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Abstract

Background: Autism spectrum disorder (ASD) is currently diagnosed using qualitative methods that measure between 20-100
behaviors, can span multiple appointments with trained clinicians, and take several hours to complete. In our previous work, we
demonstrated the efficacy of machine learning classifiers to accelerate the process by collecting home videos of US-based children,
identifying a reduced subset of behavioral features that are scored by untrained raters using a machine learning classifier to
determine children’s “risk scores” for autism. We achieved an accuracy of 92% (95% CI 88%-97%) on US videos using a classifier
built on five features.

Objective: Using videos of Bangladeshi children collected from Dhaka Shishu Children’s Hospital, we aim to scale our pipeline
to another culture and other developmental delays, including speech and language conditions.

Methods: Although our previously published and validated pipeline and set of classifiers perform reasonably well on Bangladeshi
videos (75% accuracy, 95% CI 71%-78%), this work improves on that accuracy through the development and application of a
powerful new technique for adaptive aggregation of crowdsourced labels. We enhance both the utility and performance of our
model by building two classification layers: The first layer distinguishes between typical and atypical behavior, and the second
layer distinguishes between ASD and non-ASD. In each of the layers, we use a unique rater weighting scheme to aggregate
classification scores from different raters based on their expertise. We also determine Shapley values for the most important
features in the classifier to understand how the classifiers’ process aligns with clinical intuition.

Results: Using these techniques, we achieved an accuracy (area under the curve [AUC]) of 76% (SD 3%) and sensitivity of
76% (SD 4%) for identifying atypical children from among developmentally delayed children, and an accuracy (AUC) of 85%
(SD 5%) and sensitivity of 76% (SD 6%) for identifying children with ASD from those predicted to have other developmental
delays.

Conclusions: These results show promise for using a mobile video-based and machine learning–directed approach for early
and remote detection of autism in Bangladeshi children. This strategy could provide important resources for developmental health
in developing countries with few clinical resources for diagnosis, helping children get access to care at an early age. Future
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research aimed at extending the application of this approach to identify a range of other conditions and determine the
population-level burden of developmental disabilities and impairments will be of high value.

(J Med Internet Res 2019;21(4):e13822) doi: 10.2196/13822
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Introduction

Autism spectrum disorder (ASD) is a heterogeneous
developmental disorder that includes deficits in social
communication, repetitive behaviors, and restrictive interests,
all of which lead to significant social and occupational
impairments throughout the lifespan. Autism is one of the fastest
growing developmental disorders in the United States [1],
affecting 1 in 59 children [2]. Although the global autism
prevalence is largely unknown, the prevalence is estimated to
be between 0.15% and 0.8% among children in developing
countries such as Bangladesh, with a higher prevalence in urban
centers (eg, 3% in Dhaka) [3]. These numbers only represent a
fraction of the actual cases, as most cases in semiurban and rural
areas go unnoticed due to a dearth of resources. The disparity
between urban and rural prevalence may reflect poorly
understood risk factors or clinical resources in high-income
areas along with higher awareness among urban parents about
developmental delays [4]. More accessible and wide-scale
screening is needed to accurately estimate ASD prevalence in
remote parts of Bangladesh and other countries.

The current models for diagnosing autism in Bangladesh, as in
the United States, are often administered by trained clinical
professionals using standard assessments [5]. Empirically
validated diagnostic tools like the Autism Diagnostic
Observation Schedule (ADOS) [6] and Autism Diagnostic
Interview (ADI-R) [7] are not always used in different countries,
particularly in developing countries, as these tools are expensive,
require trained clinicians to administer, and may be limited by
available translations and cultural adaptations [4]. For countries
with limited ASD resources like Bangladesh, obtaining a
diagnosis, which is essential for receiving an intervention and
improving outcomes, is difficult. There is a pressing need to
further develop open-source tools that do not require extensive
training and professional certification and have high
cross-cultural validity for autism screening globally [4]. Previous
work has shown the feasibility and efficacy of assessing
developmental delay using rapid assessment tools delivered by
professionals with limited clinical expertise in the home [5].
There is potential to extend the reach of assessment tools and
decrease health care disparity, especially in developing and rural
countries, by using machine learning and mobile technologies.

In our previous works, we have developed tools for rapid mobile
detection of ASD in short home videos of US children by using
supervised machine learning approaches to identify minimal
sets of behaviors that align with clinical diagnoses of ASD
[8-15]. Features extracted in our minimally viable classifiers
are accurately labeled by nonexpert raters (ie, noncertified
clinical practitioners) in a short period of time (eg, <6 minutes).

These labeled features can then be fed into our machine learning
classifiers to determine the child’s autism risk. Tariq et al [14]
used a dataset consisting of 162 videos (116 ASD, 46
neurotypical development [TD]) of US children to validate these
classifiers. The top-performing classifier exhibited an accuracy
of 92% (95% CI 88%-97%).

Additionally, an independent validation set consisting of 66
videos (33 ASD, 33 TD) was labeled by a separate set of video
raters in order to validate the results. The top-performing
classifier maintained similar results, achieving an overall
accuracy of 89% (95% CI 81%-95%).

The current study aimed to show generalizability of video-based
machine learning procedures for ASD detection that have
established validity among US-based children [14] in
Bangladesh. Specifically, our study aimed to determine the
performance and accuracy of this same video machine learning
procedures on videos of Bangladeshi children under the age of
4 years. This sample was drawn from a population diagnosed
with ASD and another population with other speech and
language conditions (SLCs), but not ASD. Additionally, we
compared the features that are most important for accurate
classification of children from Bangladesh and created several
machine learning models that can be generalized to different
cultures.

Methods

Data Collection
The study received ethical clearance under Dr Naila Khan from
the Bangladesh Institute of Child Health, Dhaka Shishu
Children’s Hospital (DSH) and the Stanford University
Institutional Review Board. We aimed to recruit 150 children
for this study: 50 with ASD, 50 with an SLC, and 50 with
neurotypical development (TD). All participants were recruited
after they provided consent (in Bengali language) for
participation at the DSH, and their children were screened for
the presence of ASD or SLC. Participants were enrolled if they
were parents above 18 years of age, had a child between the
ages of 18 months and 4 years, could attend an appointment at
the DSH to complete the study procedures, and were willing to
submit a brief video of their child to the study team. Enrolled
families provided demographic information (see Table 1 in the
Results section).

Brief videos (2-5 minutes) were recorded during evaluation of
the children who presented to the Child Development Center
of the Bangladesh Institute of Child Health with
neurodevelopmental concerns. We administered the Modified
Checklist for Autism in Toddlers (Bangla version [16]) to all
children to identify the presence of ASD, and all children
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underwent additional clinical evaluations by a developmental
psychologist and a child health physician in order diagnose
ASD, SLC, or TD, as described previously [5]. We also
administered the ADOS for 28 of the 50 children identified with
ASD; ADOS could not be completed in the remaining 22
children diagnosed with ASD because their families were unable
to commit to the time required to complete the assessment, a
common problem for families in low-resource areas [4].

Acquired videos and supporting demographic measures were
securely sent from DSH to Stanford University. Videos were
assessed for quality by trained clinical researchers at Stanford
University. Criteria included video, sound, and image quality
in addition to video length and content (ie, ensuring that the
video was long enough to answer necessary questions, that the
child was present in the video, etc). Furthermore, videos were
assessed to meet the following criteria: (1) it captured the child’s
face and hands, (2) it involved social interaction or attempts of
social interaction, and (3) it involved an interaction between
the child and a toy/object.

Video Raters
Nine non-Bengali speaking US-based raters with no clinical
training used a secure, HIPAA (Health Insurance Portability
and Accountability Act)-compliant online website to watch the
videos and answer a set of 31 multiple-choice questions
corresponding to the behavioral features of autism [14]. Each
rater completed a 1-hour training session with a senior analyst
before scoring the videos. Senior analysts conducted rater quality
checks by comparing a subset of 10 video scores to “gold
standard” scores. These “gold standard” scores were agreed
upon by two clinical research coordinators who each had several
years of experience with children with autism.

Source Classifiers Trained on Clinical Data for
Reduce-to-Practice Testing
We assembled eight published machine learning classifiers to
test their viability for use in the rapid mobile detection of autism
through the use of short home videos of US children [14]. For
all eight models, the source of training and validation data was
item-level medical records of US children, which contained
either the ADOS or ADI-R outcome data on all participants.
The ADOS has several modules containing approximately 30
features that correspond to the developmental level of the
individual under assessment. These features are assessed based
on how a child interacts with a clinical practitioner administering
the exam. The ADI-R is a parent-directed interview that includes
>90 elements asked of the parent, with multiple choices for
answers. Each model was trained on item-level outcomes from
the administration of either the ADOS or ADI-R and optimized
for accuracy, sparsity of features, and interpretability in previous
publications [8-15]. All these classifiers have been validated
with US home videos (total: n=162, ASD: n=116, non-ASD:
n=46) [14]. The top three performing classifiers in this dataset
were chosen for validation of the videos collected from DSH
in Bangladesh to test the accuracies of these models across
cultures.

Stacked Classifiers With Rater-Adaptive Weighting
In an effort to improve the results on the Bangladeshi dataset
after attempting to validate previously built classifiers on these
data, we constructed new classifiers while controlling for
potential noise resulting from inaccurate ratings and constructed
separate layers for each step of the classification for a
streamlined approach. Our dataset contained three classes—TD,
ASD, and SLC—assigned by screening via clinical evaluation
at the DSH [5]. By implementing a layered approach to
classification—first distinguishing general developmental delays
(including ASD and SLC) from TD and then distinguishing
ASD from SLCs—we were able to broaden the detection
capabilities to more generally classify the presence of other
developmental delays in addition to ASD specifically.

Rater Weighting
Given the raters’ lack of formal clinical training, we
hypothesized that some raters might be more adept at identifying
certain risk factors in some videos than others. Regardless of
whether these interrater differences in identification accuracy
for certain subsets of behaviors arise naturally or by chance, we
hypothesized that this heterogeneous rater performance could
be leveraged to yield increased model performance. For
example, if one rater is especially capable of labeling a child’s
level of eye contact and another rater does a poor job of rating
eye contact but excels at rating language ability, then a model
trained on each individual rater’s labels alone might perform
poorly; however, an ensemble that considers the outputs of both
rater’s models could perform substantially better. Achieving
this improved performance is the focus of our proposed novel
rater-adaptive weighting scheme.

For each of the three raters in the dataset, we trained a Random
Forest classifier to predict a child’s class label (TD, SLC, or
ASD) based on the rater’s annotations of that child’s behavior
in a given video. The Random Forest classifier adapts to each
rater’s expertise and labeling patterns; a basic analysis revealed
that each rater had a different feature set that they rated well.
In addition to (and, in part, because of) interrater differences in
the labeling ability, each rater’s model had varying levels of
accuracy. We wanted the ensemble to weigh the predictions
from the most accurate rater models more heavily. Therefore,
we first trained and calculated the accuracy of each rater’s model
relative to a majority vote baseline and then used that difference
to up- or downweigh that rater’s vote relative to the other raters’
votes.

Specifically, we let zj represent the difference in accuracy of
rater j ’s model relative to the majority vote baseline. Then,
after calculating zj for each rater j=1, 2...K, we pass these values
into the softmax function to generate rater-specific weights:

This ensures that all the raters’ weights collectively sum up to
1, so that the ensemble prediction will be a linear combination
of each rater’s predictions. Using these weights, the final
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ensemble prediction for child i is calculated by multiplying each
rater model’s predicted probability for the target class (eg,
atypical development or ASD) by the corresponding
rater-specific weight and adding the weighted raters’ predicted
probabilities together. More specific details can be found in
Multimedia Appendix 1.

Stacking Classifiers to Distinguish Between
Typical/Atypical Development and Autism Spectrum
Disorder/Speech and Language Conditions
In order to reflect the differences in both the conceptualization
and use cases of predicting (1) TD vs atypical development and
(2) ASD from other developmental delays, we decided to create
a stacked approach to classification. In the first layer, we built
classifiers to distinguish between TD and atypical development
(ASD/other SLCs). The cases classified as atypical from the
first layer were then used as input for the second layer to
distinguish between ASD and other SLCs.

We wanted to optimize the model for sensitivity in the first
layer to ensure no atypical case was misclassified. In the second
layer, we wanted to optimize for both sensitivity and specificity,
so that children with ASD would be effectively distinguished
from children with other development delays. After training
these classifiers for each rater, we tested them on the held-out
test set and aggregated rater scores using the rater weights
calculated in the previous step. For each of these layers, we
used a three-fold cross-validation approach to select the training
and test sets randomly in order to ensure that the accuracy
reported is stable across different splits.

Feature Importance
To determine the impact of each video’s annotations on the
classifier’s predicted label for that video, we used a recently
developed method for efficiently calculating approximate
Shapley values [17]. Shapley values are traditionally used in
coalitional game theory to determine how to optimally distribute
gains earned from cooperative effort. The same idea can be
extended to machine learning in order to rank features for
nonlinear models such as Random Forests. In the machine
learning adaptation of Shapley values, feature values
“cooperate” to impact a machine learning model’s output, which
in this case is the predicted probability of a child’s video being
classified as TD, ASD, or SLC. For each video, Shapley values
capture both the magnitude of importance for each feature value
as well as the direction in which the feature value “pushes” the
final predicted class probability. More precisely, if we let Φk(Fj*,

x(i)) be the impact (Shapley value) of the k th feature for video

i with feature vector x(i) on the output of model Fj*, then the
Shapley value formulation guarantees that

In other words, any video’s final predicted class probability is
the average predicted class probability of the dataset plus all
the Shapley values associated with each element of that video’s

input vector. This property, called local accuracy, indicates that
the feature importance can be easily measured and compared.
Additionally, because each video, feature, and model triple is
associated with a single scalar-valued feature importance, we
can understand how each annotation for each child’s video
affected his/her predicted probability of TD/ASD/SLC at an
individual level and estimate a feature’s overall importance to
the model by summing up the absolute values of that feature’s
Shapley values over all videos. The features with the highest
sum of absolute Shapley values are considered the most
important to the model. Finally, given the way in which we
ensembled individual raters’ models, we can extract Shapley
values for the multirater ensemble by employing the same
weights. Specifically, we can employ the following equation:

To test whether our classifier’s decisions align with clinical
intuition, we calculated Shapley values for the 159 videos for
the second layer of the classifier when distinguishing ASD from
non-ASD.

Comparing Bangladeshi and US Results
In order to determine the generalizability of one dataset’s
characteristics to the other, we trained logistic regression
classifiers with elastic net regularization for the Bangladeshi
data and US data to predict ASD from the non-autism class.
We trained the model on the Bangladeshi data and tested the
model on the US data and vice versa. For both classifiers, we
randomly split the dataset into training and testing, reserving
20% for the latter while using cross-validation on the training
set to tune hyperparameters associated with elastic net
regularization. Note that while traditional logistic regression
seeks to find a set of model coefficients, β, that minimizes the

logarithmic loss (we will denote this loss as where

represents the model’s predictions when the model is
parameterized by β), logistic regression with elastic net
regularization seeks to minimize the logarithmic loss plus a
regularization term:

Here, the first sum corresponds to an L2-loss, the second sum
corresponds to an L1-loss, ρ is a hyperparameter governing the
balance between the two losses, and α is the second
hyperparameter determining the overall strength of
regularization. Incorporating this regularization into the logistic
regression loss yields several benefits, including more
parsimonious and interpretable models and better predictive
performance, especially when two or more of the predictor
variables are correlated [18]. We used cross-validation for model
hyperparameter tuning by performing a grid search with
different values of α (varying penalty weights) and ρ (the mixing
parameter determining how much weight to apply to L1 versus
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L2 penalties) [19,20-21]. Based on the resulting area under the
curve (AUC) and accuracy from each combination, we selected
the top-performing pair of hyperparameters. Using this pair, we
trained the model using logistic regression and balanced class
weights to adjust weights that were inversely proportional to
class frequencies in the input data, which helps account for class
imbalance. After determining the top-ranked features based on
the trained model and the resulting coefficients, we validated
the model on the reserved test set. The behavioral features that
were selected most often during the hyperparameter tuning
phase across different cross-folds were compared between US
and Bangladeshi models to determine which features have a
greater significance and whether they align between the two
models.

Software
Analyses were performed in Python 3.6.7; we used pandas
0.23.4 to prepare the data for analysis [20]. The classification
models described were trained and evaluated using the
scikit-learn 0.20.0 package [21]. Hyperparameters for each rater
model were tuned using the hyperopt 0.1.1 package [22].
Shapley value estimates were calculated using the shap 0.24.0
package [23]. Plots were generated using matplotlib 3.0.1 [24].

Results

Data Collection
We collected 159 videos in total: 55 videos were of children
with ASD, 50 were of children with SLC, and 54 were of
children with TD. The parent-submitted home videos were an
average of 3 minutes 11 seconds long (SD 1 minute 57 seconds).

Of the 159 videos submitted, all were manually inspected and
found to be of good, scorable quality in terms of length,
resolution, and content. Demographic data were missing for 9
subjects, who were excluded from analysis; all other data were
complete. Video rating staff were able to rate all videos. Table
1 outlines the diagnosis and demographic breakdown for 150
of the 159 videos included in the dataset.

Results of Source Classifiers Trained on Clinical Data
for Reduce-to-Practice Testing
We first sought to distinguish AD from non-ASD cases. Our
top performing classifiers from our previous analysis of the
videos from 162 US children [14] were validated on the
Bangladeshi dataset. We tested across different train-test splits
and achieved a maximum AUC of 0.75 (SD 0.06; Figure 1). In
order to improve classifier performance, we next shifted to the
development of stacked classifiers.

Results From Stacked Classifiers With Rater-Adaptive
Weightings
Since we used a three-fold cross-validation approach, we trained
and tested the models for each of the raters across three different
splits. The training set consisted of 114 randomly selected
videos, and the average demographic information for the three
splits for the training set was as follows: average age, 2 years
7 months (SD 7 months); proportion of males, 64%; proportion
of children with TD, 34%; proportion of children with SLC,
31%; and proportion of children with ASD, 35%. The
demographic information for the test set for layer 1
(distinguishing TD from ASD/SLC) and layer 2 (distinguishing
ASD from SLC) can be found in Table 2.
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Table 1. Participant demographics collected from Dhaka Shishu Hospital, Bangladesh.

SLCc cohort (N=50)TDb cohort (N=50)ASDa cohort (N=50)Full cohort (N=150)Demographic

2.73 (0.51)2.40 (0.59)2.51 (0.70)2.55 (0.62)Age (years), mean (SD)

31 (46)23 (62)36 (72)90 (60)Gender (male), n (%)

6 (12)0 (0)5 (10)11 (0.7)Preterm (ie, <37 weeks), n (%)

Family income in takad, n (%)

0 (0)16 (32)0 (0)16 (10.7)1,000-10,000

10 (20)21 (42)2 (4)33 (22)>10,000-30,000

40 (80)13 (26)48 (96)101 (67.3)>30,000

Residence, n (%)

39 (78)50 (100)50 (100)139 (92.7)Urban

8 (16)0 (0)0 (0)8 (5.3)Semiurban

3 (6)0 (0)0 (0)3 (2)Rural

Religion, n (%)

48 (96)49 (98)44 (88)141 (94)Muslim

2 (4)0 (0)4 (8)6 (4)Hindu

0 (0)0 (0)1 (2)1 (0.01)Christian

0 (0)1 (2)1 (2)2 (0.01)Buddhist

Stunted growth, n (%)

6 (12)50 (100)4 (8)60 (40)Missing stunting information

19 (48)0 (0)30 (60)49 (32.7)No stunting

25 (50)0 (0)16 (32)41 (27.3)Stunting

Clinical evaluations, mean (SD)

0.08 (0.57)2 (0)13.5 (3.04)MCHATe total score

ADOSf,g score

N/AN/A11.57 (5.30)N/AhSocial affect

N/AN/A3.46 (3.29)N/ARestricted and repetitive behavior

N/AN/A5.14 (2.08)N/AComposite

SLC diagnosis

2 (4)N/AN/AN/AReceptive language delay

5 (10)N/AN/AN/AExpressive language delay

37 (74)N/AN/AN/ABoth receptive and expressive language delay

6 (12)N/AN/AN/AReceptive and expressive language disorder

aASD: autism spectrum disorder.
bTD: neurotypical development.
cSLC: speech and language condition.
d1 US $=84 taka.
eMCHAT: Modified Checklist for Autism in Toddlers
fADOS: Autism Diagnostic Observation Schedule.
gADOS was only performed on a subset of 28 children with ASD.
hN/A: not available.
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Figure 1. Results from the top performing classifiers trained on US clinical score sheet data and tested on Bangladeshi data with an objective to
distinguish between ASD and non-ASD. ROC: receiver operating characteristic; AUC: area under the curve; ASD: autism spectrum disorder.

Table 2. Average demographic information of the test set calculated by testing the model on 45 videos for both layers.

Layer 2 (distinguishing ASD from SLC)Layer 1 (distinguishing TDa from ASDb/SLCc)Demographic

2 years 6 months (3 months)2 years 7 months (5 months)Age (years), average (SD)

7062Proportion of males, mean %

2233Proportion of TD children, mean %

4433Proportion of children with ASD, mean %

3433Proportion of children with SLC, mean %

aTD: neurotypical development.
bASD: autism spectrum disorder.
cSLC: speech and language condition.
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Figure 2. (A) ROC curve for layer 1 (distinguishing between children with TD and children with ASD or SLC). (B) ROC curve for layer 2 (distinguishing
between ASD and SLC). ASD: autism spectrum disorder; AUC: area under the curve; SLC: speech and language condition; TD: neurotypical development;
ROC: receiver operating characteristic.

Table 3. Results from classifiers to distinguish among autism spectrum disorder, speech and language conditions, and neurotypical development. The
results distinguish layer 1 (distinguishing neurotypical development from atypical conditions [autism spectrum disorder/speech and language conditions])
and layer 2 (distinguishing autism spectrum disorder from other delays [speech and language conditions]) from those classified as atypical in layer 1.

Accuracy, % (SD%)Area under the curve,
% (SD)

Unweighted average
recall, % (SD)

Specificity, % (SD)Sensitivity, % (SD)Classifier Layer

70 (SD 2)76 (SD 3)67 (SD 1)58 (SD 3)76 (SD 4)Layer 1a

76 (SD 11)85 (SD 5)77 (SD 9)77 (SD 24)76 (SD 6)Layer 2b

aDistinguishing neurotypical development from autism spectrum disorder/speech and language conditions.
bDistinguishing autism spectrum disorder from other developmental delays (speech and language conditions).

Layer 1 of the stacked classifier, which sought to distinguish
between children with TD from children with atypical
development, achieved 76% (SD 4%) sensitivity and 58% (SD
3%) specificity with an AUC of 76% (SD 3%) and an accuracy
of 70% (SD 2%; Figure 2 A). For layer 2, which distinguished
ASD from other SLCs, the classifier performed with 76% (SD
6%) sensitivity, 77% (SD 24%) specificity with an AUC of 85%
(SD 5%) and accuracy of 76% (SD 11%; Figure 2 B; Table 3).

Feature Importance
The most important features in our rater-adaptive ensemble for
predicting ASD, as measured by the Shapley value, align with
clinical intuition. Figure 3 shows the distribution of Shapley

values across all participants for two of the features that were
among the most important (as measured by mean absolute
Shapley value) to our ensemble model’s predictions. For
example, for the feature corresponding to the child’s level of
eye contact, the value “rarely or never does this” contributes
strongly to a classification of ASD and “exhibits clear, flexible
gaze that is meshed with other communication” contributes the
most to a non-ASD classification. Another feature that aligns
with clinical intuition measures the child’s repetitive interests
and stereotyped behaviors—the feature value “behaviors
observed the entire time,” contributes strongly to the positive
class (ASD), whereas “not observed” contributes strongly to
the negative class (non-ASD; Figure 3).
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Figure 3. Shapley value distributions for two of the most important features in the rater-adaptive ensemble model. These features measure the child’s
stereotyped behaviors/repetitive interests and eye contact. They demonstrate that clinical intuition and the inner workings of our classifier align closely.
ASD: autism spectrum disorder.

Comparison of Bangladeshi and US Results
For the classifier trained on the Bangladeshi data, the
performance on the held-out test set (20% of Bangladeshi data)
was 84.4% and its performance when validated on US data was
72.5% (Figure 4).

We trained a similar classifier on our dataset of 162 US videos
and validated it on the Bangladeshi data (Figure 5). The
classifier performed with a 94.2% accuracy when tested on the
held-out test set from US videos. The classifier’s accuracy
dropped significantly when validated on the Bangladeshi data,
reaching around 54%.

While performing hyperparameter tuning on these classifiers,
we conducted further analysis to determine which of the
behavioral features were selected most often for each cross-fold
of US videos and Bangladeshi videos in order to draw a
comparison. It is apparent from Figure 6 A and 6B that the
features being selected are quite similar between the two
datasets, with some minor differences. The features understands
language, sensory seeking, calls attention to objects, and
stereotyped interests and actions are highly ranked by models
trained on either of the datasets. Responsiveness, developmental
delay, social participation, and stereotyped speech are selected
more often for US data and less so for Bangladeshi data. The
opposite is true for eye contact.
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Figure 4. Logistic regression (Elastic Net penalty) classifier, trained on Bangladeshi data and tested on US data as well as a held-out test set of the
Bangladeshi data. AUC: area under the curve.

Figure 5. Logistic regression (Elastic Net penalty) classifier, trained on US data and tested on Bangladeshi data as well as a held-out test set of the US
data.
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Figure 6. Feature selection analysis. Numbers within the cells indicate the frequency of selection. (A) Feature frequency comparison during cross-fold
validation with alpha value 0.1 between Bangladeshi data and US data. (B) Feature frequency comparison during cross-fold validation with alpha value
0.01 between Bangladeshi data and US data.

Discussion

Principal Results
We were able to demonstrate the potential to use video-based
machine learning methods to detect developmental delay and
autism in a collection of videos of Bangladeshi children at risk
for autism. Despite language, cultural, and geographic barriers,
this outcome shows promise for remote autism detection in a
developing country. More testing and refinement will be needed,
but, in general, there is potential for the method to be made
virtual to run entirely on mobile devices and therefore potential
to increase the capacity to detect and provide more immediate
diagnostics to children in need of therapeutic interventions.

An important result of our work is that we were able to gather
159 videos from Bangladeshi parents collected via mobile phone
through our collaboration with DSH. This suggests feasibility
of expanding this study to a larger sample size across
Bangladesh and other low-resource settings and the ability to
rely on the use of mobile phones in developing countries like
Bangladesh, where 95% of the population are mobile phone
subscribers [25]. Additionally, we found that clinically
untrained, US-based, non-Bengali speaking raters were able to
score videos of Bangladeshi children with limited training,
suggesting that speaking the native language may not be
necessary for scoring videos. This finding also demonstrates

the validity and potential of this mobile tool to be deployed
across cultures and languages.

A useful and novel contribution of our work was our method
for ensembling predictions from models trained on and adapted
to each individual rater. This method demonstrates several
advantageous properties. First, because each classification model
was trained to map an individual rater’s annotation patterns to
a predicted class label, these rater-adaptive models can capitalize
on features reflecting a rater’s strengths while ignoring features
on which the rater shows weaker performance. Furthermore,
the fact that raters’ models are trained independently from one
another means that, in a distributed setting where there is a large
corpora of videos such that each rater annotates only a small
subset of them, our method can make predictions on each video
by applying and ensembling the models from each rater without
any need for additional imputation. By weighting each rater’s
model according to its accuracy on a rater-specific held-out
validation set, the overall ensemble can lean more heavily on
those raters whose models consistently demonstrate the best
classification performance. Finally, because the final ensemble’s
prediction is a linear combination of all of the rater’s models
and we are able to calculate Shapley values for every feature in
each of these models, it follows that we can use the same
weights from the ensemble of rater-specific predictions to
generate ensemble-level Shapley values as well. Thus, if a
child’s video is distributed to several different raters and those
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raters’ annotations are fed into the ensemble model, one can
interpret how each of the child’s behavioral annotations
contributed to both the final ensemble classification label and
each rater’s predicted label individually.

We found that while models trained on videos of US children
and models trained on Bangladeshi children both relied on many
of the same clinically relevant features (eg, sensory seeking,
stereotyped interests, and actions), some features were more
prominent in one model compared to the other. For example,
models trained on US data tended to rely more heavily on social
participation and stereotyped speech, while models trained on
Bangladeshi data relied more on eye contact. These patterns
make sense, as raters could rely on a mutual understanding of
the language (English) to evaluate behaviors like stereotyped
speech and social interaction in US videos and may not have
needed to rely as heavily on physical cues like eye contact,
whereas when US raters viewed Bangladeshi videos,
nonlanguage-based cues became more important. Even without
the ability to confidently evaluate all aspects of the child’s
behavior, the rater ensemble demonstrated that the set of
behavioral features needed to make an accurate diagnosis of
developmental delays, including ASD, may be narrower than
previously thought. Nevertheless, the difficulty in assessing
certain sociolinguistic patterns in the cross-cultural context may
have been the cause of comparatively lower performance in the
Bangladeshi dataset. We hypothesize that, when trained on
annotations provided by raters who share a common linguistic
and sociocultural background with the Bangladeshi children,
our ensemble’s performance will improve and become
comparable to the models trained and evaluated on the US
dataset.

Limitations
Although accuracy achieved using our source classifiers
originally trained on US datasets was lower when applied to
Bangladeshi videos, it still indicated a signal in the Bangladeshi
dataset. The relatively low accuracy is most likely a result of
three factors. First, these original classifiers were trained on
clinical scoresheets, not on features obtained from live video
data. Second, these scoresheets were obtained from formal
clinical assessments of US children, and therefore they do not
capture a culturally diverse set of behavioral nuances. Third,
these classifiers were trained to distinguish between typically
developing children and children with autism. However, this
dataset consists of delays other than autism (eg, SLCs), which
may be why these classifiers were unable to classify these cases
with higher accuracy.

Conclusions
Although the potential uses for a method of crowdsourced
annotation and classification of developmental disorders like
the one we established in this work are myriad, we wish to
highlight a few uses. First, in areas where resources are scarce,
and with a disorder like ASD, where early intervention is the
key to successful treatment, our framework could be essential
in performing cost-effective and reliable triage. Parents could
send short home videos of their children to the cloud, at which
point the video would be routed to several raters who perform
feature tagging of the child’s behavior. Based on the raters’
previous annotation patterns and their associated models, the
child would receive a predicted risk probability of
developmental delay or ASD and a clinical team nearby could
then be alerted, as appropriate. Since 2008, Dr Khan and her
team have assisted the government to establish multidisciplinary
Child Development Centers in tertiary hospitals across
Bangladesh [26]. Fifteen such Child Development Centers are
currently operational, whose chief mandate is to diagnose and
provide appropriate management for a range of
neurodevelopmental disorders including autism. However, in
a country with population of 160 million, of whom an estimated
45% are within the pediatric age groups, access to reliable
services can be limited. Formalization of the approaches
documented here could enable broader reach and coverage
through remote care while allowing resource-strapped clinical
teams to deploy their efforts where they are needed the most.

An exciting second consequence of a deployment like this would
be the steady development of a large corpus of annotated videos.
No such dataset exists to date; however, the potential impact of
such a dataset could be substantial. Modern algorithms from
machine vision and speech recognition like convolutional and
recurrent neural networks could use these annotations to learn
features from the raw video and audio that are important for
detecting developmental disorders, including ASD. Once trained,
these models would dramatically accelerate the speed for
detection of disorders and ability to accelerate the delivery of
useful interventions.

Another important effect of such a pipeline would be that, with
location-tagged videos, we could develop more accurate
epidemiological statistics on the prevalence and onset of
developmental disorders like ASD worldwide. Better
information like this may increase awareness, positively impact
policy change, and advance progress for addressing unmet needs
of the children with developmental delays. This can have
important applications in the developing world by helping
countries identify the proportion of the population affected by
such delays or impairments and therefore inform policy and
gather actionable insights for health sector responses.
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