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Abstract

Background: Clinical information models (CIMs) enabling semantic interoperability are crucial for electronic health record
(EHR) data use and reuse. Dual model methodology, which distinguishes the CIMs from the technical domain, could help enable
the interoperability of EHRs at the knowledge level. How to help clinicians and domain experts discover CIMs from an open
repository online to represent EHR data in a standard manner becomes important.

Objective: This study aimed to develop a retrieval method to identify CIMs online to represent EHR data.

Methods: We proposed a graphical retrieval method and validated its feasibility using an online CIM repository: openEHR
Clinical Knowledge Manager (CKM). First, we represented CIMs (archetypes) using an extended Bayesian network. Then, an
inference process was run in the network to discover relevant archetypes. In the evaluation, we defined three retrieval tasks
(medication, laboratory test, and diagnosis) and compared our method with three typical retrieval methods (BM25F, simple
Bayesian network, and CKM), using mean average precision (MAP), average precision (AP), and precision at 10 (P@10) as
evaluation metrics.

Results: We downloaded all available archetypes from the CKM. Then, the graphical model was applied to represent the
archetypes as a four-level clinical resources network. The network consisted of 5513 nodes, including 3982 data element nodes,
504 concept nodes, 504 duplicated concept nodes, and 523 archetype nodes, as well as 9867 edges. The results showed that our
method achieved the best MAP (MAP=0.32), and the AP was almost equal across different retrieval tasks (AP=0.35, 0.31, and
0.30, respectively). In the diagnosis retrieval task, our method could successfully identify the models covering “diagnostic reports,”
“problem list,” “patients background,” “clinical decision,” etc, as well as models that other retrieval methods could not find, such
as “problems and diagnoses.”

Conclusions: The graphical retrieval method we propose is an effective approach to meet the uncertainty of finding CIMs. Our
method can help clinicians and domain experts identify CIMs to represent EHR data in a standard manner, enabling EHR data
to be exchangeable and interoperable.

(J Med Internet Res 2019;21(5):e13504) doi: 10.2196/13504
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Introduction

Electronic health record (EHR) data can be used and reused for
many purposes, including managing an individual patient’s care,
medical and health services research, and management of health

care facilities. More recently, EHR data has been defined as a
part of real-world data [1] and is increasingly seen as a viable
source of data for regulatory decisions [2]. However, bias can
occur in different steps of the data chain, which might lead to
incomparable or invalid analysis results [3].
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Semantic interoperability is essential for accurate and advanced
health-related computing, shared EHRs, and coordination of
clinical care across clinical systems [4,5]. According to ISO/TS
18308 (a standard published by the International Organization
for Standardization defining the set of requirements for EHR
architecture), it is the ability for data shared by systems to be
understood at the level of fully defined domain concepts [6].
To achieve this, a two-level clinical modeling methodology is
proposed to separate clinical knowledge from information
models [7]. It distinguishes two models: the reference model
(RM), which contains the basic and stable properties of health
record information, and the clinical information model (CIM),
which formally defines clinical concepts (or domain content
models) in a standardized and reusable manner, such as blood
pressure [8,9]. In this scenario, CIMs in agreement at an
organizational, regional, national, or international level will
provide a firm basis for establishing semantic interoperability
[9].

This two-level modeling approach is used in the ISO/CEN
EN13606 (a standard designed to achieve semantic
interoperability in EHR communication) [10] and openEHR
(described subsequently) [11], as well as Health Level Seven
(HL7) version 3 Clinical Document Architecture (HL7's primary
standard for representing structured clinical documentation on
patients) and Care Provision messages (information structures
used to communicate information between providers of care)
[12]. For openEHR and ISO/CEN EN13606, CIMs are defined
in the form of archetypes, whereas those of HL7 are in the form
of HL7 templates. According to the systematic review done by
Moreno-Conde et al [13], archetypes are the preferred type of
technical artifacts, and openEHR is most frequently mentioned.
Therefore, CIMs in our study specifically refer to openEHR
archetypes.

OpenEHR is an open-source EHR standard ensuring universal
interoperability among all forms of electronic data [14-21]. It
is well known for its two-level design paradigm, consisting of
an RM, archetypes, and templates. Archetypes are computable
clinical content specifications that formalize the patterns and
requirements for the representation of health information content
[9]. To achieve common, coherent, and clinician-approved
archetypes, the openEHR community provides a Web-based
controlled authoring environment for a wide range of domain
experts, especially clinicians, to participate in the creation of
archetypes. All contributions are open access and freely
available under a Creative Commons license. Archetypes are
general purpose, reusable, and composable; therefore, searching
for reusable archetypes from archetype repositories is essential
throughout the development process [22,23]. Documents with
complete archetype design specifications are the input; lists of
existing reusable archetypes, either complete or needing
modifications, and new archetypes to be developed from scratch
are the output [23]. The crucial problem is how to find the
relevant ones from open repositories to help identify reusable
archetypes.

The openEHR community provides the Clinical Knowledge
Manager (CKM) [24] to be a library of openEHR archetypes.
It supports their retrieval based on clinical concepts in different
sections of archetypes. When the end user enters a term, the

CKM will return the archetype that contains the word in
metadata, definition, or ontology section. It could help find
reusable archetypes [25]. However, domain experts are mainly
concerned about whether the concept name and core data items
are covered [17,26,27], and they may be not familiar with
openEHR archetypes, especially clinicians. For better results,
end users usually need to do a large amount of preparatory work,
which may include classifying and rearranging data [27],
abstracting clinical concepts from data schemas [17], and
identifying archetype-friendly concepts from clinical statements
[26]. It is an iterative and time-consuming process.

We aimed to develop a retrieval method to identify archetypes
online to represent EHR data and optimize existing retrieval
results of the CKM. Archetypes usually have their own
hierarchical structures, and semantic relationships occur between
different archetypes; therefore, we considered that the graphical
representation of this potential knowledge might support the
retrieval of CIMs. Previous studies show that graphs could
efficiently represent clinical knowledge [28-30], and the
Bayesian network, as a probabilistic graphical model, is an
effective methodology to meet the uncertainty of information
needs. Rotmensch et al [30] used a naive Bayes classifier and
a Bayesian network to automatically construct a health
knowledge graph from electronic medical records. However,
in retrieval tasks, differences between Bayesian network-based
information retrieval methods mainly lie in the structure of the
network, and this structure depends on dependencies between
the variables involved in the problem. The basic Bayesian
network consists of two different sets of variables, a set of
indexing terms and a set of documents in the collection, and the
relationships between them [31]. Related research has been
conducted to extend a simple Bayesian network for better
results. Some methods focus on the structure of the term
subnetwork using a polytree [32,33] or two term layers [34,35]
to represent term relationships. Some focus on the structure of
the document subnetwork using two document layers [36] to
represent document relationships. Compared with the previous
studies, we focused on the probabilistic graphical representation
of openEHR archetype sets, which depends on relationships
between the variables involved in finding relevant archetypes,
and how the inference process is carried out, aiming for better
retrieval performance.

Methods

Information Need Analysis
To find relevant archetypes from the open repository, we first
had to understand which kinds of terms end users tended to
enter. As archetype modeling methodology [23] shows, domain
experts identify core clinical concepts and related data elements
involved in a particular scenario and organize them into mind
maps or design tables. These archetype design specifications
are the main source of search keywords. We considered that the
input of end users was mainly the names of clinical concepts
or related data elements.

Ideally, the user enters the clinical concept and the system feeds
back the archetype defining the concept, or the user enters data
elements related to a concept and the system feeds back the
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archetype that covers all the data elements. However, it is
difficult to distinguish clinical concepts and data elements from
the end user’s input, unless it forces users to input separately.
More importantly, data elements defined by end users may be
the concept in an archetype repository, or the defined concept
is the data element of an archetype. If we match concepts and
data elements separately, users may miss some important
relevant archetypes.

Based on these considerations, we tried to translate the problem
into identifying potentially relevant clinical concepts from the
input. We proposed to reorganize the archetype collection with
the dependencies between clinical concepts, data elements, and
archetypes and used a probabilistic approach to meet the
uncertainty of user information needs.

Graphical Retrieval Method Based on an Extended
Bayesian Network

Archetype Feature Identification and Extraction
Based on information need analysis, we attempted to use clinical
concepts and data elements to represent each archetype. An
archetype is expressed in Archetype Definition Language (ADL)
and mainly consists of three sections (Figure 1). The header
contains a unique identifier for the archetype and includes some
descriptive information, such as concept name and keywords;
the definition contains the main formal definition of the
archetype, including all possible data elements that could be
relevant for the clinical concept; and the ontology contains the
code that represents the meaning of nodes. We considered that
clinical concepts were the topics of archetypes, whereas
keywords and data elements explained the meaning of topics
from different perspectives. Thus, we extracted archetype ID,
concepts, keywords, and data elements based on ADL files
parsing as features (Figure 1).

There are also relationships between archetypes, including
specialization and aggregation. An archetype is a specialization
of another if it mentions that archetype as its parent and only
makes changes to its definition. Aggregation enables any subset
of archetypes to be stated as the allowed set for use in a
compositional parent archetype. In general, archetypes tend to
provide highly reusable models of real-world content with local
constraining left to templates, which may result in matching as
many archetypes as possible when defining archetype slots. For
example, “openEHR-EHR-CLUSTER.device_details.v1” allows
the inclusion of 199 archetypes. We thought that such cases
might blur the semantic relationship between archetypes. In
addition, version control is an integral part of the openEHR
architecture. When an archetype updates, the old version could
not be found in the archetype library. Therefore, we only added
the parent archetype ID as the feature (Figure 1).

Furthermore, there are four main categories of archetypes,
including COMPOSITION, SECTION, ENTRY, and
CLUSTER, each defined as part of the openEHR RM. A
COMPOSITION is a container class, whereas a SECTION is
an organizing class, each containing ENTRY objects [16]. The
ENTRY class is further specialized into ADMIN_ENTRY,
OBSERVATION, EVALUATION, INSTRUCTION, and
ACTION subclasses, of which the latter four are kinds of
CARE_ENTRY. CLUSTERS are reusable archetypes for use
within any ENTRY or other CLUSTER. In addition, the
openEHR designs Demographic archetypes for demographic
information. Thereby, archetypes could be mainly divided into
COMPOSITION, SECTION, ENTRY, CLUSTER, and
DEMOGRAPHIC. However, these archetype categories will
not obscure the clinical content, and we did not use these as the
feature.

Figure 1. An example of archetype feature identification and extraction.
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Clinical Resources Network Modeling
We attempted to use a three-level Bayesian network to represent
the dependencies among data elements, concepts, and archetypes
(Figure 2). The first is the data element layer. It contains the set
of indexing data elements T={Ti, i=1...M}, M being the number
of data elements from a given archetype collection. Each data
element node is linked to its corresponding concept node in the
clinical concept layer. The second is the clinical concept layer.
It contains the set of indexing concepts C={Cj, j=1...N}, N being
the number of concepts. The third layer contains the set of
archetypes A={Ak, k=1...K}, K being the total number of
archetypes in the collection. If Ak is a specialization of another
archetype Ap which defines Cj, there is a link joining any concept
node Cj and any archetype node Ak.

However, data elements are unevenly distributed across different
types of archetypes, especially for container classes. When two
archetypes have few data elements and terms used are totally
different, such as “openEHR-EHR-COMPOSITION
.medication_list.v0” and “openEHR-EHR-SECTION.medication
_order_list.v0,” it is difficult to find correlation between them.

Therefore, we tried to include relationships between concepts
in the model to extend the similarity between archetypes.
Relationships between concepts were measured by estimating
conditional probabilities of relevance of every concept given
that another concept was considered relevant [36]. Let e (Ci) be
an event representing some type of evidence about the relevance
of a concept Ci. In openEHR, the evidence could be “keywords,”
“purpose,” “use,” or other semantic information. In this case,
we considered that e (Ci) as the event [KWl= kwl, ∀ KWl∈ Ci],
KW being the keywords used to describe the concept. Given a
concept Cj, we calculated the probabilities p (cj| e (Ci)) ∀ Ci∈
C using equation (a) in Figure 3, where the weight was

computed by equation (d) in Figure 3 and Mk was the number
of keywords. After decreasing the ordering of p(cj|e(Ci)), the
top n concepts Rn(Cj) were the ones that were more related to
Cj. Then, we included in the network-explicit dependence
relationships between Cj and each concept Ci∈Rn(Cj).

To determine the topology of the Bayesian network, we used a
concept subnetwork with two layers instead of the original
concept layer. We duplicated each concept node Cj to obtain

another concept node C 
j, thus forming a new concept layer,

and the arcs connecting the two layers went from Ci∈Rn(Cj) to

C 
j. Thus, this directed acyclic graph had the set of variables

V=T∪C∪C ∪A. The new topology avoids connections between
nodes in the same layer and facilitates the inference process.

The overall modeling procedure is summarized in Figure 4.
First, we extracted archetype ID, clinical concept, and data
elements from the ADL files (detailed in section “archetype
feature identification and extraction”). Second, we learned the
dependencies between concepts (detailed previously). Third,
we graphically represented the dependencies between the
variables.

Parameters Estimation in the Clinical Resources
Network
In this section, we will discuss how to estimate the probability
distributions of each node in the network.

Data Element Nodes

A data element node has no parents; therefore, we had to store
the probability of relevance p (ti) and the probability of being
nonrelevant. We used the estimator (Figure 3, equation b), where
M is the number of terms used to index the concept collection.

Figure 2. Topology of three-level clinical resources network. A: archetype; C: clinical concept; T: data element.
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Figure 3. Equations used in our method.

Figure 4. Clinical resources network modeling pipeline. A: archetype; C: clinical concept; C : duplicated clinical concept; T: data element.

Concept Nodes

For each concept node Cj in the concept subnetwork, we needed
to estimate a set of conditional probability distributions p

(cj|pa(Cj)). Pa(Cj) represents the parent nodes set of concept Cj,
containing all the data elements belonging to concept Cj, and
pa (Cj) is a possible configuration of value associated with the
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parent set Pa(Cj). We used the estimator (Figure 3, equations
c and d) proposed by De Campos et al [33], where α is a
normalizing constant (assure ∑Ti∈Pa(Cj)wij≤1 ∀ Cj∈C), tfij is the
term frequency of data element Ti in concept Cj, and idfi is the
inverse concept frequency of Ti in the whole concept collection;
idfi = 1 + log (N / ni), N being the total number of concepts, and
ni being the total number of concepts containing Ti.

For each concept node C 
j, we need to estimate a set of

conditional probability distributions p(c 
j|pa(C′

j)). We used the
estimator (Figure 3, equation e) proposed by Acid et al [36],
where Sj = ∑Ck∈Pa(C′j)p(cj|e(Ck)) and the values p(cj|e(Ck)) are
obtained when modeling the network.

Archetype Nodes

For each archetype node Ak, we needed to estimate a set of
conditional probability distributions p(ak| pa(Ak)). Pa(Ak)
represents the parent node sets of archetype Ak, containing all
the concepts belonging to archetype Ak, and pa(Ak) is a possible
configuration of values associated with the parent set Pa (Ak).
vjk is a constant to represent the weight of a concept for an
archetype. The estimator is shown in Figure 3, equations (f) and
(g), where R(Pa(Ak), Ak) represents two different relationships
between the concept and archetype, n1 is the number of
“nonspecialized” archetypes of one concept, and n2 is the
number of “specialized” archetypes, whereas α and β are
coefficients for the weight.

Relevant Archetype Discovering: Inference in the
Clinical Resources Network
To find relevant archetypes is to estimate the probability of
relevance p (ak|Q) for each archetype, Q being an end user
query.

Given a query Q, the set of terms used to formulate the query
will be a new piece of evidence. The retrieval process starts by
placing the evidence in the data element subnetwork. Then, the
inference process is run in the clinical resources network. This
allows us to obtain the probability of relevance of each
archetype, given that the terms in the query are relevant, p
(ak|Q). Finally, the archetypes will be sorted in decreasing order
of probability to carry out the evaluation process. The inference
process is composed of four stages.

1. Terms in the data element layer are marginally independent;
therefore, the probability of relevance p(ti|Q) is calculated
by equation (h) in Figure 3.

2. Based on the propagation process, the conditional
probability of concept Cj in the concept subnetwork for the
query Q could be calculated by equation (i) in Figure 3.

3. The conditional probability of concept C 
j in the concept

subnetwork for the query Q could be computed using
equation (g) in Figure 3.

4. The conditional probability of archetype Ak for the query
Q, p(ak|Q) could be carried out using information obtained
in the previous step by the equation (k) in Figure 3.

Therefore, the propagation with this topology is to evaluate
equations (h), (i), (g), and (k) in Figure 3.

Experiment Setup

Test Queries
We defined test queries with the following considerations: first,
clinical concepts to be retrieved should be essential components
of the EHR; second, there should be needs to reuse these clinical
contents [37], such as medical events prediction [38], clinical
research [39], and disease research [40]; third, queries should
allow us to test the performance of retrieval methods in related
archetypes identification, including specialized archetypes and
compositional parent archetypes. Based on these criteria, we
selected medication, laboratory test, and diagnosis as retrieval
tasks and formulated three queries (Table 1).

Data Source
We downloaded all available archetypes from the CKM [24]
for a total of 526 on August 30, 2018. All files were in ADL
format. We used the ADL parser [41] to extract features. Among
these CIMs, three archetypes did not use English as the
description language, so the total number changed to 523.

Relevance Assessment
To evaluate retrieval results, we first had to identify relevant
archetypes in three retrieval tasks as the gold standard. We
manually annotated all 523 archetypes, according to their
relevance to each query, to formulate three benchmark datasets.
Given a query and an archetype, three annotators were asked
to judge if the archetype was relevant. The labeling instructions
were as follows: a label was relevant when the archetype could
cover the potential clinical concept inferred from the given
query; a label was nonrelevant otherwise. We took the majority
vote to decide the relevance of an archetype. These three
benchmark datasets were used as ground truth for the
medication, laboratory test, and diagnosis retrieval tasks.

Baseline Methods
To validate the performance of our method, three typical
retrieval methods were selected as baselines: CKM, BM25F,
and simple Bayesian network.

Table 1. Test queries.

Input termsRetrieval taskQuery

Medicine name, total daily amount, allowed period, and order start date/timeMedication1

Report, test name, and test resultsLaboratory test2

Problem/diagnosis, test diagnosis, date/time of onset, and body siteDiagnosis3
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BM25F is an extension of the BM25 ranking function, which
is applicable to structured documents consisting of multiple
fields. It combines the term frequencies (weighted accordingly
to their field importance) and uses the resulting pseudofrequency
in the BM25 ranking function. In this study, we supposed that
an archetype was decomposed into two fields, concept and data
elements, and used the function (Figure 3, equations l and m)
proposed by Zaragoza et al [42], where wti is the RSJ relevance
weight for term ti, xak, f, ti is the term frequency of term ti in the
field type f of archetype ak, lak, f is the length of that field, lf is
the average field length for that field type, and Bf is a
field-dependent parameter.

For the Bayesian network, the structure is illustrated in Figure
2. The propagation with this topology is to evaluate equations
(h), (i), and (k) in Figure 3.

Results

Overview of Clinical Resources Network
Table 2 shows the distribution of archetypes across different
clinical domains.Clinical domain classification refers to the
concept schema proposed by Hruby et al [39].

Table 3 shows the distribution of archetypes, concepts, and data
elements across different types of archetypes in the collection.

In addition, there were 31 specialized archetypes, 11 of whose
parent archetypes are no longer in the CKM.

Then, we learned the dependencies between concepts. Table 4
shows the top relevant concepts suggested by four different
percentages of values of p(cj|e(Ci)) for “dosage” and
“examination of a lung,” respectively.

After that, we constructed four clinical resource networks, G1,
G2, G3, and G4, according to the top 3%, 5%, 8%, and 10% of
values, respectively. Each graph consisted of 5513 nodes, which
were 3982 data element nodes, 504 concept nodes, 504
duplicated concept nodes, and 523 archetype nodes, with 6366
edges from T to C and 543 edges from C  to A. For edges C to
C , G1 had 1590 arcs, G2 had 2485 arcs, G3 had 2958 arcs, and
G4 had 3263 arcs.

Evaluation of the Performance
To compare the performance of different graphs in supporting
retrieval, we calculated the average precision (AP) values for
the 11 standard recall points of each graph for the test queries
and then computed the mean average precision (MAP) values.
The results (Table 5) showed that the retrieval method based
on G3 achieved the best MAP (MAP=0.32), with an AP of 0.35,
0.31, and 0.3 for each query, respectively.

Table 2. Distribution of archetypes across different clinical domains.

Archetypes, nClinical domain and subdomains

Patient

42Demographic

32Health characteristic

6Patient

Pretreatment diagnosis

73Clinical assessment

26Pretreatment diagnosis

6Procedure

1Intent

Treatment

39Treatment

12Prescribed

9Surgery

184Detection/Treatment results

26Organizational/Provider characteristics

24Outcomes

6Patient environment factors

37Other

523Total
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Table 3. Distribution of archetypes, concepts, and data elements.

Data elements per concept, meanElements, nConcepts, nArchetypes, nArchetype type subtypes

7.91567198198Cluster

1.8452525Composition

Entry

16.82521515Action

8.54325151Evaluation

9.31511163164Observation

15.512488Instruction

17.36944Admin

3.4882626Section

5.81692932Demographic

7.93982504523Total

Table 4. Top edge suggestions for “dosage” and “examination of lung.”

Different threshold of p(cj|e(Ci))
a

Clinical concept

Top 10%Top 8%Top 5%Top 3%

DosageDosageDosageDosageDosage

Medication orderMedication orderMedication orderMedication order

Therapeutic directionTherapeutic directionTherapeutic direction

MedicationMedication

Medication authorizationMedication authorization

Examination of a lungExamination of a lungExamination of a lungExamination of a lungExamination of lung

Auscultation of lungAuscultation of lungAuscultation of lungAuscultation of lung

Pulmonary function testPulmonary function testPulmonary function testPulmonary function test

Macroscopic findings-lung cancerMacroscopic findings-
lung cancer

Macroscopic findings-
lung cancer

Macroscopic findings-
lung cancer

Examination findings-posterior
chamber of eye

Examination of a breast

Examination of a burn

acj=”dosage” and “examination of lung,” respectively.

Next, we compared the results of our method based on G3 with
baseline methods. To comprehensively validate the performance,
we selected the MAP, AP, and precision at 10 (P@10) as
evaluation metrics. Archetypes in the CKM are updated
regularly, so it is difficult for us to compare the result on the
same collection. We searched relevant archetypes in the CKM
for the three queries given on December 12, 2018, and evaluated
its performance against the ground truth. The result (Table 6)
shows that our method outperforms all the baseline methods,
achieving the best AP and P@10 across different test queries,
as well as the best MAP. For instance, for query 1, our method,
CKM, Bayesian network, and BM25F achieved a P@10 of 0.50,
0.40, 0.20, and 0.20, respectively. Furthermore, we can observe
that the MAP of BM25F (MAP=0.177) and Bayesian network
(MAP=0.127) was lower than that of CKM (MAP=0.227),
which means that there are limitations in using clinical concepts

and data elements to represent each archetype. Our approach
takes into account the semantic associations between concepts
and effectively compensates for this deficiency.

The same trend is observed when evaluating precision-recall
graphs across all test queries. Figure 5 shows the precision-recall
curves evaluated against the ground truth. Here, BM25F falls
short in performance. For instance, for a recall of 0.3, our
method, CKM, Bayesian network, and BM25F achieved a
precision of 0.38, 0.30, 0.05, and 0, respectively. Additionally,
the 11-point MAP curve of the Bayesian network is similar to
that of our approach, but the performance is much worse than
ours. Meanwhile, compared with the curve of the CKM, our
curve is smoother and has higher precision when the recall is
below 0.6. These results may be explained by the fact that
dependencies between concepts could help identify relevant
archetypes.
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Table 5. Average precision performance of graphs with different similarity thresholds.

Average precisionMean average precisionGraphs with different similarity thresholdsa

Query 3 (diagnosis)Query 2 (laboratory test)Query 1 (medication)

0.300.100.360.253G1 (top 3%)

0.300.260.270.277G2 (top 5%)

0.300.310.350.320G3 (top 8%)

0.300.310.330.313G4 (top 10%)

aGraphs with percentages of values of p(cj|e(Ci)).

Table 6. Retrieval performance comparison.

Query 3 (diagnosis)Query 2 (laboratory test)Query 1 (medication)MAPaMethod

P@10APP@10APP@10cAPb

0.100.110.300.310.400.260.227CKM

0.300.270.300.180.200.080.177BM25F

0.100.050.300.220.200.110.127Bayesian network

0.300.300.500.310.500.350.320Our method

aMAP: mean average precision.
bAP: average precision.
cP@10: precision at 10.

Figure 5. Precision-recall curves of the four retrieval methods. BM25F: an extension of the BM25 ranking function; BN: Bayesian network; CKM:
Clinical Knowledge Manager.
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Discussion

Principal Findings
The dual model methodology used by openEHR distinguished
the clinical content domain from the technical domain, which
enabled reusable CIMs (archetypes) [9]. We were interested in
identifying relevant CIMs online to standardize clinical concept
representation within EHRs, so we developed a graphical
retrieval method based on an extended Bayesian network and
validated its feasibility using an online clinical information
knowledge source: OpenEHR CKM. We combined a qualitative
representation of the retrieval task, by using a graphical
representation of relationships among data elements, concepts,
and archetypes, with quantitative representation of the
uncertainty of information needs, using a probabilistic approach.
Compared with three typical retrieval methods (BM25F,
Bayesian network, and CKM) in the medication, laboratory test,
and diagnosis retrieval tasks, our method achieved the best MAP
(MAP=0.32). In the diagnosis retrieval task, CKM and BM25F
could not find the relevant archetype “openEHR-
EHR-SECTION.problems_and_diagnoses.v1.” Our method
could successfully identify the models covering “diagnostic
reports,” “problem list,” “patients background,” “clinical
decision,” etc, as well as “problems and diagnoses.”

Although end users were mainly concerned about whether an
archetype covered the concept name and core data items, we
could not obtain satisfied performances without considering
any potential knowledge that might be mined from the
collection. Here, BM25F and Bayesian network just used clinical
concepts and data elements as main features to represent each
archetype and performed worse compared with the other models.
In the laboratory test retrieval task, the recall of BM25F was
0.158, whereas ours was 1.0 and CKM was 0.895. In the
diagnosis retrieval task, the value of precision at 3 of Bayesian
network was 0, whereas ours was 1.0 and CKM was 0.333. A
possible reason was that we used exact matching instead of
fuzzy matching. The most important reason was that they only
encoded the dependence relationships between variables and
did not take into account the semantic associations between
them. Previous studies showed that using the structure of
existing knowledge resources and distributional statistics drawn
from text corpora could help estimate semantic similarity and
relatedness between medical concepts [43]. In the openEHR
framework, archetypes should map to clinical terminologies
(such as SNOMED CT). However, most archetypes currently
in the CKM lacked this kind of mapping, which could have
limited the calculation of semantic relatedness. In this study,
we learned relationships between concepts by a probabilistic
approach and constructed a concept subnetwork with two layers.
The results showed that the performance significantly improved,
which explained the effectiveness of using prior knowledge to
improve retrieval results.

Accordingly, how to find the top n concepts relevant with each
concept became crucial. We used e(Ci) as an event representing
some type of evidence about the relevance of a concept Ci, and
keywords were used as evidence in the experiment. With their
help, we could find that the concepts “medication list” and

“medication order list” were related, even though their concept
name and data elements were totally different. There was also
other semantic information that could be used as evidence, such
as “purpose” and “use.” How to use them to better support
retrieval might need to be further clarified. However, this
method could also include in the network some lower relevant
concepts, as shown in the column “Top 10%” in Table 4. For
better results, we used AP and MAP as evaluation metrics to
help select relevant concepts; meanwhile, we noticed that many
concepts had the same values of conditional probabilities. This
was because of the probabilistic approach we applied, which
reminded us that we could not simply select the top n concepts
as the relevant ones. Here, we adopted concepts with top n
percentages of values of conditional probabilities.

When modeling clinical resources network, we took the
relationship of specialization between archetypes into
consideration. It helped us find “openEHR-EHR-
COMPOSITION.report-result.v1,” a specialized archetype of
“openEHR-EHR- COMPOSITION.report.v1,” which BM25F
could not find. In addition, we could also find relevant
compositional parent archetypes successfully, even though we
did not use the relationship of aggregation. For example, in the
diagnosis retrieval task, our method could find
“openEHR-EHR-SECTION.clinical_decision.v0,” which
defined an archetype slot to allow “openEHR-EHR-
EVALUATION.problem_diagnosis.v1.” It was because the
compositional archetype used the clinical concept of the allowed
archetype as its data element. When we linked the data element
node to its corresponding concept node, we in fact modeled the
relationship of aggregation.

The key idea of our approach lay in identifying potentially
relevant clinical concepts from the input. In a two-level model
methodology, clinicians were usually the end users. In most
scenarios, they were not familiar with openEHR archetypes and
did not know what archetype-friendly concepts were. This
requires the retrieval method to be as insensitive to the input as
possible. For example, take the medication retrieval task. If the
user inputs “medication item, order start date/time, dosage, dose
unit, comment,” using some frequent words in the archetype
library, the CKM performed better than ours. The AP value of
CKM was 0.82 (P@10=0.7, recall=1) whereas ours was 0.45
(P@10=0.6, recall=1). However, when the user used uncommon
words, such as “medicine name” (Table 1), our method, CKM,
Bayesian network, and BM25F achieved an AP of 0.35, 0.26,
0.11, and 0.08, respectively. In addition, as Table 6 shows, our
AP was almost equal across different retrieval tasks (0.35, 0.31,
and 0.30, respectively), whereas the other retrieval methods
were not. From the clinical domain, queries 2 and 3 mainly
belonged to the topic of detection/treatment results, whereas
query 1 belonged to treatment, which indicated that our
performance was relatively stable across different clinical
domains. All these showed that our method was more robust
than the others.

Additionally, better retrieval results could help users to identify
reusable archetypes quickly, promote reuse of archetypes, and
improve standardization of CIMs, thereby enhancing
interoperability of EHRs. Archetype modeling methodology
[15,23] showed that clinicians and domain experts should
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compare archetype design specifications with retrieved
archetypes to decide whether new archetypes need to be
developed or whether an existing one could be adapted. Our
method could successfully identify relevant archetypes that the
CKM could not find, such as “openEHR-EHR-
SECTION.problems_and_diagnoses.v1” in the diagnosis
retrieval task. If this archetype was the case need, domain
experts might create a new one as they thought it did not exist
in the CKM. Our method achieved the best recall (recall=1) in
different retrieval tasks, which could help reuse archetypes and
promote the semantic interoperability of EHRs.

Limitations
Our study has important limitations. First, it is a feasibility study
based on openEHR archetypes. Whether our method can be
applied to other CIMs, such as HL7 templates, and to what
extent it needs to be localized still need to be clarified and
validated. In fact, the key features used in our method are data
elements, clinical concepts, CIMs (archetypes), and their
relationships. It indicates that our method has potential
feasibility if these features are available for other CIMs. Which
results are potentially possible will be discussed in future work.

Second, our method presented in this study lacks the calculation
of the semantic relevance of synonyms or homonyms, both for
queries and network modeling. However, relevant semantic
computing methods [43] can be applied to our retrieval method.
With their help, we may be able to identify that “medication
item” and “medicine item” referred to the same term, and the
results would be improved. In the future, we will validate its
feasibility and effectiveness.

Third, we did not validate the impact of our method on
interoperability. In fact, the basic problem of semantic
interoperability in EHRs must be solved from the perspective
of the business domains the concepts originally belong to. Our
approach only addresses specific technical issues in the CIM
modeling process.

Furthermore, there are other limitations. First, the relevant
archetypes in the three retrieval tasks that we manually annotated
may be controversial, according to different experts. Second,
we compared our performances with the CKM on different
archetype collections, which may lead to inaccurate results.

Conclusions
In this paper, we proposed an extended Bayesian network
retrieval method for finding relevant CIMs. We graphically
represented openEHR archetypes using an extended Bayesian
network with two concept layers. The results show that it is an
effective approach to meet the uncertainty of retrieval tasks,
and the key step in modeling this network is to learn the
dependencies between concepts. Our better retrieval results
could encourage clinicians and domain experts to reuse existing
CIMs to represent EHR data in a standard manner, thereby
enhancing the interoperability of EHRs. Furthermore, our study
provided how the inference process was carried out. Comparing
the results of our method with baseline methods, we had the
best performance. To optimize the method, further research
should focus on the potential feasibility for other CIMs and the
calculation of semantic relevance of synonyms or homonyms.
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