may become a
necessity if the number of participants, sensors, or hours of
recording becomes large. Data-driven approaches for detecting
and identifying anomalous sensor data streams have been
recently proposed in the literature [22,23]. Implementing a
strategy for automated ongoing maintenance of the deployed
sensors is much easier once the research team has direct access
to recent sensor data. A data flow framework (presented in a
later section; Information Flow Layers) outlines and describes
the communication channels that carry sensor data to the data
servers (the collection of systems where the data are collected
and securely stored for later processing). Researchers can use
this framework to plan communication paths for each sensor
and then set up a script to run on the research server, which
monitors these data streams and notifies assistants when sensors
malfunction. For example, automatic programs can be used to
assess the quality of electrocardiography (ECG) signals and
give feedback to the research support staff about potential fitting
and usage problems [24].

Specific logistics and deployment strategies will be unique to
each research study, and they will largely be influenced by the
restrictions and constraints imposed by the research
environment. For example, some hospitals require all equipment
to be powered using 3-prong plugs; therefore, all sensor chargers
are required to be used through 3-prong adapters. Other
restrictions may include Wi-Fi availability, permission to mount
sensors on the walls, availability of charging ports for sensors,
and space for sensor storage, to name a few. Permissions for
the research personnel to access all areas in which the study
takes place should also be considered.

Data Loss
Data loss may occur for several reasons, including sensor or
data pipeline malfunctions, poor participant compliance, and
attrition, among other reasons. For example, sensors may fail
to deliver data, as they run out of battery power or break, or
they may fail to deliver when network outages interfere with
data transfers. Subjects may also neglect the data collection
protocol (including forgetting to wear the sensor or wearing the
sensors without following instructions), forget to recharge a
worn device, or fail to upload data at the end of each session,
for example, the Hexoskin garment requires manual data upload
via Universal Serial Bus (USB). In more extreme cases, subjects
may become frustrated with the study and elect to drop out,
thereby reducing the total amount of available data.

The key to mitigating these various sources of data loss is being
aware of where in the data stream pipeline the losses occur. The
Data Acquisition and Flow Framework section of this paper
enumerates the communication paths that help carry sensor data
to their destination on a research server. Once researchers have

decided on a sensor suite, and once they know which paths are
required, small scripts or monitoring systems can be
instrumented to test or infer status of each communication
channel and report failures to the research team. For cases where
data loss occurs at the source (ie, the participants), this section
describes a mechanism for sending feedback to the participants
to notify them of the data loss and encourage them to remedy
it.

Data Signal Quality and Unintentional Variability
Related to data loss, the signal quality of sensor data is a concern
that presents a substantial challenge for research in the wild.
The term signal quality used here refers to the ability of each
sensor to measure its signal(s) of interest. Poor data quality may
occur when sensors are not properly worn or maintained, such
as when a wristband photoplethysmography (PPG) sensor to
measure heart rate is worn too loosely or when a microphone
is obscured. Instances of improper or inconsistent sensor usage
are inevitable in large studies in the wild, and they can lead to
an unintentionally higher degree of variability in the data
captured across all participants, which may consequently skew
the resulting statistical analyses.

Early steps should be taken to ensure that participants receive
proper training for using the adopted sensors before the study
begins and that clear and accessible instructions are made
available to serve as a reminder. Making plans to monitor the
quality of sensor data streams so that appropriate actions can
be taken to rectify problems is also highly beneficial, especially
for long-term studies. Once a process is in place to determine
the quality rating of recent data, different intervening actions
may be appropriate, depending on the participant population,
study environment, and the goals of the research project. Some
example interventions for improving data quality include the
following: retraining participants in sensor usage, adjusting
sensor fit, improving the network infrastructure to reduce
downtime, or simply sending reminders to participants (eg,
smartphone push notifications) to remind them to wear their
devices and upload the data. Quickly responding to rectify data
quality drops can help preserve the value of the data and
minimize data loss. If low-quality data persist despite these
measures, automated signal enhancement methods may still be
employed to algorithmically improve data quality. The Data
Acquisition and Flow Framework section illustrates how data
from the sensors can be aggregated on a research server.

Privacy and Security
Among the opportunities to generate scientific knowledge are
significant challenges to the ethical conduct of research on
human subjects [25]. Threats to privacy and data security
constitute the greatest risk to participants of behavioral research
in the wild. As sensing technologies become ubiquitous and
data science advances, it is possible to use passively collected
digital data to identify and predict a surprising range of human
behaviors with increasing accuracy [26]. Participants are often
unaware that when they consent to share data from their fitness
tracker, they may be allowing researchers to infer information
about their alcohol consumption, sexual activity, and mental
health symptoms. The accidental or malicious release of this
information could cause significant social, occupational, and
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psychological consequences to participants. The informed
consent process must provide clear and transparent
communication about what data are collected and how the data
will be used by researchers, how data are either anonymized or
kept confidential, and how data are securely transferred, stored,
and destroyed. Researchers must stay up to date on evolving
privacy and security concerns and best practices for mitigating
risk.

Another significant challenge when conducting studies in the
wild is respecting and protecting the privacy of nonparticipants
coincidentally present in the research environment. For research
scenarios in which raw audiovisual data are collected, extra
steps must be taken to ensure that either no personally
identifiable information (PII) is recorded about nonparticipants
or that they are informed that they may be recorded, where
appropriate and depending on municipal or state regulations
and institutional review board (IRB) approval. A tactic for
avoiding the collection of PII, even accidently, is to immediately
transform the collected raw data streams, such as audio or video,
into anonymized features—intonation, mel-frequency cepstral
coefficients, gestures, and posture—and record these instead
[27].

Another important step toward maintaining privacy is to ensure
secure transmission of sensor data to the research server with
as few transfers to intermediate nodes as possible. The Criteria
Related to Protection of Human Subjects section in this paper
discusses methods for securely transmitting information across
a network, and the Data Acquisition and Flow Framework
section can help researchers plan secure communication paths.

Data Acquisition and Flow Framework
State-of-the-art electronics and sensing technologies offer a
wide variety of communication protocols for sending

information among devices. Selection of the appropriate sensors
for a research project depends on many factors, which are
discussed in more detail in the Considerations and Criteria for
Sensor Selection section. A crucial step toward evaluating each
sensor is to understand the ways in which its data can be
transmitted through different communication channels and how
its data flow may be affected by the choice of other sensors and
data hubs.

The proposed general sensing framework, deemed suitable for
studies in the wild, depicts common transmission paths for data
flowing from multiple sensor streams through disparate network
paths and arriving on a secure server that is accessible only by
the research team. The framework aggregates data in a single
place, allowing for simpler implementations of automatic stream
monitoring and participant feedback systems.

Information Flow Layers
Figure 2 depicts potential information pathways through
different communication channels for passing data obtained
from sensors (in the left column) to data servers (right column),
where all the information passes through an intermediate data
hub layer (middle column). These intermediate hubs are any
devices that act as bridges to facilitate the aggregation and
delivery of transient sensor data into long-term storage. Most
of the available sensors in the market support a data flow
matching some combination of paths in this figure.

The primary aim in this framework is the aggregation of all
sensor data onto a single research server where additional
processing, monitoring, and feedback can be performed. The
following subsections describe each of these layers (columns)
in detail.
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Figure 2. A framework for studies of human behavior in the wild, showing common potential information pathways for data produced by sensors (eg,
physiologic and activity), destined to be stored on a single research server. This type of data flow paradigm enables centralized data monitoring and
facilitates immediate automatic participant feedback regarding data quality and compliance via the participant’s smartphones. RFID: radio-frequency
identification; NFC: near-field communication; USB: universal serial bus; API: application programming interface.

Sensors
Sensors for studies in the wild can broadly be grouped into 3
categories: environmental sensors, nonwearable (human)
trackers, and wearable sensors.

Environmental Sensors

These devices passively capture information about their
surroundings. Some examples of data captured by these types
of sensors include the following: temperature/humidity/CO2

levels, inertial measurements (eg, from accelerometers,
gyroscopes, or magnetometers), and acoustics. These devices
often perpetually broadcast information about their surroundings,
using low-energy Bluetooth or radio-frequency identification
(RFID) signals. Sampling rates below 1 Hz or event-based
sampling techniques are typical, as environmental data usually
change slowly (at least compared with physiological signals).

Nonwearable Trackers

These devices are placed in the environment, and they capture
information about subjects and their behaviors indirectly or in
a passive way. A few instances of these types of devices include
the following: RFID scanners, Doppler effect and
under-the-mattress sleep trackers, infrared gaze trackers, and
video cameras. These sensors often operate on wall power and
may include network capabilities for simplifying data
transmission to long-term storage on the data servers. They also
often include companion websites or smartphone apps for
visualizing metrics extracted from the sensor data.

Wearable Sensors

These types of sensors encompass the set of custom-built or
consumer products that are worn or carried on the subject’s
body to collect physiologic or contextual data or features
extracted from data, for example, heart rate from
electrocardiogram data, for behavior and activity tracking.
Devices such as smart watches/wristbands, smart undergarments
(underwear, T-shirts, and bras that collect data), smart rings,
voice activity detectors, and smart shoe soles are some examples.
Many of these devices can be recharged for long-term use over
multiple sessions, and they generally either communicate via
Bluetooth with companion apps installed on users’ smartphones
or via USB connections with personal computers. The
companion apps tend to provide visualizations of the received
data and upload functionality for long-term storage on
third-party servers. Interestingly, when running certain tracking
apps in the background, smartphones themselves can also serve
as wearable sensors, collecting information about user
movement and smartphone usage patterns.

Data Hubs
Data hubs are devices dedicated to collecting, aggregating, and
transmitting sensor information to data servers. Transient data
sources, such as many environmental sensors, have little
memory, and they need to have their data collected continuously
and retransmitted to a data server for long-term storage.
Wi-Fi–enabled data hub devices with Bluetooth capabilities can
serve as conduits for these types of data streams, whereas
personal computers can act as data hubs for USB-only sensors.
Battery-powered sensors collecting data at a high rate usually
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communicate via USB, as the bandwidth and transmission speed
are higher, and as wireless data transmission drains more power.
Battery-powered sensors can afford to send a smaller amount
of data through Bluetooth, whereas smartphones can often serve
as both data hubs and data visualizers.

Data Servers
The term data servers refers to the collection of machines in
which all the sensor data are stored. A typical consumer
off-the-shelf sensing device will provide some pipeline for
getting data off the sensor and into a data store in the cloud,
usually owned by the sensor product’s company. These
companies often provide an application programming interface
(API) for accessing the data, using automated tools that transmit
the data securely to protect subject privacy. Eventually, all the
sensor information needs to be aggregated in a single place, the
research team’s own server, so that the team has permanent and
easy access to it. The aggregation of all sensor data on this server
continuously throughout the data collection process enables
monitoring and feedback systems to help manage some of the
challenges mentioned in the Studies in the Wild: Challenges
and Risk Mitigation Strategies section.

Considerations and Criteria for Sensor Selection
Minimizing participant risk and burden while maximizing the
amount and quality of data is of primary importance. The set
of sensors used plays a major role in a study’s outcome, as data
quality is inherently constrained by the sensors’ characteristics
and the participants’ interactions with those sensors. Selecting

the appropriate sensors to employ in a research study can be
complicated, as the market provides many options, and each
device has unique qualities and capabilities.

This section establishes a comprehensive list of the different
criteria that should be considered before data collection begins.
In practice, researchers must strike a balance between meeting
their research objectives and ensuring a smooth participant
experience to maximize attrition and minimize data loss. Both
needs are constrained by the properties of the sensors that are
available or can be produced. The criteria are partitioned
according to whether each criterion is a characteristic of the
sensor or whether it primarily concerns either the researchers
or the participants. It is important for researchers to carefully
review each one of these criteria, as they are highly connected,
and each choice affects the outcome and experiences for both
researchers and participants.

Table 1 lists different sensor criteria grouped according to
whether they primarily concern research objectives and logistics,
sensor characteristics, participant engagement, or human subject
protection during the study. The categorization is not perfect,
as some of the criteria pertain to more than 1 group, but it helps
emphasize the different perspectives researchers should examine
when selecting sensors. Key criteria are included in this table,
which are expected to remain relevant as technology changes;
however, there may be other factors worth considering,
depending on the specific needs of a research project. The
following subsections describe each criterion in detail.

Table 1. Considerations and criteria for sensor selection.

Human subject protectionParticipant engagementSensor characteristicsResearch objectives and logistics

Access and usabilityCohort and individual suit-
ability

Sensor customizabilitySignals of interest

PrivacyBurden to participantsCostData properties and quality

Data security—aBattery lifeData access logistics

——Operating system supportSensor synergy

——RobustnessAdditional experiment setup costs

——Provider supportSensor acceptance among target population

———On-site infrastructure requirements

aEmpty cells are filled with a dash for visual clarity.

Criteria Related to Research Objectives and Logistics
The criteria in this section pertain to the logistical implications
of the selected sensors and ways in which the selection affects
the final outcomes and goals of a research project.

Signals of Interest

These criteria relate to the signals and how they are measured.

Target Signals

Before data collection begins, researchers need to consider what
type of signals they want to measure from the participants or
the environment. Varying amounts of potentially relevant
information can be obtained from signals collected from
different sources, such as physiology, for example, heart rate,

breathing rate, electrodermal activity (EDA), behavior (eg, time
spent speaking, sleeping duration and stage progression, number
of steps per time interval, social interactions, and surveys), and
the environment (eg, temperature, humidity, and CO2 levels).
The utility and overall quality of the chosen signals depend on
the sensors’ measurement mechanisms.

Measurement Mechanism

The physical mechanism through which a signal is acquired
affects its quality and overall utility for future analysis. As an
example, human location and kinematic data can either be
reconstructed from a series of Global Positioning System (GPS)
coordinates or inferred from an inertial measurement unit (IMU),
such as an accelerometer and gyroscope. The GPS data tend to
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produce more accurate location measurements and less accurate
kinematic ones; the IMU location accuracy drifts over time but
yields better kinematic figures, whereas GPS data can be used
in the aid of calibrating step count from an IMU [28]. Another
example is heart rate data, which can be obtained through PPG
or ECG, each of which yields significantly different signal
qualities and properties. The measurement mechanism may be
constrained by a sensor’s form factor requirements (wristband
vs garment), which may limit the quality of data that can be
obtained.

Data Properties and Quality

These criteria are important for assessing the quality and
potentially undesirable aspects of gathered data.

Sampling Rate

For most consumer sensing technologies, the sampling rate is
fixed by hardware design and power constraints, and it cannot
be altered. It is always possible to decrease the number of
samples considered for analysis purposes by downsampling
data originally collected at a higher rate. However, upsampling
data collected at a lower rate introduces distortions into the
signal [29], and that may impact its utility for later analysis.
The sampling rate of any sensing device should be at least twice
that of the desired underlying signal’s maximum frequency for
the recording to provide reasonable fidelity (per the
Nyquist-Shannon sampling theorem). The human voice, for
example, can be characterized by pitch and formants (among
many other features), which require sampling rates at least twice
the maximum vocal frequency (typically greater than 8 kHz)
for adequate analysis. However, tracking the position of a person
inside of a building can be sampled around once per second,
with meter-level accuracy based on average indoor walking
speeds [30]. Researchers should be aware of the analytical power
of the target signals and choose sensors capable of capturing
data at a frequency where meaningful information can be
extracted.

Signal-to-Noise Ratio

The data will only be useful if the signal-to-noise ratio (SNR)
of the measurements is higher than a certain threshold. Noise
in this case refers to any unwanted alterations to a signal during
the measurement process, and it can appear for many reasons.
If the noise is too high, it might not be possible to extract the
relevant information from the measurements. For example,
ECG-based heart pulse measurements may be subjected to noise
when a participant moves or when the electrodes attached to
the skin briefly detach during physical activity. Audio recordings
of people socializing may also include unwanted background
sounds. As unexpected sources of noise can occur in a research
study, test runs with a small cohort should be conducted for
sensors under consideration and then inspected to determine
whether the SNR is adequate to extract meaningful information.
Researchers may be able to improve a sensor’s SNR by
understanding where noise is introduced into the measurements
and taking steps to reduce it.

Accuracy and Precision

Accuracy refers to the bias of the measurements, and precision
is a representation of the variance of the measurements over

time. High-accuracy (low bias) and high-precision (low
variance) sensors are the most desirable. Published scientific
validation studies pertaining to the accuracy and precision of
measurements are available for some commercial and
research-grade sensors. In situations where no previous
validation work exists for a device, researchers should consider
performing their own validation tests, using state-of-the-art,
gold-standard sensors as the basis for comparison. As an
example, in a study examining the measurement accuracy and
precision of wrist-worn PPG devices (eg, Fitbit) among a diverse
group of participants performing various physical activities,
heart rate measurements were accurate to within 5% of
clinical-grade devices, and the measured number of step counts
varied within 15% of the actual number [31].

Drift

Measurement drift is a natural phenomenon that can occur in
any sensor, caused by unintentional modifications to the device
or object being measured [32]. When all other factors are held
constant, measurements of a signal may drift up or down because
of, for example, temperature or humidity shifts, changes in
electrode impedance, or physical movement of the body. In
many cases, drift is caused by physiological or environmental
factors that cannot be controlled in the wild, but there are many
common techniques for removing drift effects, including
high-pass filters [33], adaptive filters [34], and time-variant
filters [35]. In other cases, drift can be caused by sensor wear
or material corrosion; therefore, it is important for research
teams to consider the impact that normal usage and time will
have on the sensors, and it is important to consider how this
may cause a drift in the measurements.

Data Access at Various Stages of Processing

In some applications, it is important to be able to access the raw
(unprocessed and unfiltered) signals. This is most relevant for
research involving the denoising of signals, artifact removal,
feature extraction, or even the estimation of other data streams
from correlated signals [36]. Many consumer sensor devices
provide preprocessed signals with artifacts already removed
and which have been transformed into higher-level features,
such as step count, heart rate, sleep quality, or physical
readiness. Some sensor product companies elect to keep their
preprocessing techniques unpublished; therefore, it can be
difficult for researchers to understand exactly what each feature
represents. These ready-made features can be useful for analysis,
but researchers should be cautious when using features with no
published methodology unless the features have been previously
validated in scientific experiments. In cases where a provided
feature cannot be trusted or is proven unhelpful in analysis,
having access to the raw data to extract more meaningful
features may be beneficial.

Data Access Logistics

These criteria concern the ease with which data are stored and
accessed by researchers.

Data Upload Procedure

How and when data are transferred from sensor devices through
the network to a data server can have a profound impact on a
research project. As far as data upload procedures are concerned,
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there are 2 types of sensors: the ones that require manual
interaction and the ones that automatically and transparently
upload data once configured. Manual interaction is often
required for devices that collect a large amount of data and need
to transfer it in bulk (eg, a Hexoskin ECG sensor uploads to a
personal computer via USB). Automatic uploading is typically
available for sensors that can stream information transparently
to a data hub or smartphone over either Wi-Fi or Bluetooth (eg,
an OMsignal ECG sensor uploads data wirelessly to a
smartphone app). Both researchers and participants usually
benefit from the automated paradigm, as there is less work
involved for both parties, and data becomes available sooner,
but the researchers need to consider its impact on smartphone
battery drain and network bandwidth contention.

Ease of Data Access

Once the data have been successfully transferred from sensors
to the data servers, data need to be stored on a research server
that is easily accessible to the research team. Some sensors may
be configured to upload information to the research server
directly. For example, some companies supply a website where
researchers can log in, visualize, and download participant data.
Some companies track uploaded sensor data separately per user,
in which case the research team would be responsible for
creating and managing the participant accounts. Companies
may provide tools to facilitate the download of data, such as
Web-based (eg, REST) interfaces or APIs. The existence of
well-documented guidebooks or a responsive technical support
staff for these tools should be considered when selecting sensors.

Sensor Synergy

These criteria concern potential symbioses among sensors and
signals.

Redundancy of Signals

There are situations in which measuring the same underlying
signals using different measurement devices might be
advantageous to a research effort. One such circumstance is
when a sensor’s accuracy and precision are unknown, but it is
otherwise an appropriate pick for research. For example, if this
device is a PPG-based wrist-worn sensor for heart rate tracking,
then collecting heart information in parallel (perhaps on a subset
of the participants), using an ECG sensor that has been validated
against a gold standard, can enable researchers to infer the
measurement quality of the PPG sensor. In a different scenario,
researchers may decide that a certain signal is so important to
capture in its full fidelity that using a single sensor that may
occasionally fail or experience higher noise levels is not
adequate. Using multiple sensors to capture the same signal
adds fault tolerance to the measurement of that target signal,
and this may also help reduce systemic measurement errors (eg,
by averaging).

Sensor Versatility

Using a sensor that can adequately serve multiple purposes may
be preferable to using multiple sensors instead. There are many
reasons why this may be beneficial, such as cost, reductions in
participant and research staff burdens, and simplicity. For
example, it is possible to program a smartphone to gather
human-produced audio and record participant proximity to

known locations within a building by exploiting its Bluetooth
or Wi-Fi connectivity. This approach uses a single sensor to
achieve both goals instead of using 2 separate devices to capture
each signal.

Additional Setup Costs

These criteria describe the (perhaps hidden) extra time and
financial costs associated with setting sensors up for
experiments.

Installation and Maintenance Costs

Once purchased, sensors require installation and maintenance
throughout a research study to ensure measurement consistency
and minimize data loss. Some sensors, such as Bluetooth
beacons, may come packaged with installation tools that
interfere with maintenance objectives (eg, double-stick tape for
wall mounting). Using alternative installation devices (eg,
adhesive Velcro strips) in anticipation of device malfunctions
or required battery replacements can help expedite repairing or
replacing these devices when necessary. This may add a small
additional per-unit cost to some of the chosen sensors, but this
can save time and may help save money in other ways.

Participant Training and Support

Participants who will wear sensors throughout a study should
be trained to use these devices according to study rules and
objectives. Generally, support staffing may be required, as the
complexity and number of sensors increases or the sensors’
robustness decreases.

Service Costs

Some companies, such as those producing sensors targeted for
research rather than consumer use, may offer additional services
for some cost. These services may include data aggregation and
storage, data visualization, more convenient data access, or
real-time monitoring and quality tracking for incoming data.
Researchers should identify which services, if any, may be
necessary.

Sensor Acceptance Among Target Population

Regardless of every desirable quality a sensor may possess for
the research team and objectives, it cannot be beneficial if
participants recruited from the target population will not accept
or use it. There are many reasons why participants may reject
any specific sensor, such as discomfort, obtrusiveness,
complexity, or fashionability. These objections cannot be
anticipated fully; thus, researchers should assess beforehand
whether the target population would be generally willing to
engage with the potential sensor set selected for use.

On-site Infrastructure Requirements

Studies conducted in the wild, which use sensors, depend on
the study site infrastructure. As researchers converge on a set
of desired sensors for a specific study, the infrastructural
resources necessary at the study site(s), which can satisfy the
sensor requirements, will emerge. In some cases, the existing
infrastructure may not provide the resources required, but it can
sometimes be augmented (eg, with additional wireless data hubs
or power extension cables) to suit the needs of the research
project. Supplementing the infrastructure may not be possible
in other situations because of costs or prohibitive regulations,
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and researchers may have to settle for less desirable sensors
with fewer requirements. Some other examples of the
infrastructural considerations that should be accounted for
include the following: the total network bandwidth usage for
all participants, the availability of power and network outlets,
and access to a secured network for sensitive or private data
transfer.

Criteria Related to the Evaluation of Sensor
Characteristics
The criteria in this section describe various ways to evaluate
sensors compared with other potential sensor choices. Each
choice poses a certain set of constraints on the study, which can
affect the research team, the study objectives, and the
participants; thus, this merits vigilant consideration.

Sensor Customizability

These criteria address the alterability of sensor functionality.

Hardware Design

Presently, most commercial sensors are not designed with
extensibility or hardware-level customization in mind.
Therefore, it is difficult to alter the sampling rate, storage
capacity, or battery life to suit the needs of a research study.
There exist customizable do-it-yourself (DIY) hardware
platforms (eg, Arduinos or Raspberry Pis) that researchers may
want to consider in cases where no existing ready-made option
is sufficient.

Software Customization

Many sensors on the market, which stream data to a smartphone,
have a companion phone app, typically providing data
visualization, high-level data summaries, or some types of
behavioral interventions (eg, stand up and stretch, or get extra
sleep tonight). Some devices, such as smartwatches, contain
their own displays for visualizing data and haptic feedback for
alerts and interventions. These features can be useful to
participants, but they may misalign or interfere with the goals
of a research study; therefore, customized versions may be
desired.

Certain sensors offer software development kits, enabling
researchers to build their own software for collecting,
visualizing, and storing sensor data. Other devices, such as the
Apple Watch or Wear OS–enabled gear, support software
extensions installed on the device, giving researchers more
control over the visual and haptic feedback to suit the needs of
a study.

Cost

The total monetary cost of a sensor device itself is an important
factor for researchers to consider, and it may impact the total
number of participants who can be recruited and supported
throughout a study. Sensor prices can sometimes be negotiated
with their providers, depending on the number of devices
desired.

Battery Life

Sensor battery lives vary greatly and depend on the device types
and their functionality. On the basis of the survey of devices
available today, wearable sensor battery life spans range from

several hours to nearly a week. Most devices are rechargeable
in just a few hours, but researchers should offer suggestions to
participants about when to recharge to maximize the analytical
utility of the data. Some strategies for minimizing the impact
of data loss caused by recharging are as follows: staggering the
recharge periods for different participants (so at least some data
are always present) and choosing recharge times that coincide
with periods where the devices could not normally be worn
anyway (eg, while sleeping or taking a shower). It is inevitable
that participants will at times forget to recharge their sensors,
and researchers should have a plan for handling these situations
as well. Other devices, such as many tiny and portable
environmental sensors, consume a small amount of power, and
they can operate continuously for over a year. These devices
are often not designed for recharging, and they may need to be
replaced throughout the research study.

Operating System Support

Some wearable sensors designed to stream data to a smartphone
companion app may only support phones running on a particular
operating system (eg, iOS or Android), which can create
difficulties for the research team. Researchers could elect to
recruit only those participants with compatible smartphones,
but this will introduce a selection bias that may impact the
generalizability of the research findings or may reduce the
number of potential participants. If researchers determine that
a sensor with partial smartphone support is necessary, these
negative effects could be mitigated by providing the interested
participants using incompatible smartphones with a temporary
and inexpensive compatible smartphone for use during the study.

Robustness

These criteria concern the ability of sensors to endure repeated
use and proneness to failure.

Physical Design

Different sensors have distinct physical characteristics that make
them more or less suitable for reliable operations over an
extended period of time. Some properties worth evaluating are
as follows: whether a device is sturdy and can handle mild
physical wear, how easily a worn device may fall off, whether
its buttons and other inputs function well after prolonged use,
how well it stays in place without shifting, and how quickly it
resumes operation after being reattached. Researchers should
consider performing a pilot study to fully understand and
evaluate the sensors beforehand.

Firmware

The reliability of a sensor's firmware is important, as any failure
may lead to loss of data. A few probing questions worth
answering are as follows: is the firmware code stable or does it
crash? Can it handle a barrage of unexpected inputs and continue
to function? If the device sleeps, does it resume data collection
once awakened? Researchers should stress-test sensor firmware
before committing to any device to ensure they understand the
possible failure modes and recovery procedures.

Companion Software

Some sensors require a companion app running on a second
device, such as a smartphone or computer, to facilitate data
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collection and long-term storage. This software needs to be
resilient to minimize data loss. Ideally, it functions consistently,
showing no signs of glitches or crashing. Its ability to receive
data from the sensor and either cache or upload data to a data
server should be seamless and fault tolerant. Research teams
should stress-test this software to understand when and how it
fails, so that the support staff will be prepared to help
participants. A few tests worth performing are as follows:
disconnecting the sensor from the app or removing the network
uplink during a data transfer to see if sensor data are lost and
switching foreground apps or providing random inputs to see
if the app crashes. Once the failure modes of the companion
software are understood, steps can be taken to remedy them or
at least to alert participants.

Provider Support

Some companies are interested in building a scientific reputation
for their sensor products; therefore, they are concerned with
supporting research studies. This support comes in a few forms,
and the criteria below pertain to the beneficial impact this
support can have during and on the outcome of data collection.

Prestudy Support

Before data collection, it is essential for researchers to fully
understand the properties and unique characteristics of each
sensor under consideration to make the most informed choices.
Virtually all sensor providers offer documentation and a
communication channel for answering specific technical
questions. Some of these providers may offer additional services
for research teams, including direct communication to key
technical or support personnel and free samples for testing.

Logistics

Research teams should seek any available logistical aid, offered
by the sensor product companies, that may help the study
function more smoothly. Teams should ensure that sensors can
be provided on time and that there is a backup plan for any
sensors that need replacement. It is advisable to seek help from
the product companies to train the research staff for proper
fitting of the sensors, especially for those requiring specialized
knowledge. Other kinds of logistical help may include
preconfiguration of sensors (eg, to specific Wi-Fi networks),
custom delivery options (packaging, rush shipping), tailored
fittings, or an emergency contact. Moreover, some sensor
providers offer ongoing assistance, ranging from providing
quality metrics and statistical reports of the study participants
to ensuring APIs support the types of data monitoring and
quality assessment metrics researchers desire.

Criteria Related to Participant Engagement
These criteria pertain to how sensors affect the participants’
perception of a research experiment and willingness to engage
with a study throughout its duration.

Cohort and Individual Suitability

These criteria relate to the ability of sensors to meet the needs
of members of a cohort.

Sizing and Fit

Garments and sensors that match each participant’s unique
physical characteristics are best equipped to provide usable data.
Devices that are too large or too small can cause discomfort,
possibly leading to side effects, such as blistering or reductions
in data quality.

Technological Literacy

Each sensor provides a unique interface for operating with its
hardware and companion app software. Researchers should
ensure interfaces are simple enough for all potential participants
in the target population. In cases where the interface is
unfamiliar, researchers will need to provide instructions,
describing not only how to operate and interact with the devices
but also how to check that they are in a proper state and
performing the desired function at any time.

Fashionability

The selected suit of sensors should comply with dress codes of
the environment in which they will be worn. Moreover, the
design and appeal to wear sensors should be considered by the
research team to ensure that all participants are comfortable
wearing the sensors from an esthetic perspective.

Burden to Participants

These criteria address the physical and mental burdens sensors
impose on research participants.

Physical Interference

Obtrusive sensors may physically interfere with normal
activities, causing frustration or eventually leading participants
to avoid wearing these sensors or drop out of the study. For
example, undergarment or chest strap sensors may become
uncomfortable after a few hours or produce skin rashes,
preventing participants from using them further. Another
example is desk-mounted, infrared eye-tracking devices that
require participants to keep their heads in view, which may
incidentally encourage poor posture. Other job-specific scenarios
should be considered, such as the use of smart rings in hospital
settings, where they can interfere with minimal hygiene
requirements. Sensors that can adequately collect the intended
signals without interfering or causing discomfort will improve
the participants’ acceptance of the devices, potentially
minimizing attrition.

Time Investment

Studies conducted in the wild, which ask participants to wear
or interact with sensors over an extended period, inherently
push more responsibility onto the participants to manage and
operate the sensors. Daily upkeep, such as cleaning and charging
the devices and verifying that they are functioning as intended,
requires a time investment that burdens participants and can
cause frustration if the demands are too high. Choosing sensors
with low upkeep and training costs will reduce this burden and
can improve compliance and overall data quality [37].

Cognitive Load

An implicit stipulation in any study is that the participants
understand they are responsible for adhering to the study
protocol. This requires that participants remain mindful of the
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study throughout its duration. Researchers should aim to choose
sensors and an overall study design that requires a small or
occasional investment of the participants’ time and mental
energy. For example, helping participants with reminders to
charge their sensors every night, and supporting them with a
charging hub may increase sensor usage.

Criteria Related to Protection of Human Subjects
Research investigating human behavior, using sensing
technology, is subject to review by IRBs, which evaluate the
risks and benefits to human participants and ensure that the
study adheres to ethical principles detailed in the Belmont
Report [38]. Researchers must consider how the passive
collection of behavioral data will respect participants’autonomy
and privacy, how it will maximize the benefits of the research
while minimizing risks to participants, and how it will ensure
that benefits and risks are equitably distributed. Some of the
most relevant themes are reviewed here, but it is important to
be aware of ethical guidelines that apply to specific populations
or data types. Connected and Open Research Ethics CORE
provides a checklist to guide researchers in deciding which
technologies are appropriate for a study, with respect to
protecting human subjects [39].

Access and Usability

Researchers are responsible for ensuring that potential benefits
of a study are likely to apply to all members of the population
under investigation. This means that sensor selection must not
inadvertently exclude members of the study population from
participation or result in poorer data quality because of
individual differences. For example, wearable sensors may be
affected by factors related to body shape and size, skin tone,
body hair, or tattoos. It would violate the ethical principle of
justice to exclude individuals as study participants on the basis
of these factors, solely as the sensors selected did not perform
well on them. Researchers should aim to select sensors that
have demonstrated validity across diverse participants (eg, a
heart rate monitor that relies on ECG instead of optical
technologies), can be adapted to individual differences (eg, a
respiration monitor that can be worn on a bra or belt), and
employ inclusive design features (eg, accessibility settings to
accommodate those with visual impairments) to ensure equitable
representation and data quality.

Privacy

Privacy refers to the persons’ right to control what information
about them is shared, with whom it is shared, and how these
data are used. The most common privacy protection is to
separate information that could identify the participant from the
data collected about the participant, but some passively collected
behavioral data are inherently identifiable and sensitive. For
example, GPS features can predict depression symptom severity
[40], and 95% of individuals can be identified with as few as 4
GPS data points [41]. Participants electing to engage in a study
that requires the collection of sensitive and personal data need
assurances that researchers will take steps to mitigate the risk
that their behaviors can be linked to their identities.

Given the array of data types available through passive sensing
technologies and the low cost of collecting data unobtrusively,

it is tempting to collect as much data as possible. However,
researchers are ethically obligated to only collect data that are
pertinent to specific research questions. When possible,
researchers should disable sensors that are irrelevant and
securely dispose of data that are not specifically related to study
aims. In addition, participants should be able to select which
data they are willing to share, with whom, for what duration,
and for what purpose. Ideally, sensors should allow participants
to deny or revoke access to particular data types. If these user
controls are not permitted by third-party providers, researchers
should consider providing additional data management tools
that help participants exercise their right to privacy.

Many sensors on the market today require participants to register
their own accounts, using their own personal information, which
creates a link between potentially sensitive data and each
identifiable participant. Studies needing to access these data
while guaranteeing participant privacy have a few options.
Researchers could register dummy accounts, allowing the
participants to remain anonymous, or they may alternatively
acquire data directly from each participant’s personal profile
(eg, by using an API) and then immediately remove PII. In the
latter case, researchers should also check that both the network
channels from the sensors to data servers and the network
channel for researchers to access the data are encrypted and
secured to avoid any privacy breaches.

Data Security

Proper protection of the PII sensor data gathered from
participants requires all communication channels for the data
streams to be secured (refer to Figure 2), and it requires
protected long-term data storage with limited accessibility.
Information sent over a Bluetooth link is naturally secure, as
only paired Bluetooth devices can communicate. Similarly,
USB transfers are secured between the 2 devices at either end
of the USB cable. Data sent over Ethernet or Wi-Fi require an
extra encryption layer (eg, https, secure file transfer protocol)
to ensure the information cannot be intercepted. RFID and
near-field communications are generally not considered safe,
but sensors are typically using these channels to infer
information (eg, about the movement of people indoors) rather
than transferring PII directly. Stored data are typically secured
by limiting physical access to the storage device itself, but
encryption of the data is also possible. Access to the sensitive
stored data should be limited to select members of the research
team, and it is usually controlled through credential-based
authentication (eg, usernames and passwords). Unfortunately,
today, there are many other ways for hackers to obtain PII data
(eg, malware, spyware, and cyberattacks), and research teams
and participants may wish for every precaution to be
implemented. Readers are referred to the study by Filkins et al
[42] for more information about protecting private data in a
mobile sensing landscape.

Current Sensing Technology
Much research has remarked on the variety of options and
capabilities of sensors for research purposes [43-47], including
several tests [48-50] and validation experiments [31,51-54].
These studies overlook the qualities of each sensor, which make
them more or less suitable for different research applications.
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This section provides a snapshot of some of the more recent
and prominent unobtrusive sensing technologies worth
considering for human behavior studies in noncontrolled
environments. Figure 3 provides a visual overview of this
landscape. The following subsections give basic descriptions
of these sensors, along with comments about the research
trade-offs among different technologies. Compiled in mid-2018
while preparing a research effort examining the relationship
between human behavior patterns at home and work, as well as
mental states and job performance, the snapshot provided here
covers a wide range of sensors that can capture many different
signals. The current pace of innovation in the sensing market
is too rapid to summarize in its entirety. Therefore, although
this list is not exhaustive, it provides an approximate overview
of the currently available products. The authors hope these
suggestions will be beneficial to researchers formulating
large-scale studies.

To make this compilation easier to understand, the sensing
technologies are categorized with respect to the type of
information they capture. At the highest level, the sensors are
grouped into 3 categories: environmental sensors, nonwearable
trackers, and wearable sensors, which are also reflected in Figure
3. Environmental sensors encompass the devices that capture
information about the surrounding environment, which are not
intended to directly measure information about people.
Nonwearable trackers describe devices that are placed in an
environment and capture information about people and their
behaviors. Wearable sensors are the portable devices worn or
carried by people, which capture physiological or behavioral
data.

Environmental Sensors
As the Internet of Things movement continues to push more
technology into portable devices, environmental sensors that
capture multiple kinds of data from their ambient surroundings
have become common. Many of the devices in this category are
small, battery powered, and can easily be stuck onto walls or
placed out of the way. Although their primary purpose is to
collect and report environmental data, these sensors can also be
used to capture other kinds of information. For example,
protocols have been developed for proximity awareness and
location-based services, including iBeacon, Eddystone, and
Quuppa.

This section focuses on the environmental sensing capabilities
of these multipurpose sensors, particularly on measurements of
light, sound, and atmosphere. Figure 3 shows a breakdown of
these properties and lists several products available on the
market, which can be used for measuring each type of data.

Environmental sensors are typically designed to remain turned
on and collect information from their surroundings at a fixed
rate. This information is usually made available to surrounding
data hubs or smartphone devices so it can be stored or monitored
by people (see Figure 2).

Atmosphere and Light

Many of the environmental sensors listed in Figure 3 use
microelectromechanical systems devices to measure various
properties of the environment. This technology has enabled
sensors to be miniaturized and deployed with year-long battery
lives, but this comes with a small cost in measurement accuracy.
The underlying chips used to assess light levels [55], air pressure
[56], and air quality [57] have very low measurement errors;
therefore, any inaccuracies will likely be imperceptible at a
human scale. The chips often used to measure temperature and
humidity have standard errors that may be more significant:
approximately 0.5°C and 3% relative humidity, respectively
[58]. Near the boundaries of acceptable temperature ranges for
controlled indoor environments [59], an error of 1°C may
represent the difference between someone feeling comfortable
or not. Having this kind of measurement error means researchers
would not be able to distinguish between these 2 states.
Deploying duplicate sensors in the same environment provides
some redundancy in measurement, which allows these errors
to be averaged out and may offer more discriminative power
during analysis.

Sound

Portable sensor products for measuring or classifying ambient
sounds are not widely available on the market. The Microsoft
Kinect camera is a device capable of capturing audio (and
video), but it requires a connected computer, operates on wall
power, and is not easily portable. Researchers interested in
capturing audio with portable devices in an unobtrusive manner
have a few options. The Electronically Activated Recorder [60]
periodically samples ambient audio from a smartphone in short
bursts throughout the day. Several DIY platforms are also
purchasable, such as the Raspberry Pi and Arduino, which can
be customized to record microphone audio and transmit acoustic
information via Wi-Fi or Bluetooth. Audio signal quality is
highly dependent on the setup of the microphone [61] and the
types of sounds that researchers want to capture or filter out.
The DIY platforms typically offer small omnidirectional
microphones with midrange quality, but higher-grade
microphones can be integrated. If human-produced audio is of
primary interest, researchers may consider a similar solution,
such as TILES Audio Recorder (TAR) [27], which is described
further in the Wearable Sensors section.
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Figure 3. A snapshot of current consumer and research sensing technologies for human behavior studies in natural environments. This is not an
exhaustive diagram of sensors on the market, but it provides an overview of the kinds of data can be captured using readily available technology. PPG:
photoplethysmography; ECG : electrocardiography; EDA: electrodermal activity.

Nonwearable Trackers

Nonwearable trackers live in the environment and monitor and
capture information about human behavior. These sensors can
be categorized according to the types of signals they are
primarily designed to capture: activity, kinematics, locality, or
physiology. Some of these devices are self-contained and offer
both a data collection mechanism and a means to transmit the
information to a data server without a data hub. As these types
of devices are not constrained by portability, they can sample
data at a higher rate and may also offer more functionality. This
section concentrates on nonwearable trackers designed for use
at home or in an office.

Activity
Mentioned below are some of the activities that consumer
nonwearable devices can track.

Sleep
Sleep monitoring sensors are installed in the bedroom, and these
can capture information about the ambient environment and
personal physiological information of someone while resting.
These sensors may be installed under the mattress, on a nearby
nightstand, or on a wall near the bed. They can collect rich
information about sleep patterns, tossing and turning, sleep
cycles and duration, snoring, temperature, humidity, breathing,
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and heart rate, and they can ultimately provide details that can
be used to assess the quality of sleep.

Sport Activities
Many unique kinds of nonwearable sensors used to track sport
activities are available, including radars, cameras, tablet apps,
and sensors built into sport equipment itself. Some sensors come
integrated into sports gear, such as bikes, balls, helmets, and
even tennis rackets, each of which blurs the line between
wearables and nonwearable trackers. These devices record data,
such as posture, gesture type, gesture accuracy (eg, golf swing),
and practice duration, and these devices offer approximations
for exercise intensity and calories burned.

Kinematics
Mentioned below are some kinematic features of human
movement that can be captured by consumer sensors.

Motion
Human body movement dynamics have been linked to affect
and cognition [62]. Camera-based computer vision systems
allow noninvasive, scalable, and inexpensive motion tracking.
A critical issue with camera-based tracking systems is the big
brother effect (see The Big Brother Effect section). To mitigate
participant concerns, researchers may extract relevant kinematic
features from the videos in real time and store only relevant
features, instead of the video recordings themselves. If physical
space is available and the budget permits, using multiple
cameras can improve tracking accuracy. Among the available
off-the-shelf devices, the Microsoft Kinect [63], particularly
with its depth camera technology, is a common choice for
real-time full-body motion capture and gesture recognition.
Motion tracking of multiple people in a fixed space is possible
using cameras, with solutions such as CrowdVision.

Gesture
The camera-based systems described in the Motion section can
also be used to track gestures, especially the Microsoft Kinect
[63]. There are freely available tools, such as the Gesture
Recognition Toolkit [64], that enable gesture recognition from
any video source. Gesture recognition for multiple bodies in
real time from single-camera sources is an active area of
research, and there are no consumer products available.

Locality
Descriptions of sensors that capture rough estimations of
position (proximity) and more precise location measurements
are provided below.

Proximity
Modern personal smartphones support Bluetooth and can be
programmed to broadcast Bluetooth packets at fixed rates for
proximity sensing [65]. Proximity is measured using Bluetooth
hubs that receive these broadcasts and use the received signal
strength indicator values to determine a smartphone’s
approximate distance from each hub. This information can be
used, for example, to monitor the amount of time participants
spend in front of their workstations or in break rooms.

Location
Participant location data are a valuable information channel for
human behavior monitoring, offering a means to track the
movement patterns of individuals. Like proximity sampling and
kinematics tracking, camera-based systems have been widely
used for localization in indoor settings [66]. These camera-based
solutions require the positions and orientation of each camera
to be known. Usually, the cameras are placed out of the way
and remain stationary, but they may require maintenance if
perturbed. RFID systems are also available on the market, and
they use distributed hubs to localize individuals wearing RFID
badges. Usually, the location of individuals can be inferred more
accurately when more cameras or hubs are added to the
environment. It is recommended that research teams test
localization systems in the target environment before committing
to a solution.

Physiology
As shown in Figure 3, nonwearable sensors can measure a wide
variety of physiological signals, including weight, body
temperature, chemical indicators, and cardiovascular
information.

Weight and Body Mass Index
Some smart scales can measure weight (mass) and assess a
subject’s body mass index (BMI) by using bioelectrical
impedance through the bare feet [67]. Devices, such as the
Withings Body+, capture both of these measurements [68], and
they can also assess a person’s total body water (TBW) [69].
Weight and BMI values are linked to obesity risk and heart
disease [70], and TBW is linked to subjects’ hydration levels
[71]. These signals may be of interest to certain research studies,
and presently, these signals are difficult to measure using
wearable sensors.

Body Temperature
Body temperature is a known proxy measure for health and
arousal [72]. Infrared thermography devices [73] measure skin
surface temperature without direct body contact. These types
of sensors are fast and easy to operate, but the accuracy and
precision may be worse for some individuals [74]. Researchers
desiring to use these types of no-contact body thermal sensors
are encouraged to average several measurements to improve
data quality.

Chemical Indicators
Nonwearable smart sensors are available, and they can sample
blood, urine, or saliva to measure blood glucose level, blood
oxygen level, and pH level. Measurements from these body
fluids provide rich information about health and well-being,
and they are considered the gold-standard source for some
signals. These devices may require additional consumables for
measurement (eg, electrochemical strips).

Cardiovascular
A variety of available nonwearable sensors provide
cardiovascular information, such as blood pressure and heart
rate. For example, pulse oximeters collect heart rate and blood
oxygen saturation from pulse waves measured via PPG at the
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fingertips. Pulse oximeters are widely used, given their ease of
use and low cost. Smart blood pressure sensors are also
available, such as the Withings or Omron 10 Series blood
pressure monitors. Although these sensors must be attached to
the body to capture cardiovascular data, they are not intended
to be worn for any length of time. Recently, noncontact,
video-based methods of inferring heart rate have been proposed
and shown to obtain accurate and reliable measurements as well
[75].

Wearable Sensors

Wearable sensors are separated into 2 primary groups, 1 for
devices that directly capture physiological measurements and
1 for devices that infer behavioral or activity states. A third
group encompasses sensors that infer information about the
positioning of individuals.

Physiology
This subsection describes the (relatively unobtrusive)
commercial sensors that can capture some of the wide variety
of human physiological signals.

Electrodermal Activity
EDA, also known as galvanic skin response, can be used to
track states of emotional arousal through the skin conductance
level and responses. Sensors placed around the fingertips are
among the most accurate, but they are more intrusive and likely
to interfere with the participants’ daily activities. Wristband
sensors, such as the Empatica E4, measure EDA, but they can
capture a large amount of noise in the signal when wearers move
or flex their arm muscles. In practice, it can be difficult to
capture this signal reliably and unobtrusively in the wild, without
substantial noise. Denoising these signals to obtain more
meaningful measurements is an active area of research [76].

Speech
Different wearable devices have been proposed by researchers
for understanding emotions and other aspects of speech in social
situations, such as the Sociometer [77], the EAR [60] and
subsequent iEAR app, and the TAR [27] app. Privacy is a major
concern when audio recordings are collected in public settings;
thus, some apps, such as TAR, are designed to only collect and
record anonymized acoustic features from human-produced
audio. Commercial wristband devices for collecting raw audio
in the wild are available, such as the Kapture audio wristband
or the Weefun voice recorder, but these are designed to capture
audio on demand and at the request of the wearer. The EAR
and iEAR apps autonomously and periodically record ambient
audio, but they may pose a privacy concern, especially for
nonparticipants.

Vision
Eye trackers allow researchers to study human gaze patterns
and points of interest that attract visual attention. Wearable
consumer products for tracking gaze typically look like glasses
and use cameras to track eye movement relative to each
participant’s forward head direction. Some of these products
require calibration, where users are asked to look at a fiducial
marker to realign the calculated gaze direction. Researchers

should be aware that participants may need to calibrate
periodically to maximize gaze tracking accuracy.

Cardio
Heart rate and heart rate variability measurements have been
linked to activity levels, emotional arousal, stress, restfulness,
and general fitness [78]. Wearable sensors are well suited to
track the heart’s behavior. It is currently possible to obtain
unfiltered 200 Hz electrocardiograms throughout the day with
chest straps, smart shirts, and undergarments. Wristband sensors
offer PPG technology that collects volumetric measurements
of blood flow. PPG-based wristbands provide heart rate and,
sometimes, blood volume pulse metrics, but researchers often
cannot access the unfiltered PPG data, as these are processed
and transformed by the hardware in the device (usually to save
power). Presently, heart rate information, as provided by PPG
sensors, may not be accurate (see Data Properties and Quality),
as evidenced by the study by Benedetto et al [48]; therefore,
researchers should exercise caution when using this technology.

Respiration
Many chest strap [79] devices that capture ECG data are also
capable of measuring respiratory information. These devices
use stretch sensors in the strap wrapped around the chest to
capture inhalation and exhalation and produce breathing
frequency and volume per breath measurement. There are also
other accelerometry-based devices that attach to the waist and
extract the same measures by ignoring all motions, except those
caused by breathing. Respiration sensors offer insight into
physical activity intensity, recovery, and calmness when
participants are at rest [80].

Temperature
Skin temperature provides information about participants’
comfort levels, exercise efficiency, and physical well-being (eg,
because of a fever). Some wearable garments that already
measure ECG and respiration rate (eg, QardioCore) can capture
skin temperature conveniently. Some wristband sensors can
measure skin temperature as well (see Figure 3).

Brain Activity
Devices measuring brain activity using electroencephalography
(EEG) have become more abundant in recent years. Numerous
portable and wearable EEG headsets exist, with varying numbers
of electrodes for capturing voltage levels at the scalp, and each
one offers different sampling rates and monitors activity in
different regions of the brain (Brodmann areas). Many of these
portable headsets transmit data via Bluetooth, enabling
smartphone apps to receive, process, and upload the data. Some
devices require the data to be received and processed by a
companion app running on a personal computer. Although the
underlying technology is very similar for most devices and a
standard exists for electrode placement (the 10-20 system), the
captured signals may vary from device to device because of
several factors: dry versus wet electrodes, sampling rates,
number of channels, and degree of sensitivity to ambient (noisy)
electromagnetic radiation.
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Light Exposure
Sunlight exposure has been linked to sleep behavior and overall
mental health. Special-purpose ultraviolet and visible light
devices with smartphone integration, such as the Sun-Sprite
light tracker, are available and can help researchers monitor
participants’ exposure to sunlight during the day. Many of the
wearable wristbands that capture heart rate and other physiologic
information can also track ambient light levels (see Figure 3).

Activity Tracking
Unique sensors have been developed to track various physical
and contextual human activities, which are outlined here.

Socializing
Some wearable technologies can capture information about
person-to-person social interactions. Active RFID or Bluetooth
devices, such as the Humanyze badge, detect when 2 or more
people are standing next to and facing each other. These devices
and other wearable voice detectors (previously mentioned in
the Physiology section) can also help determine when vocal
exchanges occur between people nearby. Together, these types
of sensors can aid researchers in assessing when group
socialization occurs, how long it lasts, and who is involved. In
practice, it is often difficult to determine who is speaking, and
when anonymized audio features are collected instead of raw
audio [81]; deciding whether a vocal utterance is intended as
part of a conversation is an open research question. Nevertheless,
even noisy inference of group social activity may be beneficial
for a research endeavor.

Gestures
Human gestures contain valuable information in social contexts
and provide insight into kinesiologic activity while at work or
at home. Wearable sensors for gesture tracking commonly use
IMUs to record motion of the arms and legs, and they may use
electromyographic muscle sensors to detect certain kinds of
hand gestures. The data can be streamed in real time via
Bluetooth to smartphones or data hubs.

Motion
Many research efforts have previously observed a strong
correlation between physical activity and both physical and
mental health. With the explosion of fitness trackers in the last
few years, it is now possible to track body movement and
exercise patterns with relatively inexpensive wearable devices.
These devices come in a variety of form factors with very
different qualities and captured signal characteristics. One of
the most common forms is the wristband, with other options
including chest straps, shirts, and undergarments. Many of these
devices contain embedded accelerometers and gyroscopes to
record translations and rotations of the body over time. In
addition, some devices may directly provide time series IMU
data, whereas others may digest this to produce higher-level
motion features, such as step count or distance traveled.

Posture
Some smart shirts and chest straps (mentioned in the previous
section) can also be used to track the posture of participants.
These devices contain IMU data that can be processed to obtain

information about whether the wearer is sitting or standing,
what his or her angle is with respect to the ground, and about
sleeping posture (eg, resting on one’s back, front, or side). Other
sensors for gesture tracking attach to the arms and legs and can
help provide a more holistic view of the entire body’s posture
over time.

Cadence
Cadence measures capture the consistency of repetition of
motion over time and offer information about physical fitness,
activity intensity, and physical exertion. Some devices provide
cadence measures directly (usually for physical activity), but
cadence can also be inferred and analyzed from other available
motion modalities, such as IMU data.

Sleep
The Nonwearable Trackers section mentions nonwearable
devices for tracking sleep, but many unobtrusive wearable
devices can do so as well. Some wristbands and smart garments
that track heart rate and motion can detect when a person is
sleeping, and they can infer information about sleep stages and
sleep quality from these data streams. Accurate sleep stage
tracking from these types of data streams is a continuing area
of research, and although many devices offer sleep metrics, they
have not been validated thoroughly by the scientific community.
These reported values may still be useful, but researchers should
be cautious when using these sleep metrics.

Step Count
Step count can be inferred from wearables using IMUs that
track motion and posture; therefore, it can be measured using
wristband and garment devices. Bluetooth-enabled pedometers
worn at the waist or tied to shoes are other options. Newer
iPhones can also easily measure step count, which is calibrated
using GPS information. The number of steps counted for any
given activity will vary among devices and across participants
because of differences in motion and how the motion is
interpreted by the sensors. Particularly, wristband sensors may
misinterpret activities involving repetitive arm motion (eg,
washing dishes) as steps and introduce measurement error.

Personal Device Use
Apps for tracking smartphone usage have been developed to
help people monitor and manage their own time, and they can
also be used for research purposes. These apps primarily track
how frequently users pick up their smartphones and how long
they spend using different apps each day. Some of these tools
can also track social media and internet use.

Locality
Some wearable sensors are able to provide coarse
approximations of location (proximity) and finer location
estimates (localization), which are described below.

Proximity
Proximity-based locality measurements yield rough estimations
of location by proximity to other a priori known locations,
usually measures through time-of-flight or received signal
strength. The systems available for tracking proximity use a
deployment of Bluetooth, Wi-Fi, or RFID hubs, with known
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locations, to track the presence of wearable devices. Wearable
badges and cards can be purchased for each participant, which
are detectable by these hubs, but it is also possible in some cases
to track devices that participants might already have on their
person, such as smartphones. These proximity tracking systems
are useful for detecting potential social interactions among
nearby people or detecting when people are present in a known
area.

Localization
Localization is the process of measuring or inferring a precise
approximation of a person or object’s location. Most
smartphones today provide GPS-based location services, which
provide accurate location measurements that are useful for
tracking human movement at city scales. Other systems, such
as dense Bluetooth or RFID hub network, can be used in
conjunction with Bluetooth beacons or RFID cards carried by
participants, and they provide precise estimations of their
position in indoor environments. Location data are highly
sensitive, and extra steps may need to be taken to securely
collect, deidentify, and transmit this type of information.

Results

Overview
In early 2018, a research team (including the authors) began
preparations for an in situ study at the University of Southern
California’s Keck Hospital, per the MOSAIC program [82],
using sensors to track nurse and hospital staff behavior in the
workplace and at home. The project aimed to understand how
physiological dynamics and behavior both at work and at home
are associated with personality, well-being, and work
performance.

This section shares results from the application of the methods
previously described. The team’s experiences and rationale for
selecting sensors to help achieve the research objectives are
discussed, as well as how compliance was monitored and
encouraged during the study. Metrics for attrition and

compliance rates are provided. For a more detailed overview
of the data collection itself, including IRB information, readers
are referred to the retrospective study by Hasan et al [83]. A
full description of the dataset and collection methodology will
appear in a future publication; this section focuses on aspects
related to sensing and data flow.

Study Goals and Constraints
The primary goal of MOSAIC was to use information gathered
through commercially available sensors to study the predictive
power of these types of sensors for assessing personality traits,
as well as work-related behaviors and mental states throughout
time. Owing to the complex trade space encompassing consumer
sensors, creating a data collection protocol that met the project
goals and was satisfactory to the participants and hospital
environment required many iterations and challenging decisions.
These deliberations and the data collection protocol that resulted
led to a study, including over 200 hospital staff participants
over a 10-week period and with an attrition (dropout) rate of
4% (primarily because of vacation conflicts).

Signals and Sensors
The signals of interest and sensor selection rationale are
described below. The sensors employed in this case study, on
the basis of the various study constraints, are also described.

Signals of Interest
Previous literature, related studies, and experience all revealed
many physiologic signals of interest for capturing data likely
related to work behaviors and mental states. Some of these
signals, such as EDA and brain waves, were not possible to
capture accurately in the wild over extended periods using
consumer sensors. The research team initially reduced the list
of potential signals of interest down to the ones that could be
captured with unobtrusive sensors, based upon a survey of
existing technologies (see Figure 3). Table 2 shows these signals
and a short explanation of the expected utility for each in
meeting the research objectives.

Table 2. Signals of interest in the case study that were measurable using consumer sensors.

Reason for interestSignal

Connection to exercise, fitness level, and stress levels [84,85]Cardiac

Linked with stress [86]Physical activity

Health (physical and emotional) [87,88]Sleep

Contains information about emotional expressions [89] and information related to social interactionSpeech

Calmness, stress, anxiety, and speech activity detection [80,90]Breath

Connection with workplace performance, anxiety, and stress [91]Environment and distractions

Captures workplace behavior and job role dynamics [92] and context for the job types of interestLocality

Sensor Selection Rationale
As the study continuously required the collection of data over
several months, one of the top priorities was to minimize the
burden on participants to achieve a high compliance rate and
capture representations of behavior in the wild. As previously
described in the Burden to Participants section, the study took

a holistic approach to assessing the participants’ responsibilities
and duties, including their time invested in compliance, physical
disruption, cognitive load, and interference with their daily
activities. While keeping these burdens in mind, each paragraph
below describes how sensors were chosen to capture each signal
of interest.
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Cardiac and Physical Activity

Several form-fitting garments with ECG sensors were tested,
and many provided the data quality desired (see Figure 3 for
the list). Chest strap sensors were found to be uncomfortable
for daylong use (as they are designed for exercise sessions), but
the existence of different form factors of ECG garments (eg,
shirts, bras) made it possible to gather high-quality data across
genders. Some of these garments continuously collected
high-quality data throughout the day, but they required that the
physical box recording the data and hidden inside was hooked
up to a computer via USB on a daily basis for data transfer. This
step seemed cumbersome for participants; therefore, another
similar garment that could stream the data to the subjects’
personal smartphones was selected. The caveat with this second
device was its companion app, which required a manual start
and stop of the data recording process. The research team elected
to have subjects wear these garments only during work hours
to avoid potential discomfort associated with wearing them all
day. Participants were also assisted in setting location-based
reminders on their personal phones to start and stop the
recordings. Heart-related information and other physical
activities outside of work were also tracked by asking
participants to continuously wear a wristband.

Sleep

Many unobtrusive sensors were capable of capturing information
about sleep duration and sleep stages. Some sensors required a
one-time installation on or near the bed, and then they would
automatically detect and monitor participants when the
participants were sleeping. Nurse focus groups had privacy
concerns; therefore, wearable sensors were deemed more

appropriate. To minimize cost and the burden of wearing
multiple sensors, a wristband sensor was chosen, which was
capable of capturing sleep and the cardiac and physical activity
signals mentioned previously. Participants were asked to wear
the band every day, including during sleep.

Speech

At the time of the study, no portable consumer devices were
available for automatically sampling only human-produced
audio. The research team programmed a smartphone app to
automatically start, run in the background, and collect audio
samples of ambient human utterances [27]. To address Health
Insurance Portability and Accountability Act concerns about
hospital patient and nonparticipant privacy, relevant information
about the emotional content of the voice signal was computed
by the device, and the raw audio signal was immediately
discarded. Moreover, participants could disable the recording
process for intervals of half an hour, by pressing a button in the
app, after which the recording was resumed. Collecting
low-noise audio required the smartphone’s microphone to be
placed near the mouth, and the research team wished to avoid
using external microphones to avoid further participant burdens.
Research staff met with representatives from the potential
participant pool to discuss unobtrusive solutions and discovered
that hospital personnel were already accustomed to wearing
hospital badges on their lapels. Credit card–sized smartphones
were acquired to run the custom software, and then these were
attached to the participants’ shirts, with a clip to get the
microphone closer to the mouth [27], as shown in Figure 4.
Although this solution may have been unacceptable for some
subject populations, it was appropriate for the hospital workers
in this study.

Figure 4. Setup of the TILES audio recorder [27].

Breath

Commercially available portable breath sensors measured the
expansions and contractions of the chest. Some of these sensors
were stand-alone devices attached to the waist or chest, and
some were integrated into other multipurpose sensing garments.
Once the research team decided on a comfortable device for
capturing ECG, they found that breathing rate information was
already available; therefore, the same device was used.

Environment and Distractions

Environmental sensors for capturing temperature, humidity,
and door motion were used. Statistics about social media and
general phone usage were acquired with the participants’
permission and with the help of smartphone apps running in the

background on their personal phones, requiring little power and
no interaction after the initial setup.

Locality

Precise localization of subjects inside the hospital was deemed
prohibitively expensive and would have required several months
of installation time; therefore, approximate measurements of
location by proximity to known locations were used instead.
As described previously in the Wearable Sensors section, using
a dense hub network and wearable consumer sensors, there were
2 general ways to achieve this: tracking participants’
smartphones or tracking other worn wireless communication
devices. The latter option was chosen using the audio recording
phones for tracking to avoid any power draw from participants’
personal phones.
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Selected Sensors and Expected Use Table 3 shows the selected sensors and the intended usage period
for participants, per the study protocol.

Table 3. Selected sensors and their expected use.

Intended usage periodMeasurementsSensor

24 hours per dayPhotoplethysmography-based heart rate, step count, and
sleep

Fitbit Charge 2

At work (12-hour shifts)Electrocardiography-based heartbeat, breath, motionOMsignal garments

At work (12-hour shifts)Audio features, Bluetooth-based localizationUnihertz Jelly Pro

Installed at the University of Southern California’s Keck
Hospital, 24 hours per day

Bluetooth-based localization, data hub for environmental
sensors

reelyActive’s Owl-in-One

Installed at the University of Southern California’s Keck
Hospital, 24 hours per day

Light, motion, temperature, and humidityMinew E6, E8, S1

Data Flow
Figure 2 depicts a general flow of information for measurements
obtained through sensors. In the study, all 3 kinds of sensors
(in the left column) were used: environmental sensors,
nonwearable, and wearable. All of the sampled data flowed
through 2 different intermediate types of data hubs: Bluetooth
data hubs connected to Wi-Fi and personal smartphones.
Personal computers were not used to retrieve any data in an
effort to reduce the time spent by participants uploading data
to different servers.

Wireless passive sensors capturing information about light
levels, temperature, and humidity were used, which transmitted
information over Bluetooth. In addition, the participants wore
Jelly Pro phones that were programmed to send Bluetooth pings
with unique identifiers. The Owl-in-Ones received the data.
They were connected to the public Wi-Fi network of the hospital
and transmitted the data over this network to reelyActive’s
servers, from which the data were retrieved in real time, using
a provided API.

Audio data recorded by Jelly Pro phones were directly uploaded
to the research server, using hospital or home Wi-Fi networks.
Wi-Fi was necessary because of the size of the files,
approximately 8 GB per day.

Data transfer took place from Fitbit Charge 2 devices to
participants’ smartphones over Bluetooth, followed by data
upload to Fitbit’s servers through the smartphones’ internet
connections. The research server then retrieved these data using
Fitbit’s API. The same flow was employed by the OMsignal
garments, using OMsignal’s API.

Feedback for participants happened through a custom app (the
TILES app) via push notifications. This app sent surveys to
participants and gave them notifications about sensor usage and
the quality of their previously received data when necessary.

Monitoring and Encouraging Compliance
Minimizing participant frustration in a study can help improve
compliance and overall data quality [14]. This was one of the
top priorities in this case study, and this was achieved by
reducing cognitive burdens on participants, offering monetary
incentives and consistent feedback to participants for compliance

and providing convenient help whenever the participants
encountered difficulties.

A custom smartphone app for the participants was developed,
and it served as the primary resource for all aspects of the study.
This app provided progress and monetary reward tracking,
information about the study and protocol, and direct contact
links for requesting help, and it also distributed questionnaires
and reminders. Participants were rewarded for uploading their
data daily, per the study protocol, which allowed the research
team to monitor compliance and data quality every night. Each
morning, the app provided feedback to the participants by letting
them know whether their previous day’s data had been received
and whether the quality was sufficient. If the data were missing
or quality was poor, the app reminded participants to
double-check their sensors or seek help from the research team.

On-site assistants were always available during work hours to
help participants who encountered difficulties during the study.
Participants were able to drop in for help, or they could request
for assistants to visit them and provide in-person support. These
assistants actively engaged with participants who had recently
uploaded poor-quality data to help make sure their devices were
worn and functioning properly.

Metrics
Table 4 shows the average data compliance rates across different
10-week waves of this study for different sensors. The attrition
rate was under 4% across all participants, and most of the
participants dropped out because of vacation time conflicting
with the study’s participant inclusion criteria. More details about
the study, including information about poststudy surveys on
user experience, are available in the study by Hasan et al [83].

Figure 5 shows a histogram of the number of hours each sensor
was used per day across all participants, where days with no
logged data are not shown. This figure illustrates that on
average, Fitbit was used about twice the amount of time as other
sensors, which was in line with expectations. Moreover,
although both the Jelly Pro and OM garments were designed to
be used by participants at work, there is a noticeable difference
in usage. This is partly explained by participants starting the
recording of their OM garments at home rather than at work. It
can also be explained by the fact that the Jelly Pro recording is
activated only when participants or nearby persons are speaking.
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The Fitbit usage of the subject cohort is in line with other studies
[93], which claim 70% to 90% of compliance using wristband
sensors. Compliance rates for the OM garments and the Jelly
Pro are and were expected to be lower, as these devices required
more attention from participants.

For Fitbit, the mean usage among all days with logged data is
17.8 hours, with an SD of 4.0 hours. For the OM garments, the
mean is 10.6 hours, with an SD of 1.8, and for the Jelly Pro
audio recorder and localizer, the mean is 8.4, with an SD of 2.1
hours.

Table 4. Compliance rates for participant-tracking sensors (n=212) and environment sensors (n=244) in the case study.

Definition of complianceCompliance

ratea, n (%)

Total hoursParticipant
who opted, n
(%)

SensorsSensor type and signals

Participant-tracking

Average fraction of days per participant
with >12 hours of data

152 (73.1)236,725208 (98.1)FitbitCardio, sleep, and steps

Average fraction of work days per partici-
pant with >6 hours of data

125 (60.1)44,240208 (98.1)OMsignalCardio, breath, and motion

Average fraction of work days per partici-
pant with >6 hours of data

131 (61.8)37,065184 (86.8)JellyAudio

Average fraction of work days per partici-
pant with >6 hours of data

131 (61.8)37,065184 (86.8)Jelly+Owl-
in-one

Locality

Environment

Uptime of the sensor network239 (98.0)——MinewsTemperature, humidity, and motion

aCompliance is computed as the presence of data exceeding half of the measurement period per day among the participants who opted in for each sensor.

Figure 5. Histograms of the total number of hours of recorded sensor data per day, across all participants. These plots only show data from days where
data was logged.

J Med Internet Res 2019 | vol. 21 | iss. 8 | e12832 | p. 21http://www.jmir.org/2019/8/e12832/
(page number not for citation purposes)

Booth et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Discussion

Principal Findings
The methods previously presented are evaluated with respect
to the case study outcomes in 2 ways: participant compliance
and the number of emergent unexpected challenges during the
data collection period. More details are provided in the following
subsections, but they can be summed up in the following
manner: (1) participant compliance was satisfactory, yielding
a large average number of hours of data per participant per day;
(2) the unexpected challenges were manageable and had either
very short-lived or isolated impact on the study.

These metrics suggest that the methods and mitigation strategies
presented in this paper as a guide for researchers are helpful for
sensor selection and management during longitudinal human
behavior studies in the wild.

Participant Compliance
Participant compliance rates in the case study fall within an
expected range when compared with observed compliance ratios
in similar study conditions from the study by Merilahti et al
[93]. The work from the study by Lima et al [94] observes that
participant compliance decreases over time in long-term studies,
which is also observed in this study. Overall, a sufficient number
of hours of data per day per participant are collected for
statistical analysis; therefore, the compliance levels are
satisfactory.

Unexpected Challenges During the Case Study
This section recounts the unanticipated challenges encountered
during the study despite efforts to avoid them during study
planning. Unexpected challenges are defined as the events that
were deemed unlikely to happen or that were not considered a
priori, and these negatively affected the project budget,
schedule, participants, or data. Each of the occurrences below
were either isolated incidents, affecting only a narrow piece of
the research project, or were short-lived, as the research staff
was able to address them quickly. The following subsections
present potential strategies for mitigating each of these events
in future studies.

Shipping Dependencies and Customs
Some bundled sensor shipments were delayed because of
product dependencies on secondary companies with limited
shipping capacities. Urgent sensor package shipments from
other countries were sometimes held up by the customs
authority. In future studies, it would be best to be aware of the
shipping capabilities of each product company and any potential
shipping delays when preparing a study schedule.

Installation Time
The research staff underestimated the time required to install
on-site sensors at the hospital. Although floor plans were used
heavily for placement planning, they did not include locations
of the electrical outlets. Several iterations and supplemental
cabling were needed to install sensors across 16 different nursing
units with similar layouts but different electrical circuit
restrictions. Moreover, as most sensors were installed in

patients’ rooms, more trips to the data collection site were
needed than expected to accommodate patient needs. Starting
the installation process early can help researchers identify this
problem in advance and budget time accordingly.

Battery Life
The Jelly Pro devices running the custom TAR app ran out of
power for some of the participants early on during data
collection. The parameters of the TAR app were tuned on the
basis of the data collected during a pilot study from a subset of
the final participant pool, but this subset did not reflect the
worst-case scenario for power consumption. The battery life in
this case depended on how many times vocal audio recording
was triggered by the automatic voice activity detector, and the
hospital staff in highly social environments triggered it more
often than the worst case in the pilot study. The research team
responded by recollecting the Jelly devices and modifying the
parameters overnight. A possible strategy for mitigating this
issue would be to design a pilot study that includes more
participants at the expected extremes of the measurement
spectra, but this may negatively affect the expected average-case
findings. Perhaps a better strategy would be to implement tools
to remotely or more easily update the parameters for all
participants in anticipation of this type of issue.

Sensor Synergy
As the Jelly Pro devices served 2 functions in this study
(collecting vocalized audio and proximity detection), when the
power consumption exceeded expectations, 2 data streams were
affected instead of 1. For sensors serving multiple purposes,
there is greater risk to the data quality when they fail; therefore,
proper stress testing and tooling (as mentioned in the previous
paragraph) should be prepared before the main study.

Sensor Discomfort
Some participants acquired rashes caused by skin friction with
the wrist-worn or undergarment sensors. This occurred because
the sensors these participants used were improperly fitted or
sized, and the discomfort they produced led to a short-term loss
of data while the participants recovered. The pilot study helped
the research staff identify and mitigate some fitting concerns,
but it was not enough to handle all the cases during the main
study. The team reached out to the product companies for these
sensors to get help with proper fitting procedures, and with their
guidance, they were able to find proper fits for each affected
participant. Better approaches for mitigating the risk of data
loss here would be to solicit help with fitting and sizing from
the product companies earlier and then incorporate that wisdom
into the study (as mentioned in the Provider Support section),
as well as consider different options for materials that are in
contact with the skin (eg, Fitbit offers wristbands of different
materials).

Data Pipeline Failure
Months into the main data collection, 2 site-wide disconnections
of the environmental and proximity sensors occurred. These
devices were all connected to the existing hospital Wi-Fi
network, and the research server’s data monitoring processes
identified this event immediately. Within 24 hours, research
staff was dispatched to manually power cycle the devices and
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ensure they reported gathered data upstream. Although these
sensors were stress-tested during the pilot study and determined
to be robust to power and network outages, they did not all
recover automatically in these 2 instances. Having a separate
backup system in place (eg, an extra firmware layer to perform
a soft reboot) may help improve robustness in these unexpected
situations, but the data monitoring processes enabled researchers
to respond quickly in this instance.

Conclusions
This viewpoint highlights and enumerates many of the research
challenges faced during studies conducted in the wild, when
using sensors for unobtrusively capturing human activity and
behavior; presents a diagram illustrating information flow and
an explanation of the roles of different computerized devices
for data collection, transmission, and storage; and provides as

a comprehensive list of criteria that researchers should carefully
consider when conducting their own studies in natural settings,
including explanations of trade-offs among them. The paper
offers an overview of the state of current consumer technology
for unobtrusive sensing in the wild, and it provides a snapshot
of many of the products available for measuring different types
of environmental, physiological, and behavioral data. The
information presented is based on previous work and the team’s
experiences in executing a large-scale 10-week study for
assessing human behavior, well-being, and performance in a
hospital environment using a variety of sensors. The collection
of methods and criteria for sensor selection and management
were evaluated, using this study, with respect to compliance
rates and the impact of unexpected emergent challenges that
arose during data collection.
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