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Abstract

Background: Robot-mediated telerehabilitation has the potential to provide patient-tailored cost-effective rehabilitation.
However, compliance with therapy can be a problem that undermines the prospective advantages of telerehabilitation technologies.
Lack of motivation has been identified as a major factor that hampers compliance. Exploring various motivational interventions,
the integration of citizen science activities in robotics-based rehabilitation has been shown to increase patients’ motivation to
engage in otherwise tedious exercises by tapping into a vast array of intrinsic motivational drivers. Patient engagement can be
further enhanced by the incorporation of social interactions.

Objective: Herein, we explored the possibility of bolstering engagement in physical therapy by leveraging cooperation among
users in an environmental citizen science project. Specifically, we studied how the integration of cooperation into citizen science
influences user engagement, enjoyment, and motor performance. Furthermore, we investigated how the degree of interdependence
among users, such that is imposed through independent or joint termination (JT), affects participation in citizen science-based
telerehabilitation.

Methods: We developed a Web-based citizen science platform in which users work in pairs to classify images collected by an
aquatic robot in a polluted water canal. The classification was carried out by labeling objects that appear in the images and trashing
irrelevant labels. The system was interfaced by a haptic device for fine motor rehabilitation. We recruited 120 healthy volunteers
to operate the platform. Of these volunteers, 98 were cooperating in pairs, with 1 user tagging images and the other trashing
labels. The other 22 volunteers performed both tasks alone. To vary the degree of interdependence within cooperation, we
implemented independent and JTs.

Results: We found that users’ engagement and motor performance are modulated by their assigned task and the degree of
interdependence. Motor performance increased when users were subjected to independent termination (P=.02), yet enjoyment
decreased when users were subjected to JT (P=.005). A significant interaction between the type of termination and the task was
found to influence productivity (P<.001) as well as mean speed, peak speed, and path length of the controller (P=.01, P=.006,
and P<.001, respectively).

Conclusions: Depending on the type of termination, cooperation was not always positively associated with engagement,
enjoyment, and motor performance. Therefore, enhancing user engagement, satisfaction, and motor performance through
cooperative citizen science tasks relies on both the degree of interdependence among users and the perceived nature of the task.
Cooperative citizen science may enhance motivation in robotics-based telerehabilitation, if designed attentively.
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Introduction

Background
Debilitating neurological diseases such as stroke require
intensive, repetitive, and high-frequency physical therapy for
maximum recovery of motor function and self-reliance [1-3].
However, costly resources and limited rehabilitation personnel
make rehabilitation unavailable to the majority of patients.
Furthermore, disability often encumbers mobility, preventing
patients from leaving their homes and frequenting the therapists’
office [4]. Therefore, reaching their full recovery potential is
greatly contingent upon performing self-directed physical
therapy with limited professional feedback.

Robot-Mediated Telerehabilitation
Several rehabilitation robots have been developed for delivery
of exercise programs for the upper limb, including the
MIT-Manus (Massachusetts Institute of Technology) [5,6],
Gentle/S (University of Reading) [7], ArmIn (ETH Zurich) [8],
and Mirror Image Movement Enabler (Stanford University) [9].
Ultimately, robotic rehabilitation devices aim to administer and
monitor exercise for the arm with reproducible high-intensity
and high-dosage sensorimotor therapy while collecting pertinent
data for assessment by a medical professional [10,11].

The major hurdles in the widespread adoption of these
robotics-based technologies are costs and user-friendliness,
whereby these devices often have prohibitive costs to the general
public and require some form of technological proficiency that
may be beyond the typical background of patients or even
therapists [12,13]. To fill these gaps, several studies have
explored the feasibility of delivering rehabilitation treatments
using low-cost, off-the-shelf gaming systems such as the
Microsoft Kinect and PlayStation EyeToy [14-17]. Gaming
controllers are intuitive to users, easy to repurpose, and more
affordable, thereby offering a promising means for accessible
home-based telerehabilitation. Gaming controllers can also
measure motor performance objectively, toward remote
assessment of patient status and progress by physicians [18].

As an example, the Novint Falcon can detect subtle differences
in the kinematics of healthy and affected individuals [19] and
evaluate patients’ motor learning as their rehabilitation
progresses [20], through measurements of mean speed, peak
speed, and path length traversed. These metrics have been
previously used and upheld in robotic telerehabilitation of the
upper limb to rapidly assess physical effort and movement
accuracy and smoothness [21,22]. Other metrics can be used to
assess patients’ motor performance, including range of motion
[8,23], coordination [24,25], and amount of force exerted
[14,26].

Adherence to Rehabilitation Regimen
Although the mechanical framework of telerehabilitation has
been successfully implemented in homes, patients often fail to

comply with their home-based physical therapy, primarily
because of the lack of motivation [27,28]. Acknowledging that
sustained engagement is a prerequisite for successful outcomes,
a large body of research has studied motivational interventions
through game designs toward overcoming noncompliance in
telerehabilitation [29-33]. For example, in an experimental
study, Colombo et al [31] simulated a video game experience
by displaying performance scores to improve motivation and
adherence to the physical regimen. Similarly, in the study by
Nijenhuis [29], a motivational messaging system was introduced
to encourage future engagement in training sessions. Other
studies have considered the use of serious games that do not
aim primarily at entertainment for enhancing the physical
rehabilitation experience [34-37]. For instance, Jonsdottir et al
[38] have demonstrated the feasibility and efficacy of
Rehab@Home, a therapeutic framework that simulates daily
life activities in a virtual environment using Kinect. This gaming
system was shown to increase gross motor function and improve
patients’ experience and perception of health in patients with
multiple sclerosis.

Overall, these studies have demonstrated that gamification
increases engagement in rehabilitation exercises [37,39]. Yet,
the full capacity of supplemental motivational interventions
remains largely untapped as designers rarely emphasize the
users’ intellect and interest to maintain prolonged engagement.
Particularly in the context of rehabilitation, the age group of
the majority of patients may not be conducive to the use of
typical computer games that target young gamers [40,41].
Aiming to address the differential motivations of the elderly,
Flores et al [27] pinpointed the gaming design criteria catering
to the needs of both young and elderly users, which include (1)
consideration of decreased sensorimotor abilities, (2) cognitively
challenging elements, and (3) some degree of socialization.

Citizen Science and Telerehabilitation
Following this line of work, we have previously demonstrated
the potential utility of citizen science in increasing engagement
and enjoyment in rehabilitation through the systematic
interaction of environmental citizen science and robotics-based
low-cost telerehabilitation technologies [19,42,43]. Citizen
science projects address a wide range of scientific fields of
inquiry. For example, on Stardust@Home, users can review
images of an aerogel that was sent to outer space and flag traces
of interstellar dust trapped in it [44]. In a different project,
Foldit, volunteers fold virtual proteins and produce novel models
of protein structures [45]. Citizen science could be a passive
undertaking whereby citizen scientists lend computational power
while their computers are idle [46,47]. The activities are not
restricted to desktop computers and may also take place
outdoors, where volunteers report of animal sightings or record
air and water quality using their mobile phones [46,47].

In general, in citizen science projects, members of the public
execute scientific tasks in authentic research projects, led by
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professional scientists and otherwise [46,47]. The contribution
of volunteers typically involves data collection or data analysis
and does not require specific expertise [47,48]. The motivation
ascribed to citizen science projects is majorly intrinsic as
participation is intellectually stimulating and promotes learning
[48,49]. Moreover, the completion of individual tasks requires
a small time commitment, allowing users to contribute at their
own pace. Therefore, citizen science inherently satisfies the
criteria identified by Flores et al [27], with the exception of
social interaction, which must be separately addressed through
new design interventions.

Social Interactions as a Motivational Driver
Personal and social support, whether provided by practitioners,
family, or friends, has been found to increase patients’
motivation toward performing exercise at home and to improve
their mental well-being [50,51]. In the context of
telerehabilitation, socially assistive robots, affording social
interaction with patients while relaying treatments, were created
[52]. The mere interaction with inanimate socially assistive
robots was demonstrated to increase patients’ engagement in
therapy and alleviate their feelings of stress and depression
[52-54]. Building on this evidence, interhuman social
interactions were introduced between the patient and their
practitioner [52,55,56] and subsequently extended to include
interactions with relatives and friends, and even strangers
[30,52,57-59]. In all cases, patients expressed a strong
preference to perform exercise with another person rather than
alone and with a human partner rather than a virtual one
[30,57,60]. Moreover, social interactions were demonstrated to
improve motor performance [61]. Yet, the context in which
social interactions were studied is largely limited to games.

Whether social interactions could benefit or hamper the success
of citizen science–based rehabilitation treatments remains
elusive. It is known that social presence alone should enhance
user engagement and prolong participation in Web-based
platforms through social comparison [62-65]. However, working
in a team may also lead to the opposite outcome, whereby users
could reduce their participation in an activity because of
diffusion of responsibility, a sociopsychological phenomenon
observed when an individual is less likely to assume
responsibility of action in the presence of other individuals [66].
Diffusion of responsibility is moderated by several factors,
including anonymity [67], group size [68], and division of labor
[69], which can all be found in citizen science [70]. As a result,
it is difficult to predict whether including social elements in
citizen science–based rehabilitation could produce the sought
motivational factor advocated in the study by Flores et al [27]
or, instead, produce an adverse social phenomenon through
diffusion of responsibility.

Objectives
In this study, we sought to fill this gap in knowledge by
examining the influence of computer-mediated cooperation on
the engagement and motor performance of users involved in a
rehabilitation exercise that integrated environmental citizen
science and robotics-based technologies. We hypothesized that
introducing cooperative tasks into citizen science would
motivate users to extend their contribution by increasing the

amount of scientific data they collect or analyze (productivity)
and the time they spend performing the scientific task
(persistence). This hypothesis rests on previous evidence that
both of these measures are positively associated with motivation
in goal-related activities [71]. In addition to increasing
engagement, we expected that the integration of cooperation
would improve users’ motor performance, reflected by their
exertion of higher levels of physical effort. Finally, we
hypothesized that the level of improvement in engagement and
motor performance would be modulated by varying the degree
of independence between paired users, whereby strengthening
the interdependence between them would mitigate diffusion of
responsibility.

To test our hypotheses, we created a novel, dedicated interface
for Brooklyn Atlantis—a local citizen science project for
environmental monitoring of the highly polluted Gowanus canal,
located in Brooklyn, New York [72]. Our system enabled users
to analyze pictures of the canal taken by an aquatic robot using
a low-cost haptic controller, whose potential use in rehabilitation
treatments on patients has been previously demonstrated by our
group and other researchers [19]. Using the system, a pair of
volunteers was presented with a list of descriptive keywords
that may describe the objects in images. The volunteers sorted
a list of labels together where one user allocates labels that
describe objects in the image while the other discards irrelevant
labels. Here, we report results for the effect of using the platform
and the collaborative procedure on healthy people.

Methods

Hardware and Software
All activities were performed using the Novint Falcon game
controller, a low-cost haptic controller capable for use in 3
dimensions (Figure 1). The Novint Falcon offers translational
hand movement with 3 degrees of freedom: left-right (x-axis),
up-down (y-axis), and push-pull (z-axis). This device was
demonstrated to provide effective fine-motor hand rehabilitation
[73]. The system, developed using Unity 3D (Unity
Technologies), displayed a 360° image of the Gowanus Canal
on a computer screen (Figure 2). To explore the image, users
pressed the middle button on the controller continuously and
moved the controller in the general direction they wanted to
rotate the view. A reproduction of the Novint Falcon interface
was continuously shown on the screen, as a reference for the
function of each button (Figure 2).

Movement was implemented in spherical coordinates, whereby
motion of the controller along the x-axis (Figure 1) translated
into azimuthal rotation (turning right or left in Figure 2) and
motion of the controller along the y-axis (Figure 1) translated
into elevational rotation (turning up or down in Figure 2). As
the motion along the push-pull axis did not convey a meaningful
function (zoom was not offered), a highly resistive force was
applied in this direction to prevent motion. In addition, visual
feedback was added to the system, such that the image of the
Gowanus Canal would fade in response to motion along the
z-axis, either pushing or pulling. The deviation from the z-axis
was further conveyed through a black circle and radiating cone,
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portraying where the user is facing and how far off the axis they
are located (Figure 2).

As part of the citizen science image classification project, 2
tasks were implemented in the system. The first task consisted
of tagging objects observed in the images using labels from a
list, located on the right of the 360° image (green panel in Figure
2). The second task entailed eliminating labels from the list that
were not in the image by allocating them to the trash bin, located
on the right of the list of labels (yellow panel in Figure 2). When
2 users performed the tasks together, each user had independent

control over exploration of the 360° image. Social cues were
conveyed through the system as cooperating users could view
their partner’s actions in real time. That is, the user assigned
with the tagging task could see a list of the eliminated labels
forming below the trash bin (Figure 2). Similarly, the user
assigned with the trashing task could see the labels assigned to
the image (Figure 2). The presence of a peer was further made
evident by highlighting a label in red, indicating that it was
selected by the peer. An illustration of the setup is depicted in
Figure 3.

Users were able to select labels by pressing the right or left
button on the controller, depending on their dexterity. Once a
button was pressed, the label was tethered to the cursor and
effectively dragged by it. To deselect a label, or to release it at
a desired location, users pressed the controller button again.
Once assigned, labels were replaced by others from a
predetermined sequence of 49 labels, all of which were
previously contributed by citizen scientists in Brooklyn Atlantis
in our previous research [19,74-77]. To maintain fluidity of the
image classification process and avoid oversaturation of images
with tags, an image was replaced by another image after 5 tags
were assigned. A tag counter was displayed on the screen to
inform the user of the number of tags assigned to the current
image (Figure 2).

Users were able to terminate the activity by pressing the red
Quit button on the screen (Figure 2). To simulate the different
levels of interdependence in the cooperation between
individuals, 2 types of termination were considered in the
experiments: independent termination (IT), whereby users could
continue contributing to the project even after their peer had
quit, and joint termination (JT) whereby termination by 1 user
ceased the session for the other user too.

Figure 1. The Novint Falcon with the designated axes of motion.

J Med Internet Res 2019 | vol. 21 | iss. 5 | e12708 | p. 4http://www.jmir.org/2019/5/e12708/
(page number not for citation purposes)

Barak Ventura et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. A screenshot of the user interface. On the left of the screenshot is a 360° image of the Gowanus canal. The user’s cursor is placing the label
“Crane” onto the image, while a tag containing the word “Buoy” has already been placed. A reproduction of the Novint Falcon controller with a
description of the function of each button is located on the upper right corner of the image. In the green panel, a counter of the number of labels that
are yet to be assigned to the current image is displayed at the top. Below the counter, there is a list of 10 labels. The label “Crane” is highlighted in red
as it is currently selected by the user. Below the list of labels is a visual feedback that represents deviation from the z-axis. A Quit button is situated at
the bottom of the green panel. In the yellow panel, there is a garbage bin for eliminating labels that do not describe objects in the current image. The
labels below it, “Robot” and “Person”, have been eliminated by the user.
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Figure 3. Schematic of two cooperating users classifying images remotely from two different computers in separate rooms.

Experimental Procedure
This study was carried out in compliance with the institutional
review board (IRB) at New York University (IRB FY2016-184).
Overall, 120 members of the university community, with a mean
age of 27.36 (SD 8.28) years, were recruited and subjected to
one of 3 conditions (Table 1): IT (50 volunteers), JT (48
volunteers), and control (22 volunteers). Although control

subjects performed both tagging and trashing, volunteers in IT
and JT cooperatively carried out the activity such that half of
the volunteers (25 and 24 volunteers in IT and JT, respectively)
performed only tagging and the other half (25 and 24 volunteers
in IT and JT, respectively) performed only trashing. In the
control condition, the volunteer was able to withdraw from the
activity at any time.

Table 1. A summary of the experimental conditions tested.

Number of volunteersCooperationCondition and task assignment

Control

22AbsentTagging and trashing

Independent termination

25PresentTagging

25PresentTrashing

Joint termination

24PresentTagging

24PresentTrashing

Recruitment and experimental procedures were standardized
through scripts and a PowerPoint presentation. We recruited
volunteers in public spaces on campus. During recruitment, we
verbally introduced potential participants on campus to the
notion of citizen science following a script. Once recruited,
paired volunteers were brought into 2 separate private rooms
to simulate Web-based cooperation as envisioned in future
application within robotics-based telerehabilitation. They did
not know who their peer was.

All participants were subjected to the same experimental
protocol. Before beginning the experiment, participants were
given an overview of the Gowanus Canal and Brooklyn Atlantis
using a PowerPoint presentation. Through the presentation,
within cooperative conditions, IT and JT, participants were
notified that they will be working together with a peer and were
instructed to complete their assigned task only. They were

informed that they may withdraw at any point they would like
and whether their withdrawal will terminate their peer’s
participation (JT) or not (IT). Upon signing a consent form, the
participants underwent a tutorial teaching them how to use the
Novint Falcon and the system. After the tutorial, they were
connected with their peer and began carrying out their tasks.
Users who were subjected to the control condition carried out
both tasks, tagging and trashing. Users who were subjected to
cooperative conditions were randomly assigned to one of the 2
tasks. They performed the exercise until they pressed the quit
button. After quitting, the participants rated their experience on
a 7-point Likert scale in response to the statements “I enjoyed
this activity” and “This activity was fun.” Once the volunteers
submitted their answers, the experiment was concluded.
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Data Collection and Analysis

Data Acquisition
For each user, 3 datasets were created. The first dataset
documented information on tag allocation, including tag content,
time of allocation, and allocating user identity number. The
second dataset recorded users’ scores of enjoyment. The third
dataset consisted of the Novint Falcon controller position in 3D
space, recorded at a sampling rate of 60 positions per second.
The collected data were used to quantify user engagement,
enjoyment, and motor performance.

Data Processing
User engagement was evaluated through their productivity and
persistence [71]. Productivity was measured as the number of
labels processed by the user. Persistence was measured as the
time spent performing the activity [71]. Users’ enjoyment was
evaluated from surveys. Interrater reliability was validated using
the Cronbach alpha [78]. Enjoyment was scored by averaging
the ratings on the multiple questions for each user, linearly
scaling between 0 (Likert scale 1) and 1 (Likert scale 7), and
normalizing using an arcsine transformation by considering the
proportional nature of the variable [79].

The trajectory of the controller was examined from the recording
of consecutive points in space over time. A total of 3 motion
metrics were evaluated from the trajectory, namely, the
controller’s mean speed, peak speed, and path length. For each
trial, the instantaneous speed was estimated using a backward
Euler scheme on the sampled positions from the haptic device.
The mean speed was computed by averaging instantaneous
values over the whole trajectory and the peak speed as the
maximum value among the 90th percentile from the trajectory
[80]. The path length was measured as the sum of distances
between pairs of consecutive data points.

Statistical Analysis
The influence of cooperation on engagement, enjoyment, and
motor performance was investigated by fitting each variable
into a generalized linear-mixed effects model [81], specifying
condition (3 levels: control, IT, and JT) as an independent
variable and both pair identity and task assignment (tagging
and trashing) as random effects (R lme4 package version 1.1-15
[82]). To improve the normality of the model residual, we
specified a Gaussian family with a log link for persistence and
enjoyment, a Poisson family with a log link for productivity,
and a gamma family with a log link for motor performance. The
significance of the influence of conditions was tested using a
likelihood ratio test, comparing the model against a null model
in the absence of the condition as the independent variable.
When significant effect was found, post hoc analysis was

performed using the Dunnett test (R multcomp package version
1.4-8 [83]).

Next, we evaluated the influence of the modality through which
cooperation was implemented on engagement, enjoyment, and
motor performance. Specifically, we fitted each variable into a
generalized linear mixed-effects model, specifying condition
(2 levels: IT and JT), task assignment (2 levels: tagging and
trashing), and the interaction between them as independent
variables, and pair identity as a random effect. The same error
family as the previous model was used for the corresponding
variable. To test the significance of the interaction term, the full
model was tested against a null model without the interaction
using a likelihood ratio test. In case a significant interaction
was found, the difference between tasks was further examined
within each condition, by specifying task as an independent
variable and pair identity as a random effect. In case the
interaction was not significant, we removed the interaction from
the full model, and the effects of condition and task were tested
using a likelihood ratio test, individually, comparing against a
null model.

Although not part of our original hypotheses, we also tested the
influence of social presence on individual speed performance.
In each pair of cooperating peers in IT, the trajectory of the
more persistence was partitioned into 2 parts, before and after
their peer had quit. Users’ mean and peak speeds were fitted
into separate generalized linear mixed-effects models, specifying
the time partition (2 levels: before and after) as an independent
variable and user identity as a random effect. A gamma family
with log link was specified to normalize the model residual.
Users’speeds before peer withdrawal were compared with their
speeds following peer withdrawal using a likelihood ratio test,
comparing the model against a null model in the absence of the
time partition as the independent variable.

For all statistical tests, we set the level of significance at
alpha=.05.

Results

Influence of Cooperation on Engagement
On average, users processed (tagged or trashed) a mean of 46.35
(SD 3.16) labels, spending 16.37 (SD 0.63) min. Neither
productivity nor persistence were found to differ among

conditions (χ2
2=0.1 P=.92 and χ2

2<0.1; P=.79, respectively;
Figure 4). However, the level of enjoyment was found to vary

among conditions (χ2
2=10.5; P=.005; Figure 4), with JT users

rating the activity significantly lower than control users (z=3.25;
P=.002). By contrast, IT users did not rate the activity
significantly different from control users (z=1.94; P=.08).
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Figure 4. Engagement of users in the activity. A) number of labels processed by participants in each condition. B) rate of enjoyment for each condition.
The vertical lines represent standard errors. *: statistically different means among conditions. $: statistically different means among tasks.

Influence of Cooperation on Motor Performance
With regard to motor performance, the mean speed did not differ

among conditions (χ2
2=2.6; P=.26). Contrarily, we determined

a significant variation of peak speed among conditions (χ2
2=7.7;

P=.02; Figure 5). Although post hoc comparisons failed to
identify a significant difference between JT and control
conditions (z=0.11; P=.99), we registered a significant difference
between IT users and control users (z=2.44; P=.02). The path

length was not significantly different among conditions (χ2
2=4.1;

P=.12).

Influence of Modality on Engagement
Testing for the influence of cooperation modality on
productivity, we found a significant interaction between

condition and task (χ2
2=43.1; P<.001). When investigating the

effect of task assignment in each condition, we found a
significant difference in productivity between the tasks in both

conditions, IT (χ2
1=265.7; P<.001) and JT (χ2

1=25.5; P<.001).
We failed to identify a significant interaction between condition

and task with regard to persistence (χ2
1=3.3; P=.06). An

interaction between condition and task was not found in

enjoyment as well (χ2
1=1.1; P=.29). Enjoyment was significantly

different between the tasks (χ2
1=7.7; P=.005), whereas condition

failed to reach significance (χ2
1=2.8; P=.09).

Influence of Modality on Motor Performance
With regard to the performance metrics, a significant interaction
between condition and task was found to influence path length

(χ2
1=6.3; P=.01), mean speed (χ2

1=7.4; P=.006), and peak speed

(χ2
1=25.8; P<.001; Figure 5). For path length, we found a

significant difference between task assignment in IT condition

(χ2
1=11.3; P<.001), whereas we did not find one in JT condition

(χ2
1<0.1; P=.90). For mean speed, a significant difference

between tasks was found in IT condition (χ2
1=6.2; P=.01) but

not in JT condition (χ2
1=2.4; P=.12). Finally, for peak speed, a

significant difference was found between tasks in both IT and

JT conditions (χ2
1=16.1; P<.001 and χ2

1=11.0; P<.001,
respectively).

In IT, volunteers significantly reduced their mean and peak
speeds following their peer’s quitting (z=2.97; P=.002 and
z=3.30; P<.001, respectively; Figure 6).
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Figure 5. Motor metrics. A) mean speed in each condition, B) peak speed for each condition, C) path length traversed by the controller in each conditions.
The vertical lines represent standard errors. * represents statistically different means among conditions. $ represents statistically different means among
tasks.

Figure 6. Differences in mean and peak speeds of the more persistent users in condition IT, before and after their peer has withdrawn. The vertical
lines represent standard errors. * represents statistically different means among conditions.

Discussion

Principal Findings
Citizen science is an effective means for improving
rehabilitation treatments. Patients undergoing physical
rehabilitation have shown a strong preference toward exercise
embedded with citizen science and were more likely to repeat
it at the cost of their time commitment [19]. Although social
interactions hold potential to further increase patients’
engagement in rehabilitation [30,57], the modality in which
they are framed could widely shape the outcomes of the
treatment [84]. In this study, we attempted to elucidate the
influence of computer-mediated cooperation on motor

performance during a citizen science activity, mediated by a
low-cost haptic device.

We designed a series of experiments simulating an authentic
telerehabilitation setting, where participants remotely cooperated
in the analysis of environmental images using low-cost haptic
devices. From survey instruments and direct measurements of
motor activities, we sought to quantify the potential effect of
cooperation in telerehabilitation. Our results indicate that 2
elements, interdependence and task assignment, can influence
the effects of cooperation on engagement and motor
performance, thereby offering a potential means for improving
rehabilitation treatments. However, the way in which these 2
variables interact to influence the response of the subjects may
challenge one’s intuition.
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In partial contrast with our hypotheses, we did not find that
cooperative division of labor, such that each user is assigned to
a different task toward a shared goal [85], is always conducive
to higher engagement. Although we did not register a difference
in the level of engagement between control users and users who
cooperated via IT, we found an expected reduction in enjoyment
for users who cooperated via JT. In our experimental design,
JT was implemented to promote interdependence between users,
which we had initially identified as a key factor to mitigate
diffusion of responsibility and coerce users to persist for a longer
period of time [86,87]. However, it is likely that JT was
accompanied by other confounding factors, contributing to a
reduction in enjoyment.

It is tenable that we inadvertently introduced random termination
in the trials where users faced uncertainty with regard to the
timing of termination, as the other player could terminate the
task at any time. This uncertainty about the horizon of the
relationship with the other player was shown in previous
research to impact the degree of cooperativeness of players
negatively [88,89], where the more termination becomes likely,
the less cooperation has been observed [90]. In game theory,
random termination has been shown to discount the payoff of
players’ actions [88,89] such that players would try to avoid
losses and become less cooperative. Such weakening of
cooperation also results in lower levels of enjoyment and
satisfaction [91]. Similar dynamics likely emerged in the
proposed citizen science–based telerehabilitation activity,
thereby calling for future research to explore alternative
strategies that could promote interdependence between users.
For instance, we could attempt at a priori identifying a
predetermined length for the trials, by matching patients
undergoing a similar rehabilitation therapy.

Our findings also provided insight into the role of social
interactions on motor performance. Measuring relevant
kinematic variables is central to the notion of telerehabilitation,
whereby supplying care providers with clinical information will
enable them to track patients’ status and adjust their
rehabilitation program remotely and efficiently [18]. Ideally,
care providers could also infer abnormal, compensatory
movement from the data and instruct patients to correct it [18].
Mean speed, peak speed, and path length traversed [19,92] have
been used in robotic telerehabilitation of the upper limb as
indicators of motion quality [14,21,22]. In addition to the
evaluation of motor performance, the physical effort exerted by
an individual can also be linked to their motivation to perform
the exercise task. Investing greater effort to complete a
challenging task often leads to self-determined behavior,
resulting in a sense of competence [93] and an increase in
intrinsic motivation [94].

Although we expected that users would improve their motor
performance because of cooperation, we found a modest
reduction in motor performance similar to the discussed
reduction in enjoyment. More specifically, motor performance
of users cooperating via JT was similar to control with regard
for all the selected metrics, whereas IT resulted in higher values
of the peak speed relative to control. It is possible that random
termination could explain the observed difference, where a user
would not invest the same effort when faced with the potential

that his/her work could be vanished because of exogenous
termination of the activity by the peer. Future research should
seek to explore alternative modalities to favor cooperation,
without challenging enjoyment and effort that are key to the
success of rehabilitation. The notion of setting intervals for the
exercises could be a viable approach, whereby it could mitigate
the harmful effects of random termination, while leveraging the
beneficial role of cooperation. In fact, analyzing time variations
of motor performance of users who cooperated via IT, we
discovered that the speed of the more persistent users in IT
significantly reduced following their peer’s withdrawal. This
confirms the intuition that social interaction should prompt
individuals to exert more effort in their task, thereby calling for
future studies to engineer social interactions toward improving
recovery and patients’ self-perception of physical capacity
[95,96].

In addition to the type of termination, we found that task
assignment can modulate user engagement. We found that
cooperating users in IT condition assigned with tagging were
more engaged than their peers who were assigned with trashing.
The difference in engagement may be attributed to the perceived
nature of the task a user has been assigned to. In fact,
engagement is positively associated with the identifiability of
the share an individual contributes to the groupwork [87,97],
that is, individuals whose contribution is more valued and
recognized by group peers are more likely to be motivated to
perform their task. Conversely, individuals whose contribution
is less important and recognized by others in the group are less
motivated to perform their task. Therefore, the dissimilarity
between tagging and trashing tasks could lead to unequal levels
of engagement, with tagging users being more engaged than
trashing users. This observation calls for further studies in which
targeted design interventions will be explored to investigate
differences between cooperation and collaboration, where
individuals are assigned to the same task. It is tenable that
cooperating individuals should perform better when assigned
with a common group task rather than interdependent tasks [84].
Working in a collaborative setting where they fulfill identical
functions jointly in support of a shared goal [85] could bolster
team cohesion and lead to even higher performance and
satisfaction among users [98].

Evidence shows that group cohesiveness can be improved with
increasingly overt sharing of information, leading to greater
engagement in group tasks [99]. Recently, we showed that the
mere presentation of social foot prints, digital cues that suggest
the presence of other Web users can be used to increase the
amount and duration of physical exercise during citizen science
activities [64]. In a different study, using a virtual peer operating
in open- and closed-loop paradigms, we demonstrated that
bidirectional flow of social information can substantially
increase user contribution to a citizen science project [75].
Seemingly, as more social presence is conveyed between Web
users, an increasingly trusting climate is created, conducive to
cooperation [100]. In future studies, one could explore how
sharing of personal information such as age, location, and
interests can impact trust and engagement in Web-based citizen
science telerehabilitation [101].
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Citizen science contributes to a sense of community in
cooperative telerehabilitation through the introduction of
scientific content. Unlike gaming-based motivational
interventions, this study capitalizes on human intellect as an
intrinsic motivator. Previously, we had shown that users prefer
to perform an exercise associated with scientific content [19,92].
Beyond the intellectual stimulus, citizen science adds virtue
and a sense of contribution to the activity, which is not found
in the majority of serious games. Web-based social platforms
where individuals share personal values often create
communities with which contributors can identify [48]. In
telerehabilitation in particular, patients can benefit from such
an environment that could alleviate the isolation many of them
experience [102,103].

Limitations
Although our work brings forward evidence in favor of the use
cooperative citizen science in rehabilitation, it comes with a
number of limitations. First, the difference in engagement that
we observed among conditions was moderate. It is possible that
because citizen science is inherently engaging [92], additional
motivational interventions such as social interactions offer only
a weak enhancement to engagement, limited by a ceiling effect.
To surpass such a ceiling effect, it would be beneficial to explore
the role of cooperation in citizen science–based rehabilitation
in a longitudinal study, where persistence is measured by the
frequency patients choose to engage in exercise and productivity
is measured as aggregated contribution.

Second, we studied motor performance using the Novint Falcon,
a haptic device which is no longer being produced. However,
the fine-motor tasks imparted by the Novint Falcon can be
achieved using other haptic devices. For instance, surgical delta
robots such as the Force Dimension and Phantom offer

movement with 6 degrees of freedom and can apply a
comparable amount of force feedback [104-106].

Third, in this study, we recruited healthy subjects from New
York University campuses. Our findings may be narrowly
generalizable as the sample consists of healthy individuals from
the Brooklyn area with access to high education. Although we
drew our sample from different programs of the university, the
volunteers may have distinctly different interests and
motivations from the typical patient undergoing rehabilitation.
For example, the participants in this study may have greater
interest in science or in restoration of the Gowanus Canal than
the average person. Offering a wider range of citizen science
projects to choose from based on personal interests might further
improve enjoyment, engagement, and motor performance. Future
research with patients from diverse backgrounds in a clinical
setting will elucidate effects of this work on clinical outcomes.

Conclusions
We offer evidence for the utility of cooperation in improving
engagement in citizen science–based telerehabilitation. Citizen
science can offer intellectual stimulus and a community for
patients to engage with and relate to. It attends the needs of
more patients, including those who are less interested in
traditional gaming [27,37], thereby extending the benefits of
adherence to home-based physical therapy to a larger population.
The value of this study can be expanded to other domains that
rely on user participation and engagement, including Web-based
consumer platforms [107], social networks [108], crowdsourcing
efforts [109], and general game design [91]. Ultimately, we
anticipate our approach will be translated into low-cost
technology for telerehabilitation and help patients reach their
full potential recovery.
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