
Original Paper

Development of In-Browser Simulators for Medical Education:
Introduction of a Novel Software Toolchain

Jan Šilar1,2, Ing; David Polák1,2, Bc; Arnošt Mládek1,2, RNDr, PhD; Filip Ježek1, Ing; Theodore W Kurtz3, MD; Stephen

E DiCarlo4, PhD; Jan Živný1, Doc, MUDr, PhD; Jiri Kofranek1,2, Doc, MUDr, CSc
1Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
2Creative Connections s.r.o., Prague, Czech Republic
3Department of Laboratory Medicine, University of California, San Francisco, CA, United States
4Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States

Corresponding Author:
Jiri Kofranek, Doc, MUDr, CSc
Institute of Pathological Physiology
First Faculty of Medicine
Charles University
U Nemocnice 5
Praha 2
Prague, 128-53
Czech Republic
Phone: 420 777686868
Email: kofranek@gmail.com

Abstract

Background: Simulators used in teaching are interactive applications comprising a mathematical model of the system under
study and a graphical user interface (GUI) that allows the user to control the model inputs and visualize the model results in an
intuitive and educational way. Well-designed simulators promote active learning, enhance problem-solving skills, and encourage
collaboration and small group discussion. However, creating simulators for teaching purposes is a challenging process that requires
many contributors including educators, modelers, graphic designers, and programmers. The availability of a toolchain of
user-friendly software tools for building simulators can facilitate this complex task.

Objective: This paper aimed to describe an open-source software toolchain termed Bodylight.js that facilitates the creation of
browser-based client-side simulators for teaching purposes, which are platform independent, do not require any installation, and
can work offline. The toolchain interconnects state-of-the-art modeling tools with current Web technologies and is designed to
be resilient to future changes in the software ecosystem.

Methods: We used several open-source Web technologies, namely, WebAssembly and JavaScript, combined with the power
of the Modelica modeling language and deployed them on the internet with interactive animations built using Adobe Animate.

Results: Models are implemented in the Modelica language using either OpenModelica or Dassault Systèmes Dymola and
exported to a standardized Functional Mock-up Unit (FMU) to ensure future compatibility. The C code from the FMU is further
compiled to WebAssembly using Emscripten. Industry-standard Adobe Animate is used to create interactive animations. A new
tool called Bodylight.js Composer was developed for the toolchain that enables one to create the final simulator by composing
the GUI using animations, plots, and control elements in a drag-and-drop style and binding them to the model variables. The
resulting simulators are stand-alone HyperText Markup Language files including JavaScript and WebAssembly. Several simulators
for physiology education were created using the Bodylight.js toolchain and have been received with general acclaim by teachers
and students alike, thus validating our approach. The Nephron, Circulation, and Pressure-Volume Loop simulators are presented
in this paper. Bodylight.js is licensed under General Public License 3.0 and is free for anyone to use.

Conclusions: Bodylight.js enables us to effectively develop teaching simulators. Armed with this technology, we intend to
focus on the development of new simulators and interactive textbooks for medical education. Bodylight.js usage is not limited
to developing simulators for medical education and can facilitate the development of simulators for teaching complex topics in
a variety of different fields.

J Med Internet Res 2019 | vol. 21 | iss. 7 | e14160 | p. 1https://www.jmir.org/2019/7/e14160
(page number not for citation purposes)

Šilar et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:kofranek@gmail.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

(J Med Internet Res 2019;21(7):e14160) doi: 10.2196/14160

KEYWORDS

education; physiology; computer simulation; modeling; Web browser; Web technologies

Introduction

Background
Educators are tasked to develop innovative and creative
educational materials that supplement and further enhance the
traditional lecture format. This requires developing and
disseminating materials that facilitate active learning, enhance
problem-solving skills, and encourage discussion and interaction
in small group environments. Computer simulations are one
way to fulfill these requirements.

A simulation application, commonly called a simulator,
comprises a mathematical model of the simulated object (a
physiological system in this case) and a graphical user interface
(GUI). The user interface visually represents the simulated
object and its state (as computed by the model) and allows
students to control the model via various inputs and controls.

Simulators are used globally to motivate students, enhance their
understanding of complex topics, and foster critical thinking
and problem-solving skills [1,2]. We have been creating and
using simulators designed in various technologies [3] in our
classrooms for many years with considerable success [4].

Complex simulators can be confusing for students and thus
ineffective without additional explanation. New and effective
teaching tools include interactive textbooks that integrate texts
with simulators (interactive visualizations driven by models).
Students can experiment with the systems and concepts under
study using a simulator and thus verify and deepen their
understanding. The function of the simulator is explained in the
accompanying text and supplemented with suitable scenarios
so that students gain maximal utility from the experience. As
an example, the interactive textbooks on cardiovascular
physiology by Burkhoff and Dickstein are among the first works
in this field available on the internet [5] or as an iPad app [6].

Our goal was to develop a technology for the creation of similar
teaching materials, but in contrast to Burkhoff [5], our
innovations are designed to be platform independent and able
to work offline. This technology is free and thus available for
anyone to create new interactive teaching materials.

Creating books composed of texts and pictures or animations
is technically not difficult. There are several suitable software
tools available for this purpose. The challenging task is to
include model-driven simulators that allow students to change
variables, make predictions, and discover how the system works.

Production of teaching simulators is a demanding and
multifaceted task requiring an interdisciplinary team of experts
from multiple areas including education, graphics, modeling,
and software development.

To begin the process, the educator defines the teaching
objectives of the simulator, determines its main design to meet
the objectives, and proposes scenarios that the simulator should
be able to demonstrate. The educator also defines the demands
on the model by determining the (physiological) processes that
should be modeled, the parameters that are controlled by the
user, and the variables that are displayed in the GUI. The
educator also conceptually designs the GUI so that the system
and its state is presented in a didactic way.

The modeler begins by finding a suitable model in the literature
and often combines several models. If a convenient model
cannot be found, the modeler derives the model from elementary
(eg, physical and physiological) principles. At this point, the
modeler implements the model in a programming or modeling
language so that its calculation may be run on a computer. If
the model is newly developed, it should be verified by
comparing its results with credible reference data [7].

The artist designs the visual appearance of the GUI according
to the educator’s assignment and decides the complete
arrangement, including the colors and fonts. The artist also
prepares all the drawings including interactive animations that
may be linked to respective model variables and thus controlled
by the model.

The software developer composes the GUI using the graphical
components, stitches it with the model, and produces the final
simulator. User controllable elements are bound with the inputs
of the model. Output variables from the model are connected
with the interactive graphical elements, plots, and other
indicators of the GUI. The final application is then deployed
on the target platform that can be a Web page or a classical
native binary, and eventually, it is embedded into a broader
teaching unit.

Finally, the educator tests the simulator in an educational setting
and, based on the feedback from students, may decide to iterate
a new version of the simulator (Figure 1). The specific roles of
the developers, development phases, and several patterns that
are useful through the process are described in CoSMos
methodology in more detail [8].

J Med Internet Res 2019 | vol. 21 | iss. 7 | e14160 | p. 2https://www.jmir.org/2019/7/e14160
(page number not for citation purposes)

Šilar et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.2196/14160
http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 1. Process of simulator development.

Related Work and Approaches
We describe our software engineering efforts toward the
development of a lightweight, easy-to-use,
platform-independent, open, and standardized framework for
creating interactive equation-based simulations for medical
education. In this section, we discuss several existing tools
related to simulator authoring to explain the reasons why we
decided to develop a new toolchain and support our
technological decisions.

Stand-Alone Executables
LINDSAY Virtual Human [9] is a 3D interactive model of
human anatomy and physiology for medical education. The
main focus is on anatomy. This innovative program allows
virtual dissection and traveling through the body visualizations.
The physiology models within LINDSAY Virtual Human are
mainly implemented using the agent-based approach [10].

LINDSAY has been used in several projects [9]. For example,
the anARtonomy application allows the display and manipulation
of anatomical models of several human systems and organs in
augmented reality. Similarly, Zygote 3D Anatomy Atlas &
Dissection Lab is a human anatomy interactive application
available for iPad, iPhone, and iPod touch. It is composed of
more than 4000 anatomical structures and allows the virtual
dissection of any anatomical system. Finally, Prokaryo is an
interactive simulation application of an Escherichiacoli
bacterium for the Mac OS. It presents intracellular structures
and uses an agent-based physiological model.

The agent-based modeling approach [11] is a useful method
applied in many areas where an interaction of multiple
autonomous individuals (agents) is simulated. In biology, this
method is used, for example, in epidemiological modeling [12],
cellular modeling (eg, immune system [13] or tumor growth
[14]), or molecular modeling [15]. We focus mainly on
physiological models of organs or their systems where
traditional modeling based on mathematical relations is
predominant. The models we base our simulators on are usually
published as systems of mathematical equations, and thus, usage
of the equation-based approach is straightforward. Agent-based
and equation-based modeling approaches are compared by
Parunak et al [16].

Pulse Physiology Engine [17] is a comprehensive open-source
human physiology model. It is implemented including a solver
in C++ and it integrates many physiological systems [18].

Teaching simulators may be based on similar comprehensive
physiological models. These models are required for several
applications including virtual patient simulators [19], which
simulate certain diseases, complex pathological states, or the
responses of the body to medications that cannot be described
with a simple model.

Subsystems of complex models usually interact in complicated
feedback loops, which may be difficult to understand. Therefore,
simulators explaining 1 particular system or a body organ are
easier to comprehend when based on a smaller model focused
only on that system [20], that is, because the single system or

J Med Internet Res 2019 | vol. 21 | iss. 7 | e14160 | p. 3https://www.jmir.org/2019/7/e14160
(page number not for citation purposes)

Šilar et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

the organ is disconnected from related subsystems and is not
affected by the feedback loops. This method of disconnecting
the subsystem is called Ceteris paribus (other things equal).
Once the student grasps the behavior of an isolated subsystem,
more complex and integrated models and simulators may be
used to simulate how the subsystems mutually interact.

One important and pioneering tool in simulator production is
National Instruments’ LabVIEW. LabVIEW is designed for
control and optimization in engineering with the ability to easily
connect to external hardware. Although it was not originally
developed for this purpose, it can produce a complete simulator.
It allows the developer to implement the model using the
block-oriented approach [21] and produce the user interface.

LabVIEW produces an installable executable for multiple
operating systems. It has been used for the production of
physiological teaching simulators for a long period of time [22]
and is currently used for that purpose [23,24], for example,
simulators created by AP. Shepherd with LabVIEW are freely
available on the Life Science Teaching Resource Community
Web page [25]. LabVIEW was also used to control a
hardware-based physiological mannequin simulator [26].

In the block-oriented modeling approach used in LabVIEW,
the model comprises functional blocks (addition, multiplication,
integration, and other more specific blocks). These blocks are
connected by their inputs and outputs. The model input values
are propagated through the block network and are modified and
the output values are calculated [27]. The implementation is
visual.

The disadvantage of the block-oriented modeling approach is
that the modeler must know which variables are input and which
are output before the model implementation. The modeler also
has to derive the causality of the model evaluation, that is, the
order in which the variables will be successively evaluated [27].

We find the equation-based modeling approach more convenient
than the block-oriented approach. The reason for this is that
with the equation-based modeling approach, the model
components are implemented without any assumption about
causality. The causality is resolved by the modeling tool
automatically [27] when the model is being translated. Thus,
the model components are reusable in different contexts. This
makes the approach more convenient for complex models. We
strongly prefer tools that offer the advantages of equation-based
modeling. These considerations are explained in the Modelica
section below in more detail.

The GUI is usually composed using predefined components in
LabVIEW according to the tutorial [28] and the LabVIEW
simulators [25]. These components are designated for the
technical domain; thus, the resulting simulator usually has an
industrial look.

New interactive animations may be included as a sequence of
images using the picture ring function as recently described by
Jerome [29]. Index of the image in the sequence may be bound
to a model variable. This approach is convenient to control the
animation with a single variable.

There are some new picture functions available [30] that could
facilitate the complex animation production in recent versions
of LabVIEW. The LabVIEW NXG Web Module [31,32] allows
the programmer to export LabVIEW user interface to a Web
browser using an approach technically similar to our own. Both
these functionalities make LabVIEW possibly even more useful
for teaching simulator production, but we have not found any
physiological simulators using these new functions.

In addition to the block-oriented modeling issues discussed
above, LabVIEW is a commercial product. This limits its use
to individuals who are strongly determined to engage in
modeling and simulator development because it requires an
investment in a software license. In our experience, employment
of commercial products may have the unfavorable effect of
discouraging our occasional collaborators from participating in
the simulator development.

The iPad version of cardiovascular textbooks by Leisman and
Burkhoff [6] is another example of a standalone simulator.

In general, the distribution of a standalone executable may bring
installation issues and discourage its use. The executables are
platform dependent and must be generated or compiled for each
platform separately.

Browser-Based Client-Server
Examples of client-server simulators include JustPhysiology
[33] and the Web version of the cardiovascular textbook series
by Burkhoff et al [5]. Several technical approaches of how to
realize client-server Web-based simulators with special emphasis
on Modelica modeling are discussed by Meyer et al [34].

A platform for interactive Modelica content called Modelica
University was developed by Tiller and Winkler [35]. Simulators
created using this platform are included in the Modelica by
Example Web-based book by Tiller [36]. The simulator GUI is
composed manually in JavaScript.

Žáková and Cech [37] implemented a Web service that runs a
Modelica model and implements the JSON-RPC (JavaScript
object notation remote procedure call) protocol [38] for the
communication with a client application. This application allows
individuals to remotely upload, translate, and simulate a model.
There are no special tools for the client application production.
The client applications using this server back-end may be created
using any suitable technology. Several teaching simulators using
this technology were created [37], mostly for a course of Control
Engineering. We did not find a website of the project nor any
realized simulators; therefore, we assume that the project is
available for the author’s purposes only.

Simulators using the browser-based client-server approach are
already platform independent and do not require any installation.
Unfortunately, usage in a classroom or during a lecture, where
a multitude of students may use the simulator simultaneously,
ramps up the computational and bandwidth demands on the
server. This can be a major disadvantage.

Latency can be an additional disadvantage of this approach. In
fast-paced games, latency greater than approximately 50 ms
starts degrading the user experience [39]. Although it is clear
that teaching simulators are not as sensitive to latency as

J Med Internet Res 2019 | vol. 21 | iss. 7 | e14160 | p. 4https://www.jmir.org/2019/7/e14160
(page number not for citation purposes)

Šilar et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

real-time gaming, low latency contributes to optimal user
experience. For example, when the interaction with the UI
produces instant effects, users can continuously move a slider
to control a model parameter and quickly observe progressive
responses of the system.

The total latency is caused by model evaluation, graphics
rendering, and, in the case of client-server architecture, the
network communication delay. The internet connection must
be fast, and the server must be close enough to achieve low
network latency [40].

To solve the issue with an unstable connection in a client-server
architecture that would cause the animation to stutter, we would
use a caching strategy such as has been done by Brukhoff [5],
which would enable us to produce smoothly running animations.

Another disadvantage of this approach is that these simulators
require continual connection to the server back-end, and thus,
this approach is not suitable for interactive textbooks that need
to work offline.

We consider the client-side approach more suitable because
renting a cloud service providing enough computing power to
serve numerous end users simultaneously and having data
centers distributed around the globe to achieve a reasonable
round-trip time may become expensive for many individuals
and small teams.

On the other hand, the client-server approach is convenient in
situations when the client device has insufficient performance
to evaluate the model in reasonable time, and the server may
deliver the results faster.

Browser-Based Client Side
To counter the drawbacks of stand-alone and client-server
solutions, simulators could be run directly on the client, that is,
the browser. Client-side simulators are platform independent.
Additional advantages include that they do not require any
installation, do not put a heavy load on the server, and can
operate on a slower internet connection or fully offline. A major
difficulty with this approach is the need to rework any existing
platform into a JavaScript codebase. Some pioneering work has
already been completed by Wagner [41].

Specifically, we developed a Bodylight(.Net) simulator
framework [42], built on a Microsoft Silverlight browser plug-in.
In this project, the OpenModelica compiler was extended so
that it could translate the model in C# language. The
OpenModelica runtime and solvers were rewritten manually
into the F# language. A problem with this approach was that
OpenModelica is developing rapidly, and the rewritten runtime
must be updated constantly to stay compatible with the rest of
the system. The Silverlight plug-in was finally discontinued,
and the framework became obsolete and useless.

The openmodelica-javascript project by Tom Short [43] extends
OpenModelica so that it can compile the models and simulation
runtime automatically to JavaScript using Emscripten (we also
use emscripten). Browser-based simulators comprising text
boxes to input parameter values and plots to visualize results
can be created easily. As the simulation runtime code is
generated automatically, it is much less laborious to keep the

system compatible with OpenModelica compared with our
obsolete Bodylight(.NET) solution based on Silverlight. The
disadvantage is that this project relies only on OpenModelica,
and other modeling tools are not supported. Furthermore, more
complex GUI elements including sliders and interactive
animations are not supported (although it is probably possible
to implement them manually). Another concern is that it does
not offer any tool to easily compose the GUI, for example, in
a drag-and-drop fashion. Owing to the changes in
OpenModelica, the openmodelica-javascript project does not
currently work with recent versions of OpenModelica (personal
communication with Tom Short).

Related Software Frameworks and Libraries
In addition to the technologies and the software libraries
described in the Methods section, there are several other
technologies that could possibly be beneficial for use. Here, we
discuss some of them.

BabylonJS [44] is a free JavaScript 3D engine for games and
other 3D visualizations in a Web browser using WebGL. It has
several applications for medical e-learning (electronic learning).
For example, EducaAnatomia3D is a serious game for human
anatomy education [45]. The 3D models may be created in
Blender [46] (a free 3D modeling tool) and exported for use in
BabylonJS [47]. This combination of BabylonJS and Blender
could conveniently extend our toolchain that aims to be based
on free tools.

Tree.js [48] is another JavaScript engine for 3D visualizations
in a Web browser based on WebGL, with applications in medical
e-learning [49]. If we decide to include support for 3D graphics,
for example, to enable more accurate anatomical visualizations,
we could use one of these 2 engines.

Another important game engine and development platform is
Unity [50], developed by the Unity Technologies company. It
allows the innovator to create both 2D and 3D interactive
experiences. Unity is available in several versions, and one of
the versions is free. Another important aspect of Unity is that
it has its own development editor. The main programming
language is C#. Unity allows the innovator to build applications
for many different platforms. One of the target platforms is
WebAssembly [51], which allows the produced simulator to be
run in the browser. It is used for the development of serious
e-learning games [52-56] in many fields including medical
education [57]. We have previously used Unity in combination
with Bodylight(.Net) framework in Surviving Sepsis - a 3D
integrative educational simulator proof-of-concept project (for
the Windows Store platform) [58]. Unity is highly convenient
to develop complex serious games. If we decide to focus on
serious game development, we would consider using Unity,
although it is a commercial product.

Goals for the New Toolchain
There are excellent Web technologies available based on
JavaScript, including many useful frameworks and libraries that
almost equalize the capabilities of browser and native
applications. There are also great modeling tools available. The
problem is that the models are deployed in native programming
languages (C or C++) so that they cannot be run in a browser.

J Med Internet Res 2019 | vol. 21 | iss. 7 | e14160 | p. 5https://www.jmir.org/2019/7/e14160
(page number not for citation purposes)

Šilar et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Our goal was to fill this gap and allow the use of the dedicated
modeling tools and enable running the resulting models in the
browser without a server-side back-end. On the basis of our
previous experience, we have formulated the following
requirements on the tool for simulator production:

• Browser based: to achieve widespread compatibility and
avoid the necessity of an installation process, which could
discourage many users.

• Client side: so that a multitude of users are able to run the
simulator simultaneously without renting expensive
computing hardware from a third-party provider.

• Future proof: the toolchain should be based on standards,
which are unlikely to become obsolete in a reasonable time
frame.

• User friendly: to enable all those participating in the
simulator production to use an appropriate tool for their
task so that the work is efficient and pleasing and the
resulting simulator is satisfactory.

• Equation based: to facilitate model development, their
implementation in an equation-based language, preferably
Modelica (advantages discussed in the Methods section)
should be allowed.

• Open source and freely available: our aim in building the
toolchain is to use relevant open source projects and reap
the fruits of the hard work of the developers and also
contribute back and make the toolkit available for anyone
to use under a copyleft license. Open-source licensing
should also allow the project to grow in the future and
nurture the collaboration between the developers and users.
It is especially important for the modeling tool to be freely
available. We often collaborate on model development with
colleagues from different workplaces, and with a freely
available tool, anyone can participate.

There are many tools available, which are useful in the process
of the simulator production, and they meet several of the
requirements. However, we were unable to find a single tool or
toolchain meeting all our requirements. To address this
limitation, we developed a toolchain that meets all our specific
requirements.

Methods

We created a new toolchain within the confines of the specified
requirements, using the following technologies.

Modelica
Modelica [59-61] is an equation-based, object-oriented, open
standard language for the simulation of complex physical
systems.

In the equation-based (acausal) approach, the model is composed
of equations that state the relationship between the variables

(eg, x2+ y2= 1) as opposed to assignments where 1 output
variable (on the left-hand side) is assigned a value of an

evaluated expression (right-hand side; eg, y:= sqrt (1 – x2)) [62].
The causality of the evaluation (order in which equations are
evaluated and which variables are calculated from which
equation) does not have to be known in the modeling phase. It
is derived automatically by the solution tool later [62]. We prefer
this approach over block-oriented modeling because, in
equation-oriented modeling, the modeler saves the labor of the
causality derivation. Moreover, because the model components
are implemented without any assumption about causality, they
may be easily extended or later reused in various models, where
the causality differs [62]. This is very useful in creating reusable
component libraries. We base our simulators on models that are
usually published as equation systems, and thus, their
implementation in the equation-based approach is
straightforward.

Below, we illustrate the difference between both approaches
with example of harmonic oscillator model described in the
equation m∙x'' = –k∙x – c∙x', where x is position, m represents
mass, k represents spring constant, and c represents damping
constant. Implementation of this model using the block-oriented
approach in Modelica (as Modelica supports the block-oriented
modeling as well) is illustrated in Figure 2. The code of the
same model implemented using the equation-based approach
in Modelica is listed in Figure 3. The equation-based (acausal)
and block-oriented approaches are compared in several reports
[27,62,63].

Owing to its object-oriented nature, Modelica scales very well
for large complex models [62]. Basic model components
(classes) are defined by equations. Components have connectors.
More complex components are composed of other components
that are connected using their connectors in a visual way. These
connections are rendered into additional equations binding the
variables of the connected component. Inheritance is also
supported and enables significant code reuse. Numerous
Modelica libraries of predefined components from many
different domains exist. A Modelica library for physiology
called Physiolibrary was developed in our laboratory [64,65].
The harmonic oscillator model implemented using Modelica
Standard Library is illustrated in Figure 4. The model
appearance intuitively explains the modeled system.

Modelica is supported by many different modeling tools,
primarily because of the fact that it is an open standard. This
is important because it allows the use of multiple tools that
broaden and expand the modeling capabilities. We use either
OpenModelica [66], which is free, or Dassault Systèmes Dymola
[67], which is a more advanced, but a proprietary modeling tool.

Modelica is an open-standard language supported by
open-source tools and, as such, is ideal for model sharing [68].

J Med Internet Res 2019 | vol. 21 | iss. 7 | e14160 | p. 6https://www.jmir.org/2019/7/e14160
(page number not for citation purposes)

Šilar et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 2. Harmonic oscillator model implemented using block-oriented approach in Modelica.

Figure 3. Harmonic oscillator model implemented using equation-based approach in Modelica.

J Med Internet Res 2019 | vol. 21 | iss. 7 | e14160 | p. 7https://www.jmir.org/2019/7/e14160
(page number not for citation purposes)

Šilar et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 4. Harmonic oscillator model implemented using Modelica Standard Library.

Functional Mock-Up Interface
Functional Mock-up Interface (FMI) [69] is a standard for
exchanging and cosimulation of dynamic models between
different independent tools and applications. Both Dymola and
OpenModelica allow for the model to be exported as a
Functional Mock-up Unit (FMU). When exported in the mode
FMI for Co-Simulation, the unit contains a simulation runtime,
which takes care of the model calculation and execution. The
data exchange with the outside world is restricted to discrete
communication points, and between them, the unit is solved
independently by the included solver [70].

The FMU can be exported with source code necessary to
compile binaries, which implement the Co-Simulation standard.
This ability is very advantageous for our purposes as we can
compile the source code into a Web language and have full
access to the FMI for Co-Simulation features in the browser,
which allows us to interact with the model easily.

The FMI standard ensures compatibility with future versions
of both OpenModelica and Dymola. Furthermore, the
Bodylight.js system can be easily adapted to support other
simulation tools implementing the FMI export option.

JavaScript
JavaScript is a multiplatform, object-oriented, interpreted
programming language [71]. It was originally developed by
Brendan Eich in 1995. JavaScript is the most notable
implementation of the ECMAScript standard. It is supported

by all recent important Web browsers [72]. It is widely used
today to enable interaction and dynamic behavior on websites.

JavaScript Libraries
We use the GrapesJS open-source Web Builder framework [73]
as our HyperText Markup Language (HTML) layout engine.
GrapesJS allows us to use the drag-and-drop approach for
designing how the simulators appear. There is a set of built-in
blocks available to build the app, and it allows for easy
customization and production of additional blocks as well.
Available configuration panels enable the programmer to edit
properties and the behavior of the components on the canvas.
The modular design of GrapesJS allows us to hook into its user
interface and extend it as a base of the main user experience.

EaselJS [74] is a component of the CreateJS toolkit. It allows
for easy manipulation of HTML5 Canvas elements and can be
used to create games, art, and other graphical experiences. More
importantly, for our interests, Adobe Animate natively supports
the export of animations to EaselJS. We can either use Adobe
Animate to design the animations or EaselJS directly to create
original animations.

Finally, Plotly.js [75] is a high-level, declarative charting library
implemented in JavaScript. It can be used to display many types
of charts and graphs.

WebAssembly
WebAssembly [76] defines a binary instruction format to be
executed inside a stack-based virtual machine. Its primary use

J Med Internet Res 2019 | vol. 21 | iss. 7 | e14160 | p. 8https://www.jmir.org/2019/7/e14160
(page number not for citation purposes)

Šilar et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

is to be implemented inside Web browsers, aiming to provide
code execution at near-native speeds. The binary format is
designed to be efficient with respect to size and load time,
reducing the time necessary to transmit and load the code.

WebAssembly is a target of compilation for high-level
programming languages such as C or C++, enabling the
compilation of existing and new code written in C/C++ to the
browser platform. The compiler that facilitates this is the
open-source project, Emscripten [77,78], which we use to
compile source code inside the FMU. The compiled code can
be considered obfuscated to the level similar to those with other
binary instruction format representations. The algorithms can
be disassembled into a pseudocode and with great effort and
investment of time can even be reverse engineered [79]. For
most practical purposes, the models can be considered
obfuscated when compiled to WebAssembly.

Results

Overview
The new Bodylight.js toolchain uses the work of several
third-party open-source tools and compilers and other newly
written tools. The Web page [80] of this project includes
documentation and tutorials. In this section, we describe the
complete workflow in more detail and define all the processes
involved and the tools used. We focus particular attention on
the newly developed Bodylight.js Composer, which enables one
to create the final simulator by composing the GUI using

animations, plots, and control elements in a drag-and-drop style
and bind them to the model variables.

Model Processing
The model workflow is schematically illustrated in Figure 5.
The model is written in Modelica, usually inside one of the
popular Modelica IDEs such as the open-source OpenModelica
or the proprietary and well-established Dymola.

The next step is to export the model into an FMU. Dymola
supports the export of source code inside the FMU under their
Source code generation license [81], and OpenModelica seems
to always export the source code inside the FMU. Unfortunately,
OpenModelica, as of the date of publication, only allows the
export of a Euler solver, which is insufficient for many models.

The FMU then needs to be compiled into WebAssembly and
JavaScript. To complete this step, we have prepared a Docker
container, which uses Emscripten to automatically compile
FMUs into Composer compatible files [82].

The container accepts FMUs generated by Dymola with the
source code generation license and FMUs generated from
OpenModelica on a Linux platform. The requirement for Linux
is because of FMUs from OpenModelica being generated with
makefiles, which are not only platform dependent but also
machine dependent. To facilitate easier environment setup for
the OpenModelica part of this workflow, we have prepared
another Docker container, which uses OpenModelica to export
FMUs automatically [83].

Figure 5. Model workflow—Modelica model is exported from OpenModelica or Dymola to a Functional Mock-up Unit (FMU), which is compiled
using emscripten into WebAssembly and JavaScript.

J Med Internet Res 2019 | vol. 21 | iss. 7 | e14160 | p. 9https://www.jmir.org/2019/7/e14160
(page number not for citation purposes)

Šilar et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Animation Processing
We use Adobe Animate [84] in the process of designing the
interactive animations. Adobe Animate supports native export
to HTML5 and JavaScript using the library EaselJS. This
process is fairly painless as all the post processing of the
exported JavaScript code is handled by the composer.
Furthermore, the user can opt to write all EaselJS directly
without the need to use the Adobe product.

Bodylight.js Composer
Bodylight.js Composer is the main development focus of this
project. Composer is a single-page application that can easily
bring together models, animations, and control elements.

The core of Composer is built on React, an established and very
popular JavaScript library. The HTML layout engine is provided
by GrapesJS, around which the rest of the application was
shaped. Composer allows the user to easily design an interactive
HTML simulator. There are also several input and output
widgets available. The range widget handles the control of the
model variables. The chart widget uses plotly.js to display an
output from the model in interactive charts. Toggle widgets and
buttons can control Boolean values, and labels are used to
display values.

The Composer is equipped with actions that are user-generated
snippets of JavaScript code and can be attached to events of
other widgets. For example, one of the prefilled actions is reset
model with a model as a parameter. Users can attach actions to
an onclick event of the button widget and select the appropriate
model to reset. The animate widget is used to import complex
animations created in Adobe Animate. These can contain

continuously playing animations, whose speed and direction
can be controlled by any model variable. Furthermore, it can
control positional animations, where the timeline position is
directly controlled by a model variable.

Users can also save and open shareable project files. The final
export from the Composer is a stand-alone HTML file,
containing the JavaScript and WebAssembly code. Composer
workflow is depicted in Figure 6 and the composer itself in
Figure 7.

We recommend readers to view the video tutorials on the
Bodylight.js Web page [80] to get a better understanding of
how Bodylight.js Composer works. The simple Bouncing Ball
video on the main page demonstrates how to build a simulator
comprised a simple interactive animation, a plot, a slider, and
a reset button. It is also included in the Multimedia Appendix
1. There are 2 additional video tutorials available in the
Documentation section of the Web page. The Simple Project
tutorial [85] demonstrates how to build a simulator composed
of sliders, plots, and a reset button. It is logically sectioned into
different episodes. The steps are also explained below the
tutorial videos. The second tutorial available is the more
elaborate Physiological Application tutorial [86]. This tutorial
demonstrates several advanced features for building a real
simulation application of pressure-volume cardiac loops depicted
in Figure 8. The additional features explained include creating
a parametric plot, adding a start-stop button, controlling model
parameters by events, and applying user functions on model
variables. For example, descriptions on how to round the values
or display string messages and other features are discussed. The
translated models and the Composer project files are included
in both tutorials.

Figure 6. Composer workflow scheme—HTML (Hypertext Markup Language) layout is created, animations are loaded, the model is loaded, model
and animation variables are bound, and control elements and plots are added and bound with model variables.

J Med Internet Res 2019 | vol. 21 | iss. 7 | e14160 | p. 10https://www.jmir.org/2019/7/e14160
(page number not for citation purposes)

Šilar et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 7. The Glomerulus application page inside Bodylight.js Composer.

J Med Internet Res 2019 | vol. 21 | iss. 7 | e14160 | p. 11https://www.jmir.org/2019/7/e14160
(page number not for citation purposes)

Šilar et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 8. Pressure-volume loop simulator is a result of the more advanced tutorial.

Original Simulators
Several simulators were created using Bodylight.js. In this
section, one of the simulators is presented to demonstrate the
capabilities of Bodylight.js. First, some basic physiology is
introduced, and then the simulator is described, and the features
of Bodylight.js are highlighted.

Nephron Simulator
The main purpose of the kidney is to produce urine and control
its composition. The functional unit of the kidney is the nephron.
There are approximately 2 million nephrons in a pair of kidneys.
The nephron is composed of the glomerulus and a system of
tubules. The glomerulus is a network of capillaries. The blood
is filtered across the capillary walls; thus, primary urine (filtrate)
is produced (approximately 180 L/day). The filtrate then flows
through the system of consequent tubules, each having a slightly
different function, where the water and specific solutes are
reabsorbed so that the appropriate amount of urine with the
required composition to maintain homeostasis is produced and
excreted.

These processes are explained visually by the simulator. For
simplicity, the stimulator only focuses on water and sodium.
The simulator is available online [87] and is attached as the
Multimedia Appendix 2. Multimedia Appendix 2 also includes
the additional required libraries for offline use. A more detailed

description of the simulator including its didactic objectives,
models, and implementation is beyond the scope of this paper.
More information is available in our recent work [88].

Glomerulus Screen

Figure 9 depicts the glomerulus screen. Resistances of the
arterioles, mean arterial pressure, and the filtration coefficient
are controlled with the sliders. Changes of these parameters
affect pressures and flows in the system. Pressures are depicted
by the liquid-column gauge and flows through the tubules by
the speed of the propellers and the half-circle indicators (normal
values are marked by a tick). Flow through the vessel walls is
shown with the width of the dashed moving arrows. The
hydrostatic and oncotic pressures are also indicated by the
cylinders below the glomerulus. All the indicators are interactive
and react to changes in values of the model variables.

Note that the numeric values of the flow indicators and the
pressure values in the formulae are also controlled by the model.
There is also a Reset simulation button which sets all the
parameters to default values.

There is no time evolution in the model, and everything is
computed in the initialization phase. The simulator operates in
the so-called One shot regime. This means every time
parameters are changed by the sliders, the model is automatically
recalculated and the GUI is updated accordingly. The same also
holds for the next screen.

J Med Internet Res 2019 | vol. 21 | iss. 7 | e14160 | p. 12https://www.jmir.org/2019/7/e14160
(page number not for citation purposes)

Šilar et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 9. Glomerulus. Pressure is visualized by the liquid-column indicators and flows by the propellers and half-circle indicators. The red arrows
symbolize the blood flow direction, and yellow arrows represent urine flow direction. GFR: glomerular filtration rate.

Complete Nephron Screen

The simulator of the complete nephron is shown in Figure 10.
The glomerular filtration rate and the antidiuretic hormone
(ADH) parameters are controlled with the sliders. Filtrate flow
rate and the sodium mass flow rate are visualized by the
half-circle indicators. Osmolarity (proportional to solute molar

concentration) of the filtrate is determined by the numbers and
the lightness gradient inside the tubules. Water and sodium flow
through the tubule walls are determined by the width of the
blue- and orange-dashed moving arrows. The amount of ADH
and the consequent tubule water permeability is visualized by
the varying width of the blue water channels in the last section
of the tubule.

J Med Internet Res 2019 | vol. 21 | iss. 7 | e14160 | p. 13https://www.jmir.org/2019/7/e14160
(page number not for citation purposes)

Šilar et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 10. Complete nephron. Half-circle gauges show urine flow rate, the lightness gradient inside the tubules visualizes osmolarity, dashed blue and
orange moving arrows visualize water and sodium flow through the tubule walls and the blue channels indicate tubule water permeability. Flow and
osmolarity are plotted in the charts (individual sections in a different color). ADH: antidiuretic hormone; GFR: glomerular filtration rate.

Flow and osmolarity are functions of distance along the nephron
tubules and are plotted on the chart. The individual sections,
whose variables are discretized using an array in the model, are
highlighted in different colors for easier identification. The
legend, the labels, the line color, and the width as well as several
other plot properties are also adjusted.

Blood Circulation
The blood circulation simulator (Figure 11), available online
[89], is another example illustrating the use of Bodylight.js
Composer. The simulator depicts 2 general blood vessel circuits:
(1) a large systemic circuit distributing blood to the body and
(2) a small pulmonary circuit running through the lungs. The
circuits are connected through the heart. The simulator is based

on a basic physical model with the default parameter values
fitted to clinical values to provide meaningful results. Students
can modify various model parameters: (1) the compliance of
systemic and pulmonary arteries and veins (reciprocal to
elasticity), (2) the slope of the Starling curve reflecting cardiac
contractility and cardiac output, (3) the total and nonelastic
(unstressed, V0) blood volume, and (4) the pulmonary and
systemic resistances. The simulator is supplemented with
animated figures; therefore, the system response on external
perturbation can be followed graphically (intuitively) as well
as through the numeric values calculated by the model running
in the background. Note that the human face animation is also
controlled by arterial pressure, with facial changes in expression
and color representing low, normal, or high pressures.

J Med Internet Res 2019 | vol. 21 | iss. 7 | e14160 | p. 14https://www.jmir.org/2019/7/e14160
(page number not for citation purposes)

Šilar et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 11. Blood circulation simulator. Pressures are visualized by liquid-column gauges, blood volumes are depicted by the width of the sections of
blood vessels with black borders, blood flow rates are visualized by the frequency of blinking arrows. Changes in arterial pressure are also reflected by
animated changes in facial expression and color.

Pressure-Volume Loop Simulator
A cardiovascular simulator (Figure 8), available on the Web
page [90], displays the pressure-volume loops of the left
ventricle. It is based on our Modelica implementation [91] of
the model by Burkhoff and Tyberg [92]. The model-controlled
image displays atrial and ventricular filling, as well as valve
opening and closing during the cardiac cycle. Students can pause
the simulation and track the names of the cardiac cycle phases,
atrial and ventricular pressures and volumes, pulmonary artery
and aortic pressures, and the current point on the
pressure-volume loop. The multimedia tutorial on the Web page
[80] describes how to create this simulator from the original
Modelica model. The simulator was mainly developed for the
purpose of the tutorial. If it was intended for education, more
plots and sliders would be required.

Discussion

Principal Results
We created the Bodylight.js toolchain to facilitate the
development of interactive simulators based on Modelica
models. In this report, we focus on describing an important new
component of the toolchain (Bodylight.js Composer), which
enables the creation of browser-based simulators. More

information about the toolchain and its use is available on the
Web page [80].

The goals for the toolchain were addressed. Importantly, both
Bodylight.js Composer and the simulators it produces are
browser based and client side. The system runs in the browser
without the need of any server-side back-end. It is also possible
to distribute a standalone platform-independent HTML file and
run it in the browser without an internet connection. This is
enabled by the use of Web technologies such as JavaScript,
WebAssembly, and HTML. We believe it will be future-proof
(unlikely to become obsolete), as it is mainly based on
open-standard technologies accepted and implemented by every
major software vendor. If any of the applications in the toolchain
are discontinued, it should be easy to replace them with another
tool. We also find it to be user friendly. The models are
implemented in the equation-based Modelica language using
a modeling environment of the modeler’s choice, for example,
OpenModelica or Dymola. Animations are created in a
professional industry standard tool, Adobe Animate. The
Composer uses the drag-and-drop technique to visually compose
the simulator, and it is distributed under the General Public
License 3.0 open source license and is freely available.
Therefore, it is available for anyone to use and implement within
their open-source projects. To our knowledge, no other tool
exists, which meets all our requirements.

J Med Internet Res 2019 | vol. 21 | iss. 7 | e14160 | p. 15https://www.jmir.org/2019/7/e14160
(page number not for citation purposes)

Šilar et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

This approach brings together the domains of modeling, Web
technologies, and graphical design, which supports better
interdisciplinary cooperation of teachers, modelers, software
developers, and graphic designers.

The Bodylight.js Composer is a self-contained client-side
application, and anything submitted does not leave the user’s
device; thus, there are no particular security or privacy issues.

Several simulators were created in Bodylight.js, and it proved
to be a convenient solution fulfilling the needs of the designers.
It would be extremely time consuming to implement these
applications without this versatile toolchain. The new Nephron,
Blood Circulation, and Pressure-Volume Loop simulators were
presented in this paper to demonstrate the capabilities of
Bodylight.js. The Nephron simulator was recently used in
didactic classes of pathological physiology for medical students
and was very well received by both the students and the teacher.

Comparison With Previous Work
The client-side approach has several advantages over the
client-server solutions available today. First, the simulator is
not bound by the computational limitations of the server. The
scaling problem is bypassed by avoiding the necessity of any
server-side computations. Instead, we simply serve a Web page,
which can be hosted on any Web server. Second, the client-side
solution does not require a low-latency connection to the server.
Thus, the client-side approach avoids the need for expensive
Web hosting services.

E-learning and distance learning are becoming increasingly
important in the world and particularly important in developing
countries, where teachers are not easily accessible by many
potential students [93]. Furthermore, because reliable internet
connections may not be available for many people [94] and a
round-trip latency is often high [95] in developing countries,
the client-side solution could be more suitable here.

Limitations
The OpenModelica export to FMU for Co-Simulation is
currently limited to the Euler solver, without the option to
include any of the other solvers available in the OpenModelica
compiler. Euler is the simplest solver available, and its numerical
performance is generally poor compared with more advanced
solvers included in OpenModelica. Thus, the export from
OpenModelica is currently not viable for many models. We are
often forced to export the FMU from the proprietary Dymola,
and this will continue at least until the issue with OpenModelica
FMU export has been resolved.

The Adobe Animate, which is used for creation of the
animations, is a commercial tool. JavaScript code describing
the animations using the EaselJS library may be written by hand
as an alternative.

In situations of a computationally complicated model or multiple
plots or animations in the simulator, the performance drop
becomes noticeable. The slower frame rate or model update rate
does not make the simulator useless, but the user experience is
reduced.

Bodylight.js relies on relatively new Web technologies;
therefore, only browsers after late 2017 are able to run our
simulators. However, because running older browsers is a
security risk, most browser vendors have already switched to
an automatic update system.

Future
We will extend OpenModelica so that it can use advanced
solvers in the FMU for Co-Simulation. We plan to optimize the
model calculation and graphics rendering to achieve higher
frame rates. The composer is modular in design; therefore, we
are planning to add support for new libraries, such as different
charting libraries or even other animation libraries, and external
code contribution is welcomed.

Conclusions
The new toolchain facilitates the production of teaching
simulators not only in physiology but also in other fields where
the behavior of systems can be described by mathematical
equations, including biology, physics, chemistry, engineering,
and economics. Furthermore, the technology is not limited to
education or academia. Anyone with the ability to model their
system, whatever it may be, can use Bodylight.js to visually
explain it to any interested party.

New generations of electronic textbooks combining texts with
images, animations, multimedia, and interactive model-driven
simulators are emerging. These textbooks allow for
experimentation with the simulation of the particular systems
being taught, which contributes to a deeper understanding of
the topics of interest.

We recommend that the teaching materials be developed as
platform independent in-browser applications, which do not
require installation and can operate without an internet
connection. Bodylight.js fulfills all these requirements and is
free and available for anyone to use, which can only help to
increase its impact. We hope that this project will help people
better understand a multitude of diverse systems.

Acknowledgments
This work was supported by the TRIO MPO FV20628, FV30195, PROGRESS Q26 grants, and the Creative Connections company

Conflicts of Interest
Creative Connections aims to start business on consulting, providing animations, models, or complete simulators based on the
Bodylight.js platform.

J Med Internet Res 2019 | vol. 21 | iss. 7 | e14160 | p. 16https://www.jmir.org/2019/7/e14160
(page number not for citation purposes)

Šilar et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Multimedia Appendix 1
Bodylight.js Composer Bouncing Ball tutorial video.
[MP4 File (MP4 Video), 123237 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Nephron simulator.
[ZIP File (Zip Archive), 13740 KB-Multimedia Appendix 2]

References

1. Fischer Q, Sbissa Y, Nhan P, Adjedj J, Picard F, Mignon A, et al. Use of simulator-based teaching to improve medical
students' knowledge and competencies: randomized controlled trial. J Med Internet Res 2018 Dec 24;20(9):e261 [FREE
Full text] [doi: 10.2196/jmir.9634] [Medline: 30249587]

2. Pennaforte T, Moussa A, Loye N, Charlin B, Audétat MC. Exploring a new simulation approach to improve clinical
reasoning teaching and assessment: randomized trial protocol. JMIR Res Protoc 2016 Feb 17;5(1):e26 [FREE Full text]
[doi: 10.2196/resprot.4938] [Medline: 26888076]

3. Kofránek J, Mateják M, Privitzer P. KOFRLAB: Laboratory of Biocybernetics and Computer Aided Learning. 2010.
MEFANET Report 03: Web Simulator Creation Technology URL: http://www.physiome.cz/references/mefanetreport3.pdf
[accessed 2019-04-05]

4. Kofranek J, Matousek S, Rusz J, Stodulka P, Privitzer P, Matejak M, et al. The atlas of physiology and pathophysiology:
web-based multimedia enabled interactive simulations. Comput Methods Programs Biomed 2011 Nov;104(2):143-153.
[doi: 10.1016/j.cmpb.2010.12.007] [Medline: 21232813]

5. Burkhoff D, Dickstein ML. Harvi. URL: http://harvi.online/ [accessed 2019-03-20] [WebCite Cache ID 7717nqxOO]
6. Leisman S, Burkhoff D. Use of an iPad app to simulate pressure-volume loops and cardiovascular physiology. Adv Physiol

Educ 2017 Sep 1;41(3):415-424 [FREE Full text] [doi: 10.1152/advan.00204.2016] [Medline: 28679580]
7. Kurtz TW, DiCarlo SE, Pravenec M, Ježek F, Šilar J, Kofránek J, et al. Testing computer models predicting human responses

to a high-salt diet. Hypertension 2018 Dec;72(6):1407-1416. [doi: 10.1161/HYPERTENSIONAHA.118.11552] [Medline:
30571226]

8. Andrews PS, Polack FA, Sampson AT, Stepney S, Timmis J. University of York. 2010. The CoSMoS Process, Version
0.1: A Process for the Modelling and Simulation of Complex Systems URL: http://www-users.cs.york.ac.uk/~susan/bib/
ss/nonstd/tr453.pdf [accessed 2019-04-06]

9. Jacob C, Hallgrimsson B, Coderre S, Jamniczky H. LINDSAY Virtual Human. URL: http://www.lindsayvirtualhuman.com
[accessed 2019-04-27] [WebCite Cache ID 77wndusCm]

10. Jacob C, von Mammen S, Davison T, Sarraf-Shirazi A, Sarpe V, Esmaeili A, et al. LINDSAY virtual human: multi-scale,
agent-based, and interactive. Adv Intell Model Simul 2012;422:327-349 [FREE Full text] [doi:
10.1007/978-3-642-30154-4-14]

11. Wilensky U, Rand W. An Introduction to Agent-Based Modeling: Modeling Natural, Social, and Engineered Complex
Systems With NetLogo. Cambridge, MA, USA: The MIT Press; 2015.

12. Marshall BD, Galea S. Formalizing the role of agent-based modeling in causal inference and epidemiology. Am J Epidemiol
2015 Jan 15;181(2):92-99 [FREE Full text] [doi: 10.1093/aje/kwu274] [Medline: 25480821]

13. Fachada N, Lopes V, Rosa A. Agent-Based Modelling and Simulation of the Immune System: A Review. In: Proceedings
of the 13th Portugese Conference on Artificial Intelligence. 2007 Presented at: EPIA'07; December 3-7, 2007; Guimaraes,
Portugal.

14. Zhang L, Athale CA, Deisboeck TS. Development of a three-dimensional multiscale agent-based tumor model: simulating
gene-protein interaction profiles, cell phenotypes and multicellular patterns in brain cancer. J Theor Biol 2007 Jan
7;244(1):96-107. [doi: 10.1016/j.jtbi.2006.06.034] [Medline: 16949103]

15. Azimi M, Bulat E, Weis K, Mofrad MR. An agent-based model for mRNA export through the nuclear pore complex. Mol
Biol Cell 2014 Nov 5;25(22):3643-3653 [FREE Full text] [doi: 10.1091/mbc.E14-06-1065] [Medline: 25253717]

16. van Dyke PH, Savit R, Riolo RL. Agent-Based Modeling vs Equation-Based Modeling: A Case Study and Users’ Guide.
In: Proceedings of the First International Workshop on Multi-Agent Systems and Agent-Based Simulation. 1998 Presented
at: MABS'98; July 4-6, 1998; Paris, France p. 10-25. [doi: 10.1007/10692956_2]

17. Pulse: Physiology Engine. URL: http://physiology.kitware.com [accessed 2019-04-27] [WebCite Cache ID 77wyMyEpf]
18. Bray A, Webb JB, Enquobahrie A, Vicory J, Heneghan J, Hubal R, et al. Pulse physiology engine: an open-source software

platform for computational modeling of human medical simulation. SN Compr Clin Med 2019 Mar 27;1(5):362-377 [FREE
Full text] [doi: 10.1007/s42399-019-00053-w]

19. Kofránek J, Kulhánek T, Mateják M, Ježek F, Šilar J. Integrative Physiology in Modelica. In: Proceedings of the 12th
International Modelica Conference. 2017 Presented at: Modelica'17; May 15-17, 2017; Prague, Czech Republic p. 15-17.
[doi: 10.3384/ecp17132589]

J Med Internet Res 2019 | vol. 21 | iss. 7 | e14160 | p. 17https://www.jmir.org/2019/7/e14160
(page number not for citation purposes)

Šilar et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v21i7e14160_app1.mp4&filename=a73e5a535497ecce9548b62717653df3.mp4
https://jmir.org/api/download?alt_name=jmir_v21i7e14160_app1.mp4&filename=a73e5a535497ecce9548b62717653df3.mp4
https://jmir.org/api/download?alt_name=jmir_v21i7e14160_app2.zip&filename=4b6ba47e588ffe146da935574023f1bb.zip
https://jmir.org/api/download?alt_name=jmir_v21i7e14160_app2.zip&filename=4b6ba47e588ffe146da935574023f1bb.zip
http://www.jmir.org/2018/9/e261/
http://www.jmir.org/2018/9/e261/
http://dx.doi.org/10.2196/jmir.9634
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30249587&dopt=Abstract
http://www.researchprotocols.org/2016/1/e26/
http://dx.doi.org/10.2196/resprot.4938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26888076&dopt=Abstract
http://www.physiome.cz/references/mefanetreport3.pdf
http://dx.doi.org/10.1016/j.cmpb.2010.12.007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21232813&dopt=Abstract
http://harvi.online/
http://www.webcitation.org/

 7717nqxOO
http://www.physiology.org/doi/full/10.1152/advan.00204.2016?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
http://dx.doi.org/10.1152/advan.00204.2016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28679580&dopt=Abstract
http://dx.doi.org/10.1161/HYPERTENSIONAHA.118.11552
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30571226&dopt=Abstract
http://www-users.cs.york.ac.uk/~susan/bib/ss/nonstd/tr453.pdf
http://www-users.cs.york.ac.uk/~susan/bib/ss/nonstd/tr453.pdf
http://www.lindsayvirtualhuman.com
http://www.webcitation.org/

 77wndusCm
http://paperpile.com/b/bfl1h6/otik
http://dx.doi.org/10.1007/978-3-642-30154-4-14
http://europepmc.org/abstract/MED/25480821
http://dx.doi.org/10.1093/aje/kwu274
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25480821&dopt=Abstract
http://dx.doi.org/10.1016/j.jtbi.2006.06.034
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16949103&dopt=Abstract
http://europepmc.org/abstract/MED/25253717
http://dx.doi.org/10.1091/mbc.E14-06-1065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25253717&dopt=Abstract
http://dx.doi.org/10.1007/10692956_2
http://physiology.kitware.com
http://www.webcitation.org/

 77wyMyEpf
http://paperpile.com/b/bfl1h6/NMbE
http://paperpile.com/b/bfl1h6/NMbE
http://dx.doi.org/10.1007/s42399-019-00053-w
http://dx.doi.org/10.3384/ecp17132589
http://www.w3.org/Style/XSL
http://www.renderx.com/

20. Kofránek J, Vu LD, Snáselová H, Kerekes R, Velan T. GOLEM--multimedia simulator for medical education. Stud Health
Technol Inform 2001;84(Pt 2):1042-1046. [doi: 10.3233/978-1-60750-928-8-1042] [Medline: 11604890]

21. Lipovszki G, Aradi P. Simulating complex systems and processes in LabVIEW. J Math Sci 2006 Feb;132(5):629-636
[FREE Full text] [doi: 10.1007/s10958-006-0007-z]

22. Kiel JW, Shepherd AP. A graphic computer language for physiology simulations. Comput Life Sci Educ 1988;5(7):49-56
[FREE Full text]

23. Lin SL, Guo NR, Chiu CC. Modeling and simulation of respiratory control with LabVIEW. J Med Biol Eng 2012;32(1):51-60
[FREE Full text] [doi: 10.5405/jmbe.829]

24. Cole RT, Lucas CL, Cascio WE, Johnson TA. A LabVIEW model incorporating an open-loop arterial impedance and a
closed-loop circulatory system. Ann Biomed Eng 2005 Nov;33(11):1555-1573. [doi: 10.1007/s10439-005-7785-1] [Medline:
16341923]

25. Life Science Teaching Resources Community. URL: https://www.lifescitrc.org [accessed 2019-03-20]
26. Samosky JT, Nelson DA, Wang B, Bregman R, Hosmer A, Mikulis B, et al. BodyExplorerAR: Enhancing a Mannequin

Medical Simulator With Sensing and Projective Augmented Reality for Exploring Dynamic Anatomy and Physiology. In:
Proceedings of the Sixth International Conference on Tangible, Embedded and Embodied Interaction. 2012 Presented at:
TEI'12; February 19-22, 2012; Kingston, Ontario, Canada p. 263-270. [doi: 10.1145/2148131.2148187]

27. Kofránek J, Mateják M, Privitzer P, Tribula M. Laboratory of Biocybernetics and Computer Aided Learning. 2008. Causal
or Acausal Modelling: Labour for Humans or Labour for Machines URL: http://www.physiome.cz/references/tcp2008.pdf

28. National Instruments. 2018. Tutorial: User Interface URL: http://www.ni.com/tutorial/7568/en/ [accessed 2019-04-22]
[WebCite Cache ID 77p13K4Nn]

29. Jerome J. Virtual Instrumentation Using LabVIEW. New Delhi, India: Phil Learning Pvt Ltd; 2010.
30. National Instruments. 2018. Using the 2D Picture Control URL: http://zone.ni.com/reference/en-XX/help/371361R-01/

lvconcepts/using_the_picture_indicator [accessed 2019-05-04] [WebCite Cache ID 787dph3MN]
31. National Instruments. What Is the LabVIEW NXG Web Module? URL: http://www.ni.com/cs-cz/shop/

electronic-test-instrumentation/add-ons-for-electronic-test-and-instrumentation/what-is-labview-nxg-web-module.html
[accessed 2019-05-04] [WebCite Cache ID 787eTRcZH]

32. WebVIs: Developing Your Web-Based User Interface. URL: http://www.webvi.io [accessed 2019-05-11]
33. Just Physiology. URL: http://justphysiology.com [accessed 2019-03-20]
34. Meyer zu Eissen S, Stein B. Realization of web-based simulation services. Comput Ind 2006 Apr;57(3):261-271 [FREE

Full text] [doi: 10.1016/j.compind.2005.12.007]
35. Tiller MM, Winkler D. modelica.university: A Platform for Interactive Modelica Content. In: Proceedings of the 12th

International Modelica Conference. 2017 Presented at: Modelica'17; May 15-17, 2017; Prague, Czech Republic. [doi:
10.3384/ecp17132725]

36. Tiller MM. Modelica University. 2019. Modelica by Example URL: http://mbe.modelica.university [accessed 2019-04-05]
37. Žáková K, Cech M. Design of Control Education Interactive Examples via Web Service for OpenModelica. In: Proceedings

of the 13th APCA International Conference on Automatic Control and Soft Computing. 2018 Presented at: IEEE'18; June
4-6, 2018; Ponta Delgada, Portugal p. 242-246. [doi: 10.1109/CONTROLO.2018.8514288]

38. JSON-RPC Working Group. JSON-RPC. 2004. JSON-RPC 2.0 Specification URL: http://www.jsonrpc.org/specification
[accessed 2019-04-29] [WebCite Cache ID 77zeitMDR]

39. Raaen K, Grønli TM. Latency Thresholds for Usability in Games: A Survey. In: Proceedings of the Norwegian Informatics
Conference. 2014 Presented at: NIK'14; November 17-19, 2014; Bergen, Norway.

40. McManus JP, Day TG, Mailloux ZJ. Digital WPI: Worcester Polytechnic Institute. 2019. The Effects of Latency, Bandwidth,
and Packet Loss on Cloud-Based Gaming Services URL: https://digitalcommons.wpi.edu/cgi/viewcontent.
cgi?article=6326&context=iqp-all [accessed 2019-05-06]

41. Wagner G. Sim4edu.com: Web-Based Simulation for Education. In: Proceedings of the Winter Simulation Conference.
2017 Presented at: IEEE'17; December 3-6, 2017; Las Vegas, Nevada, USA p. 4240-4251. [doi: 10.1109/wsc.2017.8248130]

42. Silar J, Kofranek J. Physiological model creation and sharing. Eur J Biomed Inform 2011;7(1):55-58 [FREE Full text] [doi:
10.24105/ejbi.2011.07.1.10]

43. Short T. GitHub Inc. 2019. OpenModelica-Javascript URL: http://github.com/tshort/openmodelica-javascript [accessed
2019-04-28] [WebCite Cache ID 77yEwGvel]

44. BabylonJS. URL: http://www.babylonjs.com [accessed 2019-05-05] [WebCite Cache ID 7891VBQgM]
45. Batista AV, Lemos RR, Rudolph CM, Bueno BS, Fiuza PJ, Conceicao KR, et al. Design of A Web3D Serious Game for

Human Anatomy Education. In: Handbook of Research on Immersive Digital Games in Educational Environments.
Pennsylvania, USA: IGI Global; 2017:286-611.

46. Blender. URL: http://www.blender.org [accessed 2019-05-05] [WebCite Cache ID 7894dRF6M]
47. BabylonJS Documentation. URL: http://doc.babylonjs.com/resources/blender [accessed 2019-05-05] [WebCite Cache ID

7893Xwifk]
48. ThreeJS. URL: http://threejs.org [accessed 2019-05-05] [WebCite Cache ID 789AqFViY]

J Med Internet Res 2019 | vol. 21 | iss. 7 | e14160 | p. 18https://www.jmir.org/2019/7/e14160
(page number not for citation purposes)

Šilar et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.3233/978-1-60750-928-8-1042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11604890&dopt=Abstract
http://paperpile.com/b/bfl1h6/mydxQ
http://dx.doi.org/10.1007/s10958-006-0007-z
https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=J.W.+Kiel+and+A.+P.+Shepherd%2C+%22A+graphic+computer+language+for+physiology+simulations%2C%22+Computers+in+Life+Science+Education+5%2C+No.+7%2C+49-56+%28July+1988%29.&btnG=
http://paperpile.com/b/bfl1h6/6Nth
http://dx.doi.org/10.5405/jmbe.829
http://dx.doi.org/10.1007/s10439-005-7785-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16341923&dopt=Abstract
https://www.lifescitrc.org
http://dx.doi.org/10.1145/2148131.2148187
http://www.physiome.cz/references/tcp2008.pdf
http://www.ni.com/tutorial/7568/en/
http://www.webcitation.org/

 77p13K4Nn
http://zone.ni.com/reference/en-XX/help/371361R-01/lvconcepts/using_the_picture_indicator
http://zone.ni.com/reference/en-XX/help/371361R-01/lvconcepts/using_the_picture_indicator
http://www.webcitation.org/

 787dph3MN
http://www.ni.com/cs-cz/shop/electronic-test-instrumentation/add-ons-for-electronic-test-and-instrumentation/what-is-labview-nxg-web-module.html
http://www.ni.com/cs-cz/shop/electronic-test-instrumentation/add-ons-for-electronic-test-and-instrumentation/what-is-labview-nxg-web-module.html
http://www.webcitation.org/

 787eTRcZH
http://www.webvi.io
http://justphysiology.com
http://paperpile.com/b/bfl1h6/7MDe
http://paperpile.com/b/bfl1h6/7MDe
http://dx.doi.org/10.1016/j.compind.2005.12.007
http://dx.doi.org/10.3384/ecp17132725
http://mbe.modelica.university
http://dx.doi.org/10.1109/CONTROLO.2018.8514288
http://www.jsonrpc.org/specification
http://www.webcitation.org/

 77zeitMDR
https://digitalcommons.wpi.edu/cgi/viewcontent.cgi?article=6326&context=iqp-all
https://digitalcommons.wpi.edu/cgi/viewcontent.cgi?article=6326&context=iqp-all
http://dx.doi.org/10.1109/wsc.2017.8248130
http://paperpile.com/b/bfl1h6/QEwnO
http://dx.doi.org/10.24105/ejbi.2011.07.1.10
http://github.com/tshort/openmodelica-javascript
http://www.webcitation.org/

 77yEwGvel
http://www.babylonjs.com
http://www.webcitation.org/

 7891VBQgM
http://www.blender.org
http://www.webcitation.org/

 7894dRF6M
http://doc.babylonjs.com/resources/blender
http://www.webcitation.org/

 7893Xwifk
http://www.webcitation.org/

 7893Xwifk
http://threejs.org
http://www.webcitation.org/

 789AqFViY
http://www.w3.org/Style/XSL
http://www.renderx.com/

49. Kasinathan V, Mustapha A, Nur FA, Zainal AA. Three-dimensional e-learning application for anatomy and physiology of
brain. Int J Integr Eng 2018 Nov 1;10(6):144-148 [FREE Full text] [doi: 10.30880/ijie.2018.10.06.020]

50. Unity. URL: https://unity.com/ [accessed 2019-05-04]
51. Trivellato M. Unity. 2018. Unity Blog: WebAssembly is Here! URL: https://blogs.unity3d.com/2018/08/15/

webassembly-is-here/ [accessed 2019-05-04] [WebCite Cache ID 787knmtIA]
52. Horachek D. Creating eLearning Games With Unity. Birmingham, England: Packt Publishing; 2014.
53. Zarzuela MM, Pernas FJ, Martínez LB, Ortega DG, Rodríguez MA. Mobile serious game using augmented reality for

supporting children's learning about animals. Procedia Comput Sci 2013;25:375-381 [FREE Full text] [doi:
10.1016/j.procs.2013.11.046]

54. Coelho A, Kato E, Xavier J, Gonçalves R. Serious Game for Introductory Programming. In: Proceedings of the Second
International Conference on Serious Games Development and Applications. 2011 Presented at: SGDA'11; September 19-20,
2011; Lisbon, Portugal p. 61-71. [doi: 10.1007/978-3-642-23834-5_6]

55. George AK, McLain ML, Bijlani K, Jayakrishnan R, Bhavani RR. A Novel Approach for Training Crane Operators: Serious
Game on Crane Simulator. In: Proceedings of the Eighth International Conference on Technology for Education. 2016
Presented at: IEEE'16; December 2-4, 2016; Mumbai, India p. 116-119. [doi: 10.1109/T4E.2016.030]

56. Boada I, Rodriguez-Benitez A, Garcia-Gonzalez JM, Olivet J, Carreras V, Sbert M. Using a serious game to complement
CPR instruction in a nurse faculty. Comput Methods Programs Biomed 2015 Nov;122(2):282-291. [doi:
10.1016/j.cmpb.2015.08.006] [Medline: 26319184]

57. Gaudina M, Zappi V, Bellanti E, Vercelli G. eLaparo4D: A Step Towards a Physical Training Space for Virtual Video
Laparoscopic Surgery. In: Proceedings of the Seventh International Conference on Complex, Intelligent, and Software
Intensive Systems. 2013 Presented at: IEEE'13; July 3-5, 2013; Taichung, Taiwan p. 611-616. [doi: 10.1109/CISIS.2013.110]

58. Jezek F, Tribula M, Kulhanek T, Matejak M, Privitzer P, Silar J, et al. Surviving Sepsis - a 3D Integrative Educational
Simulator Internet. In: Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society. 2015 Presented at: IEEE'15; August 25-29, 2015; Milan, Italy. [doi: 10.1109/embc.2015.7319191]

59. Mattsson SE, Elmqvist H, Otter M. Physical system modeling with Modelica. Control Engineering Practice 1998
Apr;6(4):501-510 [FREE Full text] [doi: 10.1016/S0967-0661(98)00047-1]

60. Tiller M. Introduction to Physical Modeling with Modelica Internet. Switzerland: Springer Science & Business Media;
2012.

61. Fritzson P. Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: A Cyber-Physical Approach.
Hoboken, New Jersey: John Wiley & Sons; 2015.

62. Zimmer D. Equation-based modeling with Modelica – principles and future challenges. Simul Notes Eur 2016 Jun;26(2):67-74
[FREE Full text] [doi: 10.11128/sne.26.on.10332]

63. Fritzson P, Engelson V. Modelica - A Unified Object-Oriented Language for System Modeling and Simulation Internet.
In: Proceedings of the 12th European Conference on Object-Oriented Programming. 1998 Presented at: ECOOP'98; July
20-24, 1998; Brussels, Belgium p. 67-90. [doi: 10.1007/bfb0054087]

64. Mateják M, Kulhánek T, Šilar J, Privitzer P, Ježek F, Kofránek J. Physiolibrary - Modelica Library for Physiology. In:
Proceedings of the 10th International Modelica Conference. 2014 Presented at: Modelica'14; March 10-12, 2014; Lund,
Sweden p. 499-505. [doi: 10.3384/ecp14096499]

65. Mateják M. Physiolibrary. URL: http://www.physiolibrary.org [accessed 2019-03-20] [WebCite Cache ID 7712ubnjP]
66. OpenModelica. URL: http://www.openmodelica.org [accessed 2019-03-20] [WebCite Cache ID 771CJRYX6]
67. Dassault Systèmes. DYMOLA Systems Engineering URL: https://www.3ds.com/products-services/catia/products/dymola

[accessed 2019-03-20]
68. Kofránek J, Ježek F, Mateják M. Modelica Language - A Promising Tool for Publishing and Sharing Biomedical Models.

In: Proceedings of the 1st American Modelica Conference. 2018 Presented at: Modelica'18; October 9-10, 2018; Cambridge,
Massachusetts p. 196-205. [doi: 10.3384/ECP18154196]

69. Blochwitz T, Otter M, Akesson J, Arnold M, Clauss C, Elmqvist H, et al. Functional Mockup Interface 2.0: The Standard
for Tool Independent Exchange of Simulation Models. In: Proceedings of the 9th International Modelica Conference. 2012
Presented at: Modelica'12; September 3-5, 2012; Munich, Germany p. 173-184. [doi: 10.3384/ecp12076173]

70. Modelica. 2014. Functional Mock-Up Interface for Model Exchange and Co-Simulation URL: https://svn.modelica.org/
fmi/branches/public/specifications/v2.0/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf [accessed 2019-04-27]

71. Flanagan D. JavaScript: The Definitive Guide. Sebastopol , California: O'Reilly Media; 2006.
72. W3Schools. JavaScript Versions URL: https://www.w3schools.com/js/js_versions.asp [accessed 2019-05-06] [WebCite

Cache ID 78AEPp3yy]
73. Arseniev A. GrapesJS. URL: https://grapesjs.com/ [accessed 2019-03-20] [WebCite Cache ID 771F7iFCt]
74. Skinner G. CreateJS. URL: https://createjs.com/easeljs [accessed 2019-03-20]
75. Plotly: Graphing Libraries. URL: https://plot.ly/javascript [accessed 2019-03-20]
76. Zakai A. WebAssembly. URL: https://webassembly.org/ [accessed 2019-03-20] [WebCite Cache ID 771Igpmqk]
77. Zakai A. Emscripten. URL: https://emscripten.org/ [accessed 2019-03-20] [WebCite Cache ID 771J7pAPY]

J Med Internet Res 2019 | vol. 21 | iss. 7 | e14160 | p. 19https://www.jmir.org/2019/7/e14160
(page number not for citation purposes)

Šilar et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://penerbit.uthm.edu.my/ojs/index.php/ijie/article/view/2782
http://dx.doi.org/10.30880/ijie.2018.10.06.020
https://unity.com/
https://blogs.unity3d.com/2018/08/15/webassembly-is-here/
https://blogs.unity3d.com/2018/08/15/webassembly-is-here/
http://www.webcitation.org/

 787knmtIA
http://paperpile.com/b/bfl1h6/eFvx
http://dx.doi.org/10.1016/j.procs.2013.11.046
http://dx.doi.org/10.1007/978-3-642-23834-5_6
http://dx.doi.org/10.1109/T4E.2016.030
http://dx.doi.org/10.1016/j.cmpb.2015.08.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26319184&dopt=Abstract
http://dx.doi.org/10.1109/CISIS.2013.110
http://dx.doi.org/10.1109/embc.2015.7319191
http://paperpile.com/b/bfl1h6/zsZ4
http://dx.doi.org/10.1016/S0967-0661(98)00047-1
http://paperpile.com/b/bfl1h6/AJGq
http://dx.doi.org/10.11128/sne.26.on.10332
http://dx.doi.org/10.1007/bfb0054087
http://dx.doi.org/10.3384/ecp14096499
http://www.physiolibrary.org
http://www.webcitation.org/

 7712ubnjP
http://www.openmodelica.org
http://www.webcitation.org/

 771CJRYX6
https://www.3ds.com/products-services/catia/products/dymola
http://dx.doi.org/10.3384/ECP18154196
http://dx.doi.org/10.3384/ecp12076173
https://svn.modelica.org/fmi/branches/public/specifications/v2.0/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/v2.0/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf
https://www.w3schools.com/js/js_versions.asp
http://www.webcitation.org/

 78AEPp3yy
http://www.webcitation.org/

 78AEPp3yy
https://grapesjs.com/
http://www.webcitation.org/

 771F7iFCt
https://createjs.com/easeljs
https://plot.ly/javascript
https://webassembly.org/
http://www.webcitation.org/

 771Igpmqk
https://emscripten.org/
http://www.webcitation.org/

 771J7pAPY
http://www.w3.org/Style/XSL
http://www.renderx.com/

78. Zakai A. Emscripten: An LLVM-to-JavaScript Compiler. In: Proceedings of the ACM International Conference Companion
on Object Oriented Programming Systems Languages and Applications Companion. 2011 Presented at: OOPSLA'11;
October 22-27, 2011; Portland, Oregon, USA p. 301-312. [doi: 10.1145/2048147.2048224]

79. Falliere N. PNF Software. 2018. Reverse Engineering WebAssembly URL: https://www.pnfsoftware.com/reversing-wasm.
pdf [accessed 2019-03-20] [WebCite Cache ID 78IQ6oyZX]

80. Polak D, Šilar J, Ježek F, Mladek A, Kofranek J. Bodylight.js. URL: https://bodylight.physiome.cz/
81. Dassault Systèmes. Code and Model Export URL: https://www.3ds.com/products-services/catia/products/dymola/

code-and-model-export/ [accessed 2019-03-20] [WebCite Cache ID 76qcZJQPh]
82. Polák D. GitHub. Bodylight.js-FMU-Compiler URL: https://github.com/creative-connections/Bodylight.js-FMU-Compiler

[accessed 2019-03-20] [WebCite Cache ID 771Ltg3vq]
83. Polák D. GitHub. Bodylight.js-OM-Compiler URL: https://github.com/creative-connections/Bodylight.js-OM-Compiler

[accessed 2019-03-20] [WebCite Cache ID 771MVY2y9]
84. Adobe. [A New Era of Animation] URL: https://www.adobe.com/cz/products/animate.html [accessed 2019-05-04] [WebCite

Cache ID 771N3J5LR]
85. Polák D, Šilar J. BodylightJS. Creating a Simple Project URL: https://bodylight.physiome.cz/docs/simple_project/

1_creating_a_simple_project [accessed 2019-04-27]
86. Polák D, Šilar J, Kofránek J. BodylightJS. Pressure volume cardiac simulator URL: https://bodylight.physiome.cz/docs/

pvloops/1_pressure_volume_cardiac_simulator [accessed 2019-04-26]
87. Šilar J, Mladek A, David A, Živny J, Kofranek J. Nephron simulator URL: http://physiome.cz/apps/Nephron/
88. Šilar J, Ježek F, Mládek A, Polák D, Kofránek J. Model Visualization for e-Learning, Kidney Simulator for Medical

Students. In: Proceedings of the 13th International Modelica Conference. 2019 Presented at: Modelica'19; March 4–6,
2019; Regensburg, Germany URL: http://paperpile.com/b/bfl1h6/jNZY [doi: 10.3384/ecp19157393]

89. David P. Laboratory of Biocybernetics and Computer Learning Support. Simple circulation simulator URL: http://physiome.
cz/apps/SimpleCirculation/

90. Kofranek J, David P. Laboratory of Biocybernetics and Computer Learning Support. Cardiac pressure-volume loops
simulator URL: https://physiome.cz/apps/pvloops/

91. Ježek F, Kulhánek T, Kalecký K, Kofránek J. Lumped models of the cardiovascular system of various complexity. Biocybern
Biomed Eng 2017;37(4):666-678 [FREE Full text] [doi: 10.1016/j.bbe.2017.08.001]

92. Burkhoff D, Tyberg JV. Why does pulmonary venous pressure rise after onset of LV dysfunction: a theoretical analysis.
Am J Physiol 1993 Nov;265(5 Pt 2):H1819-H1828. [doi: 10.1152/ajpheart.1993.265.5.H1819] [Medline: 8238596]

93. Sife AS, Lwoga ET, Sanga C. New technologies for teaching and learning: challenges for higher learning institutions in
developing countries. Int J Educ Dev 2007;3(2):57-67 [FREE Full text]

94. Geissbuhler A, Bagayoko CO, Ly O. The RAFT network: 5 years of distance continuing medical education and
tele-consultations over the internet in French-speaking Africa. Int J Med Inform 2007;76(5-6):351-356. [doi:
10.1016/j.ijmedinf.2007.01.012] [Medline: 17331799]

95. Chavula J, Feamster N, Bagula A, Suleman H. Quantifying the effects of circuitous routes on the latency of intra-Africa
internet traffic: a study of research and education networks. In: Nungu A, Pherson B, Sansa-Otim J, editors. e-Infrastructure
and e-Services for Developing Countries. Berlin: Springer-Verlag; 2015:64-73.

Abbreviations
ADH: antidiuretic hormone
e-learning: electronic learning
FMI: Functional Mock-up Interface
FMU: Functional Mock-up Unit
GUI: graphical user interface
HTML: HyperText Markup Language

Edited by G Eysenbach; submitted 27.03.19; peer-reviewed by M Tiller, S von Mammen; comments to author 18.04.19; revised version
received 01.06.19; accepted 18.06.19; published 03.07.19

Please cite as:
Šilar J, Polák D, Mládek A, Ježek F, Kurtz TW, DiCarlo SE, Živný J, Kofranek J
Development of In-Browser Simulators for Medical Education: Introduction of a Novel Software Toolchain
J Med Internet Res 2019;21(7):e14160
URL: https://www.jmir.org/2019/7/e14160
doi: 10.2196/14160
PMID: 31271154

J Med Internet Res 2019 | vol. 21 | iss. 7 | e14160 | p. 20https://www.jmir.org/2019/7/e14160
(page number not for citation purposes)

Šilar et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1145/2048147.2048224
https://www.pnfsoftware.com/reversing-wasm.pdf
https://www.pnfsoftware.com/reversing-wasm.pdf
http://www.webcitation.org/

 78IQ6oyZX
https://bodylight.physiome.cz/
https://www.3ds.com/products-services/catia/products/dymola/code-and-model-export/
https://www.3ds.com/products-services/catia/products/dymola/code-and-model-export/
http://www.webcitation.org/

 76qcZJQPh
https://github.com/creative-connections/Bodylight.js-FMU-Compiler
http://www.webcitation.org/

 771Ltg3vq
https://github.com/creative-connections/Bodylight.js-OM-Compiler
http://www.webcitation.org/

 771MVY2y9
https://www.adobe.com/cz/products/animate.html
http://www.webcitation.org/

 771N3J5LR
http://www.webcitation.org/

 771N3J5LR
https://bodylight.physiome.cz/docs/simple_project/1_creating_a_simple_project
https://bodylight.physiome.cz/docs/simple_project/1_creating_a_simple_project
https://bodylight.physiome.cz/docs/pvloops/1_pressure_volume_cardiac_simulator
https://bodylight.physiome.cz/docs/pvloops/1_pressure_volume_cardiac_simulator
http://physiome.cz/apps/Nephron/
http://paperpile.com/b/bfl1h6/jNZY
http://dx.doi.org/10.3384/ecp19157393
http://physiome.cz/apps/SimpleCirculation/
http://physiome.cz/apps/SimpleCirculation/
https://physiome.cz/apps/pvloops/
http://paperpile.com/b/bfl1h6/jNZY
http://dx.doi.org/10.1016/j.bbe.2017.08.001
http://dx.doi.org/10.1152/ajpheart.1993.265.5.H1819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8238596&dopt=Abstract
https://pdfs.semanticscholar.org/133f/f198a0806bada22c29880a0bd89a63abb973.pdf
http://dx.doi.org/10.1016/j.ijmedinf.2007.01.012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17331799&dopt=Abstract
https://www.jmir.org/2019/7/e14160
http://dx.doi.org/10.2196/14160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31271154&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

©Jan Šilar, David Polák, Arnošt Mládek, Filip Ježek, Theodore W Kurtz, Stephen E DiCarlo, Jan Živný, Jiri Kofranek. Originally
published in the Journal of Medical Internet Research (http://www.jmir.org), 03.07.2019. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of
Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on
http://www.jmir.org/, as well as this copyright and license information must be included.

J Med Internet Res 2019 | vol. 21 | iss. 7 | e14160 | p. 21https://www.jmir.org/2019/7/e14160
(page number not for citation purposes)

Šilar et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

