Viewpoint

Unintended Consequences of Nationwide Electronic Health Record Adoption: Challenges and Opportunities in the Post-Meaningful Use Era

Tiago K Colicchio¹, PhD, MBA; James J Cimino¹, MD; Guilherme Del Fiol², MD, PhD

¹Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, United States
²Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, United States

Corresponding Author:
Tiago K Colicchio, PhD, MBA
Informatics Institute
University of Alabama at Birmingham
1900 University Boulevard
Birmingham, AL, 35294
United States
Phone: 1 2059960735
Email: tcolicchio@uabmc.edu

Abstract

The US health system has recently achieved widespread adoption of electronic health record (EHR) systems, primarily driven by financial incentives provided by the Meaningful Use (MU) program. Although successful in promoting EHR adoption and use, the program, and other contributing factors, also produced important unintended consequences (UCs) with far-reaching implications for the US health system. Based on our own experiences from large health information technology (HIT) adoption projects and a collection of key studies in HIT evaluation, we discuss the most prominent UCs of MU: failed expectations, EHR market saturation, innovation vacuum, physician burnout, and data obfuscation. We identify challenges resulting from these UCs and provide recommendations for future research to empower the broader medical and informatics communities to realize the full potential of a now digitized health system. We believe that fixing these unanticipated effects will demand efforts from diverse players such as health care providers, administrators, HIT vendors, policy makers, informatics researchers, funding agencies, and outside developers; promotion of new business models; collaboration between academic medical centers and informatics research departments; and improved methods for evaluations of HIT.

(J Med Internet Res 2019;21(6):e13313) doi: 10.2196/13313

KEYWORDS
meaningful use; medical informatics applications; adoption

Introduction

When humans created the cities to enable surplus food, labor division, and trade, the city itself generated new modalities of problems such as disease and violence. The American sociologist Robert K. Merton (1910-2013) coined the term unintended consequences (UCs) to describe these antagonistic elements inherent in any human endeavor [1]. The health care industry, which in the United States has reached near universal adoption of electronic health record (EHR) systems, is no exception.

Calls for nationwide adoption of EHRs [2] finally came to fruition when the US Congress passed the Health Information Technology for Economic and Clinical Health (HITECH) Act into law in 2009 [3], establishing the Meaningful Use (MU) program. As a result of MU, EHR adoption among US hospitals increased an impressive 8-fold in 6 years, and today, 9 in 10 hospitals use a government-certified EHR, and adoption among office-based physicians is above 80% [4]. However, although successful in promoting its intended consequences (EHR adoption and use), the program, and other contributing factors, also produced important UCs, with effects that range from the health system level all the way to the point of care level. Many recent publications have criticized MU and particularly EHRs; however, little attention has been dedicated to promoting effective solutions. Although previous articles have elicited emerging health information technology (HIT) UCs such as decreased patient-provider interaction, security breaches, and overdependence on technology [5] and proposed a research
agenda to fixing the EHR [6], such reports were produced during the MU implementation, and therefore, their conclusions were made before the US health system had been exposed to the effects of nationwide EHR adoption. On the basis of our own experiences from large-scale HIT adoption projects and a collection of key studies in HIT evaluation, we discuss the most prominent UCs of MU (Figure 1) and provide recommendations for future research to empower the broader medical and informatics communities to realize the full potential of a now digitized health system.

Figure 1. Unintended consequences of Meaningful Use, their contributing factors, and opportunities for future research from the broadest to the most specific level. ARRA: American Recovery and Reinvestment Act; EHR: electronic health record; HIT: health information technology; UC: unintended consequence.

Unintended Consequence 1: Failed Expectations

Recent systematic reviews have found that most HIT evaluations published before MU reported predominantly positive outcomes [7,8]. These outcomes served as the foundation for the MU program and have produced a hype around HIT. Such a hype led to a nationwide adoption of commercial EHRs with high expectations for improving the US health care cost and quality [9]. However, after 4 years of nationwide EHR adoption, health care in the United States is still the most expensive and lags behind in some quality outcomes when compared with other developed countries [10], which indicates that the expected benefits of a digital health system have not yet materialized [11-14]. As the adoption of commercial EHRs increased, new, unanticipated modalities of problems emerged [5]. The first systematic review of HIT impact published after MU continued to find mostly positive results; however, it also reported that 19% of the studies found no significant HIT impact, and the lack of negative outcomes is likely explained by publication bias [15].

The same systematic reviews that have reported positive findings have also reported several mixed results, which leaves unanswered questions as to the impact of HIT on quality, productivity, and safety. Furthermore, studies from other industries demonstrate that IT adoption rarely produces positive results if not accompanied by complementary factors or investments [16]. Several internal and external factors have been identified as potentially affecting care outcomes during HIT interventions [17], which suggests that previous studies may have been subjected to similar context-dependent factors, as they are common to HIT interventions [18,19]. Pre-MU studies are being criticized for relying on weak research designs such as short-term pretest-posttests and for the use of a small set of nonconsensus measurements [8,12,20]. The latter is an important barrier to the reproducibility of studies [21] and to the comparison of outcomes across studies [20], which prevents more comprehensive assessments of HIT impact and produces questions regarding the strength of the evidence supporting HIT effectiveness [22]. The lack of consistent evidence resulting from the use of poorly designed studies indicates that what others have called positive outcomes [7,8] are in fact putative outcomes. It has been estimated that without improved research
with insufficient evidence to support the hype around HIT and
generalizable effects of HIT across care outcomes, settings, and
EHR systems, an important question remains unanswered: was
the over 20-billion-dollar investment in HIT from the America
Recovery and Reinvestment Act (ARRA) worth it?

The Path Forward
Implementation of a new EHR will inevitably add to the
complexity of the several aspects of care, and as users adapt to
the system, they demand new customizations [24]. These
customizations are often added to updated EHR versions that
demand extensive local testing and an implementation process
almost as complex, risky, and labor intensive as the
implementation of a newly adopted EHR. In such a scenario,
simple pretest-posttest designs are ineffective [25]. A paradigm
shift on the choice of research designs for HIT studies is needed
to produce more longitudinal evaluations able to detect
time-sensitive effects common to HIT interventions [26] and
to assess a large set of measures capable of detecting the diverse
effects of such interventions [11,12]. Furthermore, as HIT
interventions are subject to context-dependent factors,
assessment of potential covariates is of paramount importance,
as demonstrated elsewhere [17]. A better understanding of the
full impact of HIT on the US health system will demand more
comprehensive evaluations that assess a large sample of
agreed-upon measures shared across researchers to allow
comparison of outcomes across studies by future systematic
reviews—and potential meta-analyses. In addition to increasing
our understanding of HIT impact on a national scale, such an
approach has the potential to produce compelling evidence to
the need for improving HIT effectiveness and can lead us to a
more realistic assessment of the real value of the ARRA
investment in HIT.

Unintended Consequence 2: Electronic Health Record Market Saturation
The time frame to implement MU’s certification criteria was
constrained, and the larger EHR vendors more rapidly complied
with the criteria, contributing to an increased adoption of
systems with established market share [27]. In 2017, the top 3
US HIT vendors shared 66% of the EHR market for acute care
hospitals, which includes most large academic medical centers
[28,29]. Given the complexity and high cost involved in
implementing a commercial EHR, health care organizations are
unlikely to change an EHR vendor anytime soon, causing a
saturation of the US EHR market.

The Path Forward
As new, expensive EHR implementations become rarer, EHR
vendors will be forced to find new business models to remain
profitable. This path is evolving through initiatives such as the
Substitutable Medical Applications & Reusable Technologies
(SMART), which coupled with data standards, such as Fast
Healthcare Interoperability Resources (FHIR), is enabling
development of third-party applications seamlessly connected
to commercial EHRs. Such applications have the potential to
replace or augment commercial EHRs’ functionality, in a model
similar to the mobile phone industry [30]. To providers, such
an approach represents an interesting opportunity to expand,
customize, or replace EHR functionality as needed; to EHR
vendors, it represents an opportunity to diversify their products,
solutions, and sources of income. However, the saturation of
the national market has produced a situation analogous to an
oligopoly, and the path to producing new business models is
unclear. Although some vendors seem to be open to the idea of
having external applications connected to their EHR, others
intend to charge providers per FHIR transaction, which will
eventually hamper use of external applications. In addition, the
2 leading US EHR vendors are increasing their global presence
[31], which may help to keep them financially sustainable and
postpone the development of new business models. With an
increased bargaining power of these vendors, the success of
initiatives such as SMART on FHIR may emerge from the
tension between providers’ needs and vendors’ desire to keep
control over their products [19].

Some researchers have suggested that the use of similar systems
across the country will create opportunities for human factors
researchers by facilitating comparison of similar functionality
[5]; however, such opportunities may not reach fruition because
of local configurations that allow the same product to be
implemented in completely different ways across clients [32].
Overcoming the vendor oligopoly will demand development of
informatics solutions proved to be more effective than current
systems’ functionality, which leads us to the next UC:
innovation vacuum.

Unintended Consequence 3: Innovation Vacuum
As EHR adoption has primarily been achieved through financial
incentives, the cycle of technological innovation typical of other
industries has not been observed in the US HIT sector. As a
result, commercial EHRs were adopted before fixing widely
known problems such as poor usability [33], which has been
associated to patient harm [34,35], and suboptimal clinical
decision support (CDS) systems [36] such as excessive,
overzealous alerts frequently ignored by providers [37]. In
addition, a recent evaluation of EHR certification criteria
concluded that the certification process is not designed to
prevent patient harm [38]. Specifically, the report found that
the usability testing required does not include a representative
sample, does not include real clinical scenarios, and does not
simulate changes added through system configuration by local
clients.

The accelerated adoption also affected benchmarking
organizations such as Intermountain Healthcare, Partners
Healthcare, and the Veterans Health Administration that have
traditionally promoted most HIT innovations [39]. These
organizations decided to replace their systems with commercial
EHRs, putting an end to the homegrown systems’ era. As a
result, some of these organizations decided to dissolve their
informatics departments [40,41], decreasing their investment
in informatics innovation.
With widespread adoption of suboptimal and poorly tested systems, along with traditional innovators stepping aside, fixing the EHR now is a bit like fixing an airplane midflight, and without a pilot.

The Path Forward
At least 2 panels at recent American Medical Informatics Association annual symposia have presented informatics innovations in the post-MU era with clients of 1 large HIT vendor, and most innovations included SMART on FHIR apps [42,43]. Panelists have pointed out that as commercial EHRs can properly handle capabilities such as billing, data storage, and privacy regulations, informatics innovators tend to be freer to innovate in the post-MU era. However, as previously mentioned, most HIT vendors are not yet fully open to seamless interface with external apps. In addition, FHIR is a standard under development, and a substitute for the traditional innovators is yet to be found. To aggravate the problem, most contracts signed between providers and HIT vendors include clauses that hamper transparency by preventing providers from sharing usability and safety issues that could otherwise advance EHR design [44].

There was a natural reason for having most HIT innovations coming from benchmarking organizations: neither HIT vendors nor academic departments have seamless access to clinicians at the point of care, where informatics applications are put to the test. In naturalistic settings, iterations between clinicians and informaticists facilitate an understanding of users’ needs to inform EHR development. Academic informatics departments could serve as a natural replacement for the traditional innovators by promoting cutting-edge research toward fixing the EHR, coupled with more robust HIT evaluations. However, this replacement will demand a closer relationship between academic departments and their medical centers. In US universities, these departments tend to function as independent organizations, which hamper researchers’ access to HIT resources and clinicians at the point of care. Work in such a direction has started [45-47] and serves as example of the path needed to design new business models, fostering innovation and transparency, and fixing the EHR.

Unintended Consequence 4: Physician Burnout
The accelerated adoption of commercial EHRs coincided (and likely was programmed to coincide) with the implementation of the Affordable Care Act (ACA). The slow, but steady, implementation of pay-for-performance payment models has given rise to the EHR-based quality measurement [48]. The push for reporting clinical performance generates an increased demand for capturing accurate, structured data [5], and the use of suboptimal EHRs in these tasks has contributed to the so-called EHR-associated physician burnout [49]. The use of clinical documentation for nonclinical purposes is increasing and is source of frustration among physicians [50,51]. This is reinforced by the fact that electronic clinical notes generated in the United States are significantly longer than similar documentation in other developed countries [52]. Recent studies have found that in the post-MU and ACA era, for every hour of patient contact time, physicians may spend up to 2 hours on electronic documentation [53,54]. The documentation burden has been so intense that in some cases, physicians intentionally close slots in their agenda to complete electronic documentation of previous patients [17].

The Path Forward
In addition to simplifying billing requirements [6] and developing informatics solutions to extract quality indicators from clinical documentation [5], a fundamental redesign of the EHR to improve data entry and retrieval is needed. The structured and static format of current EHR interfaces force physicians to record clinical data through predefined and strict functionality dependent on the current desktop kit (pointer + keyboard + monitor with a cluttered EHR interface). For physicians to keep the richer narrative of their clinical assessments while decreasing the documentation burden, EHRs must demand less typing and clicking [55]. New technologies such as conversational speech recognition (CSR) have recently achieved human parity with regards to transcription error rate [56] and have tremendous potential for substantially decreasing typing and clicking. However, CSR solutions may be compromised by the fact that clinicians may make conscious decisions about what information to communicate to patients and to document in the EHR [57]. Therefore, there are opportunities for research exploring what information clinicians document (or not) in the EHR and what information they do not communicate verbally to the patient but document in their clinical notes [58]; such findings will inform development of CSR and other data-entry solutions capable of handling such situations. Regarding data retrieval, EHR content retrieved by physicians is influenced by their tasks or information goals [59,60]; however, such stimuli are not captured by current EHRs. Future research should investigate how EHRs can support data retrieval with intelligent stimulus- or goal-oriented functionality that allows a holistic view of the patient and flexible navigation across the record [58] to hopefully decrease the documentation burden and its contribution to the next UC: data obfuscation.

Unintended Consequence 5: Data Obfuscation
Physicians frequently create their clinical notes by using the patient’s previous note, a practice known as copy-and-paste. [61] As a result, they often produce (and later deal with) uninformative, bloated notes that often contain redundant information and errors [62,63]. In addition, these notes do not provide the data in a way that increases clinicians’ situational awareness (ie, the perception and comprehension of relevant information necessary to take action) [64], and in some cases may never be read [65]. The problem is aggravated by overwhelming CDS alerts and reminders; many clinicians complain that such alerts make them vulnerable to information overload, which might lead them to miss important information [66]. The obfuscation of relevant data resulting from bloated records has been reported [67,68], associated with potential
safety hazards [69] and with delayed or incorrect decisions at the point of care [70].

The Path Forward

Some proposed solutions to highlighting relevant data include tailoring physicians’ use of EHRs to document what they are thinking about the patient’s situation [64], transferring some data entry to patients [6], or new policies to facilitate health information exchange (HIE) [5,6,71]. Such proposals are unlikely to succeed in isolation as they require clinicians to enter or import even more information into already bloated records. In addition, the effectiveness of HIE seems to be understudied [72]; although some studies report HIE-associated improvements [73], others report the opposite [74].

Concise documentation that highlights relevant data will come from smarter EHRs that actively participate in patient care [75]; however, to be smarter, EHRs must be able to capture and process more information about the patient’s context and clinicians’ reasoning. Previous studies suggest that clinicians seem to always know something that is only partially represented in or is missing entirely from the EHR [37,76]. For example, EHRs are incapable of understanding why clinicians order what they order, or how current symptoms are related to previous problems. Although most EHRs allow medical records to be structured on a problem-oriented basis, such structure does not capture the reasoning behind the relationship between problems and other clinical concepts. For example, a medication can be linked to a problem, indicating that it was ordered to treat a particular problem, but the reasoning (why) behind the choice for this particular medication is not captured by the EHR. If such data were captured, several opportunities for informatics research would emerge to apply (and improve) computational methods (eg, machine learning, natural language processing, and text generation methods) to empower the EHR to use patient’s care context data. Context-rich data could be used to facilitate note creation, to create automatic notes ready for review, and to increase the accuracy of CDS, potentially mitigating the already infamous alert fatigue [37]. However, 2 major challenges remain: (1) A formal representation of the semantic relationships between clinical concepts (eg, symptoms, findings, problems, diagnoses, and treatments) does not exist and (2) Effective methods for capturing and representing clinicians’ reasoning need to be developed [58]. EHR vendors have avoided this path to avert liability for medical errors when eventual system failures lead to misleading recommendations [77,78]. What vendors have avoided translates into several opportunities for informatics researchers. The development of a formal representation of clinicians reasoning seems to be a promising alternative to empower EHRs to represent patients’ situation [79]. However, the application of such a representation into actual patient data will demand new, more effective data-entry approaches [58], improvements to data visualization [80], and computational methods [55].

On balance, despite the unexpected effects and challenges of nationwide EHR adoption, several opportunities for developing more effective EHRs and evaluation methods are likely to emerge from the forces promoting progress. The UCs here discussed do not intend to be exhaustive; other consequences may be revealed as new, more robust HIT evaluations are reported. We hypothesize that overcoming these UCs will likely require a path reverse to the one that produced them. By creating smarter clinical information systems with more intuitive navigation and data entry functionality, clinicians could save time searching, synthesizing, and documenting data in the EHR, which would contribute to alleviate data obfuscation and mitigate burnout. Such systems will likely come from external applications developed through cutting-edge research conducted in academic medical centers that tend to be a natural replacement for earlier informatics innovators. These applications, if successfully implemented and evaluated, may back providers up on their demands to have most large EHR vendors opening their platforms, which would facilitate the development of new business models and decrease market oligopoly. Finally, by accumulating evidence of the effectiveness of these applications, in isolation and in conjunction with commercial EHRs, a better understanding of the true positive effects of HIT can be obtained by future systematic reviews and meta-analyses.

The multiple efforts proposed here will demand collaboration between diverse players such as health care providers, administrators, HIT vendors, policy makers, informatics researchers, funding agencies, and outside developers toward a single goal: to realize the full potential of a digitized health system.

Acknowledgments

This work was supported by research funds from the Informatics Institute of the University of Alabama at Birmingham.

Conflicts of Interest

None declared.

References

40. Bowes WA. Impacts of EHR certification and meaningful use implementation on an integrated delivery network. AMIA Annu Symp Proc 2014:325-332 [FREE Full text] [Medline: 25954335]

64. Lenert L. Toward medical documentation that enhances situational awareness learning. AMIA Annu Symp Proc 2016:673-771 [FREE Full text] [Medline: 28269872]

Abbreviations

ACA: Affordable Care Act
ARRA: America Recovery and Reinvestment Act
CDS: clinical decision support
CSR: conversational speech recognition
EHR: electronic health record
FHIR: Fast Healthcare Interoperability Resources
HIE: health information exchange
HIT: health information technology
HITECH: Health Information Technology for Economic and Clinical Health
MU: Meaningful Use
SMART: Substitutable Medical Applications & Reusable Technologies
UCs: unintended consequences

Please cite as:

URL: https://www.jmir.org/2019/6/e13313/
doi: 10.2196/13313
PMID: 31162125

©Tiago K Colicchio, James J Cimino, Guilherme Del Fiol. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 03.06.2019. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included.