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Abstract

Background: An estimated 3.9 billion individuals live in a location endemic for common mosquito-borne diseases. The
emergence of Zika virus in South America in 2015 marked the largest known Zika outbreak and caused hundreds of thousands
of infections. Internet data have shown promise in identifying human behaviors relevant for tracking and understanding other
diseases.

Objective: Using Twitter posts regarding the 2015-16 Zika virus outbreak, we sought to identify and describe considerations
and self-disclosures of a specific behavior change relevant to the spread of disease—travel cancellation. If this type of behavior
is identifiable in Twitter, this approach may provide an additional source of data for disease modeling.

Methods: We combined keyword filtering and machine learning classification to identify first-person reactions to Zika in 29,386
English-language tweets in the context of travel, including considerations and reports of travel cancellation. We further explored
demographic, network, and linguistic characteristics of users who change their behavior compared with control groups.

Results: We found differences in the demographics, social networks, and linguistic patterns of 1567 individuals identified as
changing or considering changing travel behavior in response to Zika as compared with a control sample of Twitter users. We
found significant differences between geographic areas in the United States, significantly more discussion by women than men,
and some evidence of differences in levels of exposure to Zika-related information.

Conclusions: Our findings have implications for informing the ways in which public health organizations communicate with
the public on social media, and the findings contribute to our understanding of the ways in which the public perceives and acts
on risks of emerging infectious diseases.

(J Med Internet Res 2019;21(5):e13090) doi: 10.2196/13090
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Introduction

Social Media for Public Health
Internet data, including data from social media platforms such
as Twitter, have been used extensively in recent years to study
health patterns and better understand infectious disease
outbreaks [1]. Although it is known that social media usage is

demographically biased [2], these data are thought to be
fundamentally changing health care [3]. Social media data have
been studied to provide insights into public health discourse
[4,5] and concerns [6,7].

A particularly successful area of research has used internet data
to improve the forecasting of disease outbreaks. Several studies
have found that these data, when combined with traditional
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sources of epidemiological data, can improve the surveillance
and forecasting of seasonal diseases such as flu [8-12] and
mosquito-borne diseases such as dengue [13,14] and West Nile
[15].

In this study, we have considered disease epidemics from the
perspective of human behaviors that can affect a disease
outbreak. We studied the recent outbreak of Zika virus, a
mosquito-borne virus that has recently been linked to birth
defects and other disorders, as a domain for studying
disease-relevant behavior. We have focused on a specific
behavior, decisions to change travel to avoid areas affected by
Zika, because of the extensive literature that travel contributes
significantly to infectious disease emergence [16,17]. We have
used a combination of content analysis and supervised machine
learning techniques to understand first-person accounts of
travel-related decisions during the Zika outbreak. This study
aimed to answer the following research questions (RQ):

1. RQ1: Can we identify individuals who report they changed
their travel behavior in response to concerns about Zika?

2. RQ2: What are the characteristics of Twitter users who
change or consider changing their travel behavior? In
particular, we wished to know:

• 2(a): Are there temporal, geospatial, or gender-based
patterns in users who change their behavior?

• 2(b): Are there linguistic differences in messages posted
by these individuals compared with users selected at random
from Twitter?

• 2(c): Are these individuals exposed to more information
about Zika on Twitter?

We have answered these questions by analyzing a collection of
29,386 English-language tweets filtered for keywords describing
Zika and travel. We used a cascade of 3 machine learning
classifiers to identify behavior mentions in tweets, and we have
proposed a method of incorporating classifier error into our
statistical analyses to test our hypotheses.

Zika Emergence
Mosquito-borne infections have long been known to cause large
outbreaks that result in substantial morbidity and mortality. An
estimated 3.9 billion individuals live in a location endemic for
common mosquito-borne diseases, for example, dengue,
chikungunya, and now, Zika [18]. Although Zika emerged only
recently in Central, South, and North America, the virus was
originally discovered in 1947 in Uganda [19]. Through the 20th
century, documented outbreaks were rare. The first outbreaks
occurred in 2007 in Gabon and the Federated States of
Micronesia [19]. Furthermore, 6 years later, French Polynesia
experienced the first large outbreak, and there was a documented
association between neurological symptoms and Zika [19]. The
subsequent emergence of Zika in South America in 2015 marked
the largest known Zika outbreak and caused hundreds of
thousands of infections [19-21]. Between 2015 and 2017, the
Pan American Health Organization (PAHO) reported over half
a million suspected Zika cases in South and Central America
[22].

For the overwhelming majority, Zika is a mild infection; the
majority of cases are asymptomatic [23]. However, for some,

Zika infection can lead to more serious complications, including
the neurological syndrome, Guillain-Barré [24], and birth defects
in fetuses infected in-utero [25].

Importantly, these causal relationships have only been recently
established. In October 2015, Brazil reported an association
between Zika cases and microcephaly, a condition where an
infant’s head circumference is extremely small and is
accompanied by severe developmental and health complications
[26], and others noted a possible association with Guillain-Barré
syndrome in adults [24]. As evidence mounted that there was
a causal relationship, the World Health Organization (WHO)
and PAHO issued alerts in December 2015 about the association
between Zika, neurological syndromes, and birth defects. The
United States responded to these alerts in mid-January 2016 by
issuing a travel advisory for pregnant women, which cautioned
against traveling to locations with local Zika transmission [21].
Zika was then declared a public health emergency by the WHO
in February 2016 [21].

Travel and Infectious Disease
Travel advisories are an important public health intervention
because of the documented impact of travel on the emergence
of infectious diseases [16,17]. Historical case studies describe
imported cases of diseases that led to large outbreaks as early
as the 1500s [16]. In the present day, there are many outbreaks
that have been attributed to travel from other regions. For
example, genetic data from the 2009 H1N1 outbreak show that
the movement of swine around Mexico was responsible for
outbreaks in various provinces [27]. Genetic evidence further
indicates that H1N1 was probably introduced to the United
States from both Mexico and Asia [27].

Simulations find that the impact of travel on disease spread
varies based on a number of factors. For example, Bajardi et al
found that travel restrictions could reduce cases but probably
only minimally [28]. However, research done by Huizer et al
finds that air travel could have dramatically changed the 1968
pandemic influenza in Hong Kong [29]. In general, travel is
thought to play an important but variable role in disease
transmission. Current recommendations are to implement
travel-related control measures as necessary [30,31].

Social Media and Zika
Internet data have been used to better understand individual
health behaviors and health discourse on the Web. Studies have
found evidence that users publicly discuss a variety of ailments
[4], as well as particular behaviors used to prevent ailments.
For example, Signorini et al observed discussions of behaviors
such as hand washing and wearing masks to prevent the flu
[10]. Paul and Dredze similarly note that individuals often report
medications used for symptom relief [4].

As the largest known Zika outbreak occurred recently,
researchers are only now beginning to investigate the use of
internet data to understand this particular disease. McGough et
al used an autoregressive modeling approach to combine
epidemiological data from PAHO, Twitter, Google search
queries, and reports from HealthMap to build short-term
forecasts for several Central and South American countries.
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They found that the lowest error models were produced when
using Google search query volumes [32].

Others have found important information in Twitter data.
Stefanidis et al used tweets from the first 3 months of the
outbreak to characterize discourse around Zika [33]. These data
were used to look at the emergence of spatial clusters in online
discussions of Zika on Twitter and to identify distinct geospatial
communities that participated in the conversation early in the
outbreak. In particular, they found that Twitter users tended to
use public health organizations to find information and did not
generally use Twitter as a way to interact with organizations
directly [33]. Using data encompassing more of the outbreak,
Miller et al used Twitter to identify tweets about treatment,
transmission, and prevention of Zika and noted the use of
Twitter as a way to monitor concerns in the general population
[34].

Sharma et al investigated information dispersion on Facebook
and specifically noted that inaccurate or misleading posts were
more popular than those with scientifically sound information
[35]. This observation is consistent with previous work which
identified rumors and health misinformation on Twitter [36].
Similarly, Gui et al noted that even official sources of
information were unreliable during the outbreak because of
incomplete information and observed that the internet provided
spaces that allowed individuals to frame risk and decisions [37].

Seltzer et al used Instagram to look at image-sharing practices
around Zika [38]. They found that health-related images related
to Zika were predominately about transmission and prevention

and suggested that Instagram could be used to track sentiment
with regard to Zika [38].

Motivation and Contributions
Zika is likely to continue to be an emerging illness of concern
with considerable impacts in South, Central, and North America
[39]. In contrast to previous work that has focused on the
discourse on different platforms or the possible utility of various
internet data sources for modeling forecasting, this study focused
on identifying a particular behavior of impact on the spread of
the disease—travel change. As a first step, this study aimed to
identify individuals on Twitter who chose to change their
behaviors (RQ1), understand the characteristics of those
individuals (RQ2a), and test explanations for any patterns
observed (RQ2b and 2c).

Human behaviors directly impact disease transmission [40,41].
Previous work has found that travel patterns are important for
transmission but difficult to quantify because of a general lack
of available data [41]. A long-term goal of this study is to
incorporate behavior change data into disease-forecasting
models. This initial study focused on the important first step of
identifying travel behaviors and characterizing the factors that
affect them.

Methods

This section describes the process used to identify relevant
tweets and the techniques used to train and tune the classifiers.
We then provide details on the collection of the Twitter timeline
and followee data used in later analyses. Figure 1 summarizes
the various datasets and methods.

Figure 1. Data processing and experimental overview. Dotted boxes show datasets and corresponding sizes where applicable. Solid boxes show methods
used and reference relevant text figures or tables. Black arrows show the flow of data through the pipeline. The gray arrows denote that the final classifiers
were used to identify first person, travel consideration, and travel change tweets from the keyword filtered tweets.
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Identifying Relevant Tweets
Our data come from a set of 15 million Zika-related tweets from
March 1, 2015, to October 31, 2016, with about 7 million in
English, described in Daughton et al [42]. This collection
includes all tweets mentioning Zika and related terms during
this time period.

Qualitatively, we observed that the bulk of these Zika tweets
were sharing news or other information, usually with links to
external articles. However, we also observed a number of
English-language tweets describing personal or shared
experiences with Zika, including behavior changes in response
to concerns about Zika (eg, changing travel plans or buying a
mosquito repellent). This section describes our approach to
identifying such personal mentions of travel-related behavior
through a pipeline of keyword filtering and supervised machine
learning.

Keyword Filtering
As personal mentions of travel behavior are a very small
proportion of the dataset, we first filtered the dataset to provide
a subset with a higher fraction of relevant tweets. This is a
standard approach in many social media applications to obtain
a large enough fraction of relevant instances to build a
reasonably balanced training set [43-47]. In our study, tweets
were filtered for those that contained (1) at least one of a set of
first-person pronouns to target personal behaviors and (2) at
least one of a large set of travel-related terms (see Multimedia
Appendix 1).

To be as comprehensive as possible when constructing the list
of travel-related terms, we included all major airlines in the
United States and all airlines with flights to South America
[48,49]. Twitter handles of the airline, cruise, and travel agency
companies, including official Twitter handles as well as handles
used for negative feedback, were included. These were manually
curated by searching for the company on Twitter and identifying
associated handles.

After filtering and excluding retweets, 29,386 English-language
tweets matched these criteria.

Classification
After keyword filtering, we still observed a variety of tweet
topics in the data. This included mentions of changes in travel,
opinions about the Olympics (which were hosted in Brazil
during the outbreak), opinions about quarantining travelers, and
general worry about Zika. The filters also captured tweets that
were neither first person nor about travel, such as the headline,
Spraying Mosquitoes by Plane Ain’t Perfect, But It’s the Best
We’ve Got for Zika - WIRED.

To further filter the dataset to tweets of relevance to this
study—tweets in which people express that they are personally

changing or thinking about changing their travel behavior—we
constructed 3 binary classifiers:

1. First person: Tweets where someone makes their own
comment related to Zika in contrast to sharing external
content. This can include jokes, opinions, observations, and
questions. This category does not include headlines,
promotion or solicitation for articles or events, or generic
requests for congresspersons to fund Zika.

2. Travel consideration: First-person tweets that are about the
tweeter’s travel plans. This can include tweets that explicitly
express the desire to change or not change travel, as well
as tweets that are concerned but undecided about travel
change.

3. Travel change: Travel consideration tweets that explicitly
indicate that the tweeter has changed travel plans or is
actively trying to change their travel plans. We also
attempted to categorize tweets that explicitly said the user
would not change travel, but we were unable to build a
reliable classifier (F1=.35) and, therefore, excluded it from
this study. Messages such as I want a refund for my trip
would be labeled as travel change whereas messages such
as I’m interested in your refund policy would not.

Each category only applies to tweets positively labeled with the
previous category—travel consideration tweets must also be
first-person tweets, and travel change tweets must also be travel
consideration tweets.

Annotation
To create a training set for learning supervised classifiers, we
randomly sampled 2000 English-language tweets from the
keyword-filtered dataset and annotated them with the 3
categories above. Furthermore, 2 researchers independently
annotated all tweets to measure agreement. As tweets were only
labeled for travel consideration and travel change when they
were labeled with the previous category, we only calculated
agreement for these categories when annotators also agreed on
the previous category. This can be interpreted as measuring: in
the cases where annotators agreed on first person, what was
their agreement on travel consideration?

Examples of each category, frequency, and agreement are shown
in Table 1. To create the final set of labeled data, the 2
annotators discussed the disagreements and updated category
criteria to resolve disagreements. For example, annotators
disagreed on whether promotion or solicitation of articles or
events, as well as requests for congresspersons to fund Zika
should be in the first-person category. After discussion, we
clarified the criteria to exclude those types of tweets. Using
these updated criteria, disagreements were resolved, and the
final labels were selected.
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Table 1. Label frequency (%), annotator agreement (Cohen’s κ), and example tweets for each classification category.

κ% (n/N)Example (paraphrased)Category

.5241.15% (823/2000)When Zika explodes after the Olympics, I’m going to say I told you so!First person

.7617.5% (350/2000)Thinking about going to Rio for honeymoon. Will I be safe with Zika?Travel consideration

.6610.8% (216/2000)So mad I had to cancel my island babymoon because of ZikaTravel change

Training and Evaluation
All classifiers were binary logistic regression classifiers built
using the Python package scikit-learn (version 0.19.1) [50],
where the 3 classifiers were used in a pipeline. Binary logistic
regression is an attractive method because outputs are easily
interpretable and can be easily tuned for optimal precision and
recall. Furthermore, this is a common method used in other
health surveillance work [9,51]. Twenty percent (400/2000) of
the initial dataset was reserved for testing. This is a standard
method used in machine learning to avoid overfitting models
[52]. On the training data, we used a grid search to learn the
best regularization parameter and feature set, using 5-fold
cross-validation to measure the validation performance. For all
classifiers, we tested features that included 1-, 2-, and 3-grams.
Unigrams (1-grams) consistently outperformed longer n-grams
or combinations of n-grams. We also experimented with feature
selection using a chi-square test in an attempt to improve
classifier metrics [53]. The best results were obtained when all
features were used (first person and travel consideration) and
when the top 70% of features were used (travel change; see
Multimedia Appendix 2). Tweets were preprocessed to remove
emojis, punctuation, and consecutive identical characters (eg,
vowel elongation) and to replace URLs and usernames with
generic tokens.

Performance results on the held-out test data are shown in Table
2. Note that the F1 values shown here differ from those shown
in Multimedia Appendix 2 because Multimedia Appendix 2
was generated using cross-validation on the training data,
whereas the final metrics were generated using the testing data.
We observed that the travel consideration classifier performs
the weakest. We also compared the pipeline approach with
stand-alone travel consideration and travel change classifiers.
However, this method resulted in significantly worse F1 scores
(.63 and .65, respectively), and thus, we proceeded with a
pipelined approach. The next subsection describes how we
account for the cascade of classifier errors in our statistical
analyses.

Precision is a measurement of type I error and describes the
number of selected items that are actually relevant (percent of
those classified positive that are actually positive). Recall,
related to type II error, instead describes how many relevant
items are selected (percent of positive instances in the full
dataset that are classified positive). F1 then combines these 2
metrics, using a harmonic mean, to describe the system overall.
We show both F1 using the pipelined approach (the final
classifier) as well as the F1 score if each classifier is built
independently (see Table 2).

Table 2. Final precision, recall, and F1 of the 3 classifiers.

F1 (no pipeline)F1RecallPrecisionClassifier

0.920.920.940.89First person

0.630.670.740.61Travel consideration

0.650.730.810.66Travel change

Statistical Analysis
Our analyses involve measuring the proportion of tweets
classified as the various categories along different dimensions.
When appropriate, we have provided CIs of these estimates.
Our CIs are based on bootstrap resampling [54], a
nonparametric technique that works as follows. A single
bootstrapped estimate of the desired statistic (eg, proportion of
tweets) is estimated by resampling the dataset with replacement
(bootstrapping) and calculating the statistic from the randomly
sampled version of the dataset. This is repeated many times
(1000 times in our experiments) to construct a distribution of
bootstrapped estimates, and the middle 95% of the estimates
are taken as a 95% CI for that statistic [55].

We further modify this approach to account for the uncertainty
present in the classifier, using the negative predictive value
(NPV) and the positive predictive value (PPV). The NPV is the
ratio of true negatives to the sum of true negatives and false
negatives whereas the PPV (equivalent to precision in

classification) is the ratio of true positives to the sum of true
positives and false positives (see [56] for an extensive
description of the method). By using this method, we are able
to account for the inaccuracies of the individual classifiers and
avoid propagating error through the pipeline. We refer to this
method as a weighted bootstrapped CI in all relevant figures.

Timeline and Followee Collection
Owing to the widespread attention the Zika outbreak received
in the media, we wanted to identify if there are other
characteristics that differentiate users who changed or considered
changing travel as compared with users who tweeted about Zika
but did not discuss travel plans.

Using our labeled training data, we collected a set of 100 users
sampled at random for each of the 3 classification categories.
To construct comparison groups, we also sampled 100 users
from the entire set of English-language Zika tweets, as well as
100 English-language users selected at random from all of
Twitter. When sampling, we excluded verified users, as the
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inclusion of celebrities and other prolific accounts could bias
the results. We then identified 3 sets of 100 users at random for
each classifier. For each group, we collected the Twitter
timelines of the users and the list of individuals they follow
(their followees) using Tweepy [57]. These data were
downloaded in January 2018.

Owing to Twitter’s application programming interface (API)
restrictions on user timelines, we were only able to collect the
most recent 3200 tweets for each user. This means that we were
not able to collect tweets during the time period of the Zika
outbreak especially frequently. This could affect the analyses
but will be a close approximation as long as these users have
not substantially changed their tweeting behavior since 2016.
Tweets were preprocessed in the same manner as described in
the Classification section.

Results

Applying the classifiers to the keyword-filtered tweets resulted
in a final dataset of 13,225 first-person tweets, 3083 travel
consideration tweets, and 1567 travel change tweets. This
section describes the results of our analyses of these tweets and
the users who posted these tweets.

Temporal Patterns
Temporal trends in the 3 datasets are shown in Figure 2. Two
major spikes corresponding to important events during the
outbreak are evident. The first occurred in February 2016 during

the time of initial travel advisories by the WHO and the Centers
for Disease Control and Prevention [21]. The second, more
gradual peak occurs in the summer of 2016 and appears to
correspond to the summer Olympics in Rio de Janeiro. We
noticed an increase in travel change tweets primarily during the
initial set of travel advisories, rather than sustained interest in
travel throughout the course of the outbreak.

We also explored temporal differences in the destinations of
the users’ cancelled travel. To do this, we manually labeled the
destinations in all 1567 tweets that were classified in the travel
change category as international or domestic with regard to the
United States. Many tweets were not specific about the location
of travel plans; we were able to identify 34% of travel change
destinations. We found 2 distinct peaks in decisions to change
travel (Figure 3). International change spikes sharply in
conjunction with the initial travel advisories of February 2016,
whereas domestic change spikes sharply in August 2016. The
latter spike aligns in time with evidence of local Zika
transmission in Florida that was first identified in July 2016
[58] and may also correspond to the increase in cases in US
territories such as Puerto Rico [59]. There is an additional peak
in the international change tweets in September 2016. These
tweets primarily discuss canceling travel to Singapore, which
had started to identify local cases in late August 2016 [60].
Although the volume of tweets is small, they show a timely
response to the news that Zika had emerged and was circulating
locally, within a week of the initial official Ministry of Health
report [60].
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Figure 2. Temporal trends in classifications by week.

Figure 3. Temporal trends in decisions to change international (outside of the United States) and domestic (within the United States) travel.
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Geospatial and Gender Patterns

Geospatial Variability
To evaluate spatial trends, we geolocated tweets using Carmen
[61], which resolves tweets to structured locations using
geographic coordinates when available and user profile
information if not.

We grouped tweets into geographic regions defined by the US
Department of Health and Human Services (HHS). HHS
Regions are regional groupings of states in the United States
that are commonly used to aggregate states for health studies.
As the traditional HHS Regions group geographically disparate
states together (eg, Hawaii and island territories are grouped
with mainland regions), we modified the HHS Regions as
follows:

1. R1: Connecticut, Maine, Massachusetts, New Hampshire,
Rhode Island, Vermont.

2. R2: New Jersey, New York.
3. R3: Delaware, District of Columbia, Maryland,

Pennsylvania, Virginia, West Virginia.
4. R4: Alabama, Florida, Georgia, Kentucky, Mississippi,

North Carolina, South Carolina, Tennessee.
5. R5: Illinois, Indiana, Michigan, Minnesota, Ohio,

Wisconsin.
6. R6: Arkansas, Louisiana, New Mexico, Oklahoma, Texas.
7. R7: Iowa, Kansas, Missouri, Nebraska.
8. R8: Colorado, Montana, North Dakota, South Dakota, Utah,

Wyoming.
9. R9: Arizona, California, Nevada.
10. R10: Alaska, Idaho, Oregon, Washington.
11. Caribbean Islands: Puerto Rico, US Virgin Islands.
12. Pacific Islands: Hawaii, American Samoa, Northern

Mariana Islands, Federated States of Micronesia, Guam,
Marshall Islands, Republic of Palau.

We ultimately excluded both the Pacific Islands and Caribbean
Islands from this analysis because there were not enough tweets
classified in these regions (fewer than 50 tweets each).

As tweet volume varies by location, we created a type of
per-capita estimate to adjust for the overall popularity of Twitter
in each region. We collected a 1% sample of tweets from the
Twitter streaming API over approximately 10 nonconsecutive
days throughout December 2017 and January 2018 to normalize
the estimates (42.1 million tweets). The number of tweets
classified from each region was then divided by the total number
of tweets from that region in the random sample.

Figure 4 shows a wide variation in the weighted volume of
tweets across different spatial regions of the United States.
Regions 1, 7, 8, and 10 have the highest relative volume of
tweets considering and changing travel plans. These regions
predominantly consist of landlocked states in the center of the
country and include individuals who would have only been at
risk of Zika infection if they traveled to an area with local
transmission. Interestingly, regions that included states where
Zika transmission occurred (Florida—Region 4 and
Texas—Region 6) were among the lowest in weighted volume
of tweets. It could be that individuals in these locations were
not tweeting about travel change because they were at a more
acute risk of infection. It is also possible that more granular (eg,
state-level) observations are obscured by aggregation to the
HHS level.

Gender Variability
As Zika is primarily a concern for women who are pregnant or
trying to become pregnant, we investigated the relative
percentage of women tweeting versus men (Figure 5). Gender
was inferred using the Demographer tool [62], which infers
gender of Twitter users with an estimated 94% accuracy based
on character n-grams of the persons’ names.
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Figure 4. Weighted volume of classified tweets by modified US Department of Health and Human Services Region. Bars show median weighted
volume. Error bars represent 95% confidence intervals obtained using weighted bootstrapped sampling.

Figure 5. Relative percent of women in a sample of Twitter (red), English Zika dataset (orange), travel consideration dataset (yellow), and the travel
change dataset (blue). Bars show 95% weighted bootstrapped confidence intervals.

Linguistic Comparison
To better understand the factors that contribute to a decision to
change travel, we compared the style and content of messages
between users in the travel consideration and travel change
groups with the random sample of Twitter users. We
hypothesized that those who discuss Zika travel are more likely
to talk about health in general than typical Twitter users and

that those who consider changing travel may have higher levels
of fear or anxiety.

We used Linguistic Inquiry Word Count (LIWC) [63], which
maps various English-language terms to linguistic and
psychological constructs. We selected a subset of LIWC
categories related to our hypotheses (health and anxiety), as
well as categories related to various personal concerns as a way
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of categorizing other general content of discussion. We also
created a category specifically for pregnancy- related terms,
using the regular expression pregnan*, because of the relevance
of Zika to a developing pregnancy. Although pregnancy is
included in the LIWC biological processes category, that
category is much broader than pregnancy specifically.

For each user timeline and each LIWC category, we calculated
the percentage of tweets that contain a term from the category.
In this calculation, we excluded the tweets mentioning Zika so
that the analysis does not reflect the same data used to select
users. In addition, we restricted the analysis to timelines with
a minimum of 10 tweets across the timeline. Finally, for each
category, we calculated the average percentage across all
timelines in each user group. The results are shown in Table 3.

Compared with a random sample of Twitter users, users who
tweeted about changing or considering changing travel in
reaction to Zika are significantly more likely to use past and
present tense, as well as terms indicating social processes,

perhaps indicating increased planning. Travel consideration
users are significantly more likely to use personal pronouns and
singular first-person pronouns and were significantly higher in
the anxiety category. Travel change users were significantly
more likely to use plural first-person pronouns, had higher
inhibition, and tweeted more about pregnancy. There are no
significant differences between the travel consideration and
travel change groups.

Contrary to our expectations, the travel groups do not tweet
significantly differently from the overall Twitter population
about health or bodily functions. This indicates that the users
we identified as part of this behavior change pipeline were
uniquely concerned about Zika and did not appear to be
generally more aware or interested in discussing health-related
topics on social media (with the important exception of
pregnancy). It would be useful to explore more on this line of
inquiry in future work, as understanding who talks about
infectious diseases (and how) is of immediate interest to the
disease surveillance community [64].

Table 3. Average percent of Linguistic Inquiry Word Count category prevalence per group.

ChangeConsiderationAll TwitterCategoryType

0.75010.7495 a0.6080Personal pronounsLinguistic processes

0.32140.3673 a0.27881st singularLinguistic processes

0.0895 a0.06990.04581st pluralLinguistic processes

0.0895 a0.06990.06923rd singularLinguistic processes

0.05710.05610.04743rd pluralLinguistic processes

0.2665 a0.2538 a0.1794Past tenseLinguistic processes

0.08710.08420.0648Future tenseLinguistic processes

0.7947 a0.7711 a0.6053Present tenseLinguistic processes

0.97600.88670.7181Social processesPsychological processes

0.75870.73620.6648Affective processesPsychological processes

0.51050.51060.4323Positive emotionPsychological processes

0.24400.22250.2290Negative emotionPsychological processes

0.03310.0364 a0.0246AnxietyPsychological processes

0.20750.20190.1556TentativenessPsychological processes

0.13750.14370.1203CertaintyPsychological processes

0.0680 a0.06330.0470InhibitionPsychological processes

0.24010.27120.2230Biological processesPsychological processes

0.06740.07870.0705BodyPsychological processes

0.07340.07440.0495HealthPsychological processes

0.05260.06480.0857SexualPsychological processes

0.0016 a0.01060.0004PregnancyOther (non- Linguistic Inquiry Word Count)

aInstances where there are significant differences from the random sample. Significance is estimated using an unpaired 2-sided t test with a significance
level of P<.05 after Bonferroni correction.
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Network Comparison
As a final experiment, we look at the number of followees each
of the randomly selected users had that were also present
elsewhere in the Zika dataset—that is, the accounts a user
follows that had at least one Zika-related tweet. Table 4 shows
the number of Zika followees in each group as well as the
number of tweets those followees tweeted that were about Zika.
We calculate both the raw counts as well as normalized counts
in which we divide the number of Zika followees and number
of Zika tweets by each user’s total number of followees. This
allows us to measure both the raw number of Zika tweets an
individual could have been exposed to and the relative likelihood
of exposure based on the proportion of their feeds that contained
Zika content.

Although it is impossible to replicate Twitter’s algorithm for
showing information on the timeline, we have the unique

capability to look at network effects because we have 100% of
the tweets during the time period that explicitly mentions either
zika or zikv. We reasoned that individuals who have many
followees who appear in the Zika corpus (ie, they follow
accounts that are also tweeting about Zika) were more likely to
have tweets about Zika appear in their feed. If we were to find
that individuals who follow many accounts that appear in the
dataset are more likely to appear in the travel change group, we
would then further question the role that Twitter plays in
catalyzing and informing decisions about behavior change.

Indeed, we did find that those individuals who considered or
changed their travel plans had a higher number of followees
and tweets that they could have been exposed to in the sample.
Although the travel groups had higher counts under every metric
when compared with the control group, the difference is only
significant under the normalized metrics.

Table 4. The number of followees an individual user has who are also in the dataset, and the number of tweets that followees tweeted that are also in
the dataset. We normalized to the number of total followees for each individual. Values in italics are significant (P≤.05).

Change, median (95% CI)Consideration, median (95% CI)All Twitter, median (95% CI)Metric

122.2 (82.3-177.4)111.6 (71.1-170.9)92.8 (58.3-135.4)Number of followees (raw)

0.17 (0.14-0.20)0.15 (0.12-0.17)0.08 (0.06-0.11)Number of followees (normalized)

122.7 (79.6-179.0)111.3 (67.7-169.8)93.6 (56.2-141.2)Number of tweets (raw)

7.99 (3.47-14.98)5.7 (3.41-8.74)1.71 (1.02-2.62)Number of tweets (normalized)

Discussion

Principal Findings
In an age where infectious diseases are emerging and
re-emerging rapidly [65], the ability to identify groups of
individuals who might be at increased risk of contracting or
contributing to the spread of infection can inform methods of
risk communication, infectious disease interventions, and
policies at a broader level.

We present supervised classifiers that identify evidence of
behavior changes with regard to concerns and changes in travel
plans owing to Zika on Twitter. Although previous work has
observed that individuals mention protective health behaviors
on social media [10], to the best of our knowledge, this is the
first work to study a specific behavior change in depth. We
examined temporal and demographic patterns in travel
behaviors, as well as psycholinguistic markers and information
exposure (as approximated through lexical and network
analyses, respectively) of individuals changing behavior
compared with a randomly sampled control group. More
concretely, we considered 4 research questions. Their respective
conclusions are discussed below.

RQ1: Can we identify individuals who report they changed
travel behavior in response to Zika? We conclude that tweets
about changing travel and considering changing travel can be
identified with high recall. Furthermore, we are able to account
for the comparatively lower precision achieved here using our
weighted bootstrap resampling method.

RQ2(a): Are there temporal, geospatial, or gender-based
patterns in users who change their behavior? We observed

temporal patterns in travel consideration and travel change
tweets, including the destination of travel, which correspond to
important events in the Zika outbreak. We are encouraged that
temporal trends correspond with events that we would expect
to be reflected in this data stream.

We additionally find significant differences in the gender
distribution of users tweeting about travel consideration and
change compared with the general population of Twitter. In
particular, we find that the relative proportion of women
engaging in conversation indicating travel change behaviors on
Twitter is higher than men. This, in combination with the results
of RQ2(b) discussed below, is evidence that pregnancy was
playing a role in these considerations.

For comparison with existing knowledge on this subject, we
discuss 2 small surveys (85 and 121 participants) conducted in
New York (NY) [66] and Miami [67] about the knowledge
around Zika and travel and included related questions about
behaviors. In NY, researchers found that roughly a third of
women surveyed were not aware of the travel advisories in place
during their travel, almost half were not aware that Zika was
being transmitted in the location that they traveled to, and a
relatively large number (about one-third) did not know they
were pregnant at the time of travel [66]. In Miami, the vast
majority of respondents were aware of Zika and reported that
they changed their behaviors to avoid the disease; however,
only 27% were aware that they were at risk of infection where
they lived [67]. Although these survey data exclude men, they
do find evidence that women were aware of the disease and that
some women (though not all) took measures like changing travel
plans to avoid exposure to the disease. Indeed, these surveys
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highlight the importance of more work in this area to further
understand behavior changes over larger spatiotemporal regions.

RQ2(b): Are there linguistic differences in messages posted by
these individuals compared with users selected at random from
Twitter? We found that users in the travel categories do not
appear to tweet more often about health than Twitter users in
general. However, travel change users do tweet more often about
pregnancy, which suggests this may be a factor in considering
travel changes. In addition, travel consideration users tweet
words associated with anxiety more than the general population.

RQ2(c): Are individuals who change their behavior exposed to
more information about Zika? Travel consideration and change
users have a statistically higher fraction of Zika-related
followees and tweets in the sample, indicating that these users
had greater exposure to Zika-related information. This is
evidence that exposure to information about Zika may play a
role in this decision-making process.

Limitations
There are several limitations of the data and our methodology
that must also be considered. First, it is known that Twitter is
a demographically biased data source [68] and as such may not
be representative of the broader population. However, this
research contributes to the vast literature that uses the Twitter
platform to understand health behaviors [4,10,69]. The data are
additionally biased in that data only includes tweets in English,
which are predominately from the United States. However, we
note that data from the United States are appropriate for studying
travel behaviors because there was minimal Zika transmission
in the United States, as the mosquito vector is absent in the
majority of the country. As such, the main method of exposure
was through travel to locations with local transmission. We
believe our framework could be applied to other behaviors that
are only applicable in places with local transmission, such as
the use of mosquito repellent, but the classifiers would need to
be trained in other languages such as Latin American Spanish.

Second, we recognize the lack of external validity owing to the
absence of comparable ground truth data. We view this as a
motivation for this research, where findings from this study can
be viewed as hypotheses to test with future experiments. It is
well known that human behaviors directly impact disease
transmission [40,41,70]. For example, Lau et al find that the
Severe Acute Respiratory Syndrome epidemic changed
individuals' travel patterns [71], and substantial research has
shown that beliefs and behaviors about vaccinations dramatically
impact disease occurrence [72]. However, travel-related research
data are currently sparse [41]. Although we cannot say that the
findings from this research are generalizable, the fact that they
exist on Twitter is evidence they do exist. As such, these data
can be viewed as motivations for larger survey experiments to
confirm the findings and to evaluate if Twitter is a viable
alternative data stream. Future work could also aim to validate
behavior estimates indirectly by verifying their utility in an
external task such as disease forecasting.

Third, machine learning classifiers introduce error [73], which
could be further amplified by using a pipeline approach.
However, we use weighted bootstrap sampling to appropriately

account for these errors in downstream analyses. As our results
showed significant differences even after accounting for errors,
we did not make it a priority to build the best possible classifier
in this work, but instead relied on standard tools.

Finally, there are some limitations of our labeled dataset. It is
relatively small compared with some previous work. We
specifically chose not to scale up the annotation process with
crowdsourcing [74] so that the annotations were done by
researchers with domain expertise. However, it is possible that
a larger training set could lead to better classifier performance.
Similarly, our ability to identify statistically significant
differences between user groups is limited by having only 100
timelines per group. However, the rate limits of the Twitter API
make it difficult to collect large numbers of user timelines.
Furthermore, although small sample sizes may affect the power
of the analyses, this does not affect the correctness of the
approach, which correctly constructs CIs.

In addition, the labeling criteria we used could introduce bias.
In particular, we can only capture people who explicitly state
that they are canceling travel and that they are doing so because
of Zika. Research in this field is limited, but initial work on
self-reports of cold and flu illness indicates that it is rare for
individuals to tweet about their health concerns [77], and it is
currently unknown how this could bias the distribution of labels.
However, the experiments presented here do not try to measure
overall levels of travel cancellation because of these issues.
Instead, we focus on comparisons across groups, which are valid
if these data biases are consistent across groups (eg, gender and
geography).

Implications
The results of this study show that people do describe
first-person behavior changes on Twitter and that such tweets
can be classified and analyzed at scale. In particular, we find
that our behavior change classifier produces a dataset that
corresponds to events during the outbreak and shows evidence
of geographic and gender-based differences in the behavior
change.

These data support hypotheses that social media can play a role
in an individual’s health choices. Other research has shown that
an important predictor of population health is knowledge and
that this knowledge can be disproportionate across different
geographical areas based on access to health care expertise [75].
Research on ways in which social media can facilitate promotion
of accurate and important health messages, thus, has clear
applications.

Eventually, we envision these types of algorithms being used
within the disease surveillance community. There is substantial
previous work using internet data to gather traces of information
about individuals’ health to monitor and forecast infectious
disease outbreaks (eg, search query volumes used for Google
Flu Trends). In principle, social media–derived data about
behaviors that affect the spread of disease could be incorporated
into forecasting models to better describe disease transmission
dynamics. As part of this study, we plan to eventually
incorporate this type of data into such models.
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In addition to monitoring and forecasting, data and conclusions
from studies such as this work can inform preventative health
messaging. Previous research has found that the ways infectious
diseases are framed contribute in important ways to the public
perception of the event’s severity [76]. Gui et al describe the
way in which individuals frame their personal risk from Zika
amid uncertain or unclear public health recommendations [37].
They noted that even official sources of information were
unreliable during the outbreak because of incomplete

information and observed that the internet provided spaces that
allowed individuals to frame risk and decisions [37]. We
qualitatively observed in our data that there were many instances
of individuals who were at low risk of complications resulting
from Zika but were highly concerned about their personal risk
from Zika. Future work in understanding how individuals frame
personal risk from infectious diseases could contribute to our
understanding of ways to improve public health risk
communication.
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