
Original Paper

Wearable Sensors Reveal Menses-Driven Changes in Physiology
and Enable Prediction of the Fertile Window: Observational Study

Brianna Mae Goodale1*, PhD; Mohaned Shilaih1*, PhD; Lisa Falco1, PhD; Franziska Dammeier1, PhD; Györgyi

Hamvas1, MSc; Brigitte Leeners2

1Ava AG, Zurich, Switzerland
2Department of Reproductive Endocrinology, University Hospital, Zurich, Switzerland
*these authors contributed equally

Corresponding Author:
Brianna Mae Goodale, PhD
Ava AG
Gutstrasse 73
Zurich, 8055
Switzerland
Phone: 41 788737163
Email: brianna.goodale@avawomen.com

Abstract

Background: Previous research examining physiological changes across the menstrual cycle has considered biological responses
to shifting hormones in isolation. Clinical studies, for example, have shown that women’s nightly basal body temperature increases
from 0.28 to 0.56 ˚C following postovulation progesterone production. Women’s resting pulse rate, respiratory rate, and heart
rate variability (HRV) are similarly elevated in the luteal phase, whereas skin perfusion decreases significantly following the
fertile window’s closing. Past research probed only 1 or 2 of these physiological features in a given study, requiring participants
to come to a laboratory or hospital clinic multiple times throughout their cycle. Although initially designed for recreational
purposes, wearable technology could enable more ambulatory studies of physiological changes across the menstrual cycle. Early
research suggests that wearables can detect phase-based shifts in pulse rate and wrist skin temperature (WST). To date, previous
work has studied these features separately, with the ability of wearables to accurately pinpoint the fertile window using multiple
physiological parameters simultaneously yet unknown.

Objective: In this study, we probed what phase-based differences a wearable bracelet could detect in users’ WST, heart rate,
HRV, respiratory rate, and skin perfusion. Drawing on insight from artificial intelligence and machine learning, we then sought
to develop an algorithm that could identify the fertile window in real time.

Methods: We conducted a prospective longitudinal study, recruiting 237 conception-seeking Swiss women. Participants wore
the Ava bracelet (Ava AG) nightly while sleeping for up to a year or until they became pregnant. In addition to syncing the device
to the corresponding smartphone app daily, women also completed an electronic diary about their activities in the past 24 hours.
Finally, women took a urinary luteinizing hormone test at several points in a given cycle to determine the close of the fertile
window. We assessed phase-based changes in physiological parameters using cross-classified mixed-effects models with random
intercepts and random slopes. We then trained a machine learning algorithm to recognize the fertile window.

Results: We have demonstrated that wearable technology can detect significant, concurrent phase-based shifts in WST, heart
rate, and respiratory rate (all P<.001). HRV and skin perfusion similarly varied across the menstrual cycle (all P<.05), although
these effects only trended toward significance following a Bonferroni correction to maintain a family-wise alpha level. Our
findings were robust to daily, individual, and cycle-level covariates. Furthermore, we developed a machine learning algorithm
that can detect the fertile window with 90% accuracy (95% CI 0.89 to 0.92).

Conclusions: Our contributions highlight the impact of artificial intelligence and machine learning’s integration into health
care. By monitoring numerous physiological parameters simultaneously, wearable technology uniquely improves upon retrospective
methods for fertility awareness and enables the first real-time predictive model of ovulation.
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Introduction

Background
Wearable sensor technology is evolving rapidly. Primarily
providing insights into users’ physical activity, these devices
have increasingly been adopted in health care settings [1,2].
Sensors embedded in headbands, chest straps, wristwatches,
and clothing itself can now track physiological changes that
previously required an electroencephalogram,
electrocardiograph, electrodermograph, or electromyograph,
respectively [2]. Wearable technology renders medical
monitoring accessible to everyday consumers. Recent reviews
have noted that these devices may allow for greater longitudinal
tracking of physiological parameters, enabling users to see
personalized patterns developing in the data. To this end, there
remains a dearth of research on the applications of wearable
technology in health care, especially in women’s reproductive
health.

Wearable sensor technology that helps women track
physiological changes across their menstrual cycle could fill
the present gap between high-cost, high-accuracy ovulation
detection and free, less-precise fertile window approximation.
Transvaginal ultrasound examinations represent the gold
standard for ovulation detection; however, they are costly and
often not feasible in routine clinical settings [3]. Alternatively,
women may consider identifying their fertile window using
natural family planning (NFP), based on calendar methods [4-6],
basal body temperature (BBT) [6,7], and monitoring the amount
and consistency of their cervical mucus as it fluctuates in
response to changes in estrogen [8,9]. Less technologically
sophisticated and thereby less able to pinpoint ovulation exactly,
NFP nevertheless helps women recognize physical symptoms
that approximate hormonal, phase-driven changes in their body.
Fertility tracking may also involve the use of urine-based
luteinizing hormone (LH) kits, which detect the LH surge
occurring 24 to 36 hours before ovulation [10,11] and are highly
correlated with ovulation detected by ultrasonography [12-14].

Although NFP methods enhance fertility awareness, several
reviews have highlighted their shortcomings [6,7,15,16]. Most
calendar methods, for example, fail to accommodate natural
cycle variation, leading to greater inaccuracy [4,5]. NFP
practices relying on physical symptoms similarly suffer from
methodological pitfalls. Traditional BBT measurements can be
influenced by environmental confounds [17] and cannot
prospectively predict the fertile window [4,6,18], whereas
cervical mucus monitoring relies on subjective patient
interpretation of cervical fluid [7]. Finally, urinary LH tests
prospectively identify only the last half of the fertile window
[7]; women employing this method to achieve pregnancy risk
missing the days with the highest probability of conception,
which typically occur before a detectable LH surge [4,7].
Critically, NFP methods require sufficient education for correct

application, with their success dependent on user motivation
and compliance [19].

Advances in mobile phone technology have hinted at the
advantages inherent in clinical applications of wearable
technology. Smartphone apps designed to facilitate menstrual
cycle tracking have simplified and combined NFP methods.
Natural Cycles, for example, relies on the calendar method and
BBT together to estimate peak fertility [20,21]. Enabling women
to track their cycles from home, smartphone apps nevertheless
range in accuracy [22]. At best, they can approximate the fertile
window using in-app calculations, thereby removing human
interpretation and error; however, recent studies citing the
incremental improvements of app-based NFP acknowledge their
usefulness would be further heightened through biofeedback
[23].

Designed to measure and record physiological parameters,
wearable technology seems well-suited to address current
limitations in traditional and app-based NFP. Their noninvasive
nature allows for the convenient, continuous monitoring of
multiple parameters simultaneously, resulting in large datasets
and individualized pattern tracking via machine learning [2].
For a fraction of the time, cost, and effort, wearables have the
potential to reproduce previous findings, demonstrating the
correlation between physiological parameters and the menstrual
cycle [17,24]. Spontaneously menstruating women show natural
variations in body temperature [25], cardiovascular function
[26-28], respiratory rate [29,30], and skin perfusion [31,32],
depending on their cycle phase. To document these effects, most
previous research has required hospital-grade medical equipment
(eg, ultrasound machines [33]). Initial research on a wearable
fertility tracker, however, has demonstrated that wrist skin
temperature (WST) across the menstrual cycle mirrors
BBT-measured phase-based changes. Unlike traditional BBT
charting, the correlation was robust to potential confounds [17].
A follow-up study demonstrated that heart rate also serves as a
reliable, prospective parameter for cycle tracking [24]. Other
devices worn on the wrist, under the arm, or in the ear similarly
strive to detect menses and the fertile window through
monitoring nightly changes in 1 or 2 physiological changes (eg,
core body temperature or heart rate [34-37]); to date,
peer-reviewed clinical evidence of their efficacy has not yet
been published. Wearables have the potential to improve upon
digital calendar methods and BBT by measuring multiple
physiological parameters continuously, honing in on an even
more precise estimation of ovulation [5,6].

Objectives
Focusing on the application of wearable devices to women’s
reproductive health, this study represents the first research to
track multiple physiological changes concurrently across the
menstrual cycle. Using a clinical sample, we aimed to analyze
phase-based differences in skin temperature, heart rate,
respiratory rate, perfusion, and heart rate variability (HRV). We
also probed the robustness of wearable technology, considering
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the effect of daily, individual, and cycle-level factors on
menstrual phase detection. Finally, drawing on insight from
artificial intelligence and machine learning, we sought to
develop an algorithm that could identify the 6-day fertile
window in real time.

Methods

Study Design
Interested in understanding wearable technology’s potential as
a fertility aid device, we conducted a correlational prospective
cohort study enrolling conception-seeking women. Our
dependent variables included nightly physiological readings of
each parameter, as predicted by the menstrual cycle phase. In
addition, we controlled for participant’s age, body mass index

(BMI; kg/m2), and other environmental factors that could affect
a woman’s heart rate, respiratory rate, HRV, WST, or skin
perfusion.

Participants
In total, 237 women participated in our study. Previous research
has demonstrated the difficulty in assessing the necessary sample
size to achieve adequate statistical power in multilevel modeling;
namely, power analyses require knowing a priori the effect size
of interest, each random effect’s variance, covariance estimates
for random effects, regression coefficients, and the number of
Level 1 groups (eg, how many total cycles and days per cycle
each woman will record) [38,39]. As we could not know
beforehand the length of each woman’s cycle, we sought to
recruit a conservative number of participants based on the
sample size used in other comparable clinical studies (eg,
ranging from 91 women [17] to 317 women [20]).

We recruited participants via flyers hanging in Zurich-area
hospitals and private gynecological offices. In addition, we took
out a Facebook advertisement targeting Zurich-area women.
Both the Web advertisement and paper flyers directed interested
individuals to a website where they were asked to complete an
entry questionnaire to evaluate inclusion and exclusion criteria,
which were established before the initial study enrollment. To
meet eligibility criteria, women had to be aged between 18 and
40 years, have regular menstrual cycles (28 [SD 4] days in
length), and be trying to conceive. Individuals who reported
doing any hormone therapy currently, had health-related issues
that affected their menstrual cycle, were on medications or other
substances that could interfere with their menstrual cycle or the
physiological parameters investigated, traveled frequently across
time zones, had a sleeping disorder, and/or had been trying
unsuccessfully to become pregnant for more than a year were
excluded from the study. Information on each participant’s
weight and height, used to calculate BMI, was also collected.

Eligible individuals were then contacted by the research team
and invited to attend an initial meeting at the Department of
Reproductive Medicine at the University Hospital, Zurich. A
member of the research team met with each person for at least
30 min to verify eligibility and discuss the study protocol.
Individuals had up to a week to provide written informed
consent, at which time they were equipped with the necessary
study materials; informed consent was obtained from all subjects

before their study involvement. Participants reported for
in-person follow-up appointments after 3, 6, and 9 subsequent
menstrual cycles. Each participant remained enrolled in the
study for up to a year or until becoming pregnant. Women who
returned study materials at the end of their cycle measurements
received 120 Swiss francs as compensation for their
participation.

Study Protocol
During their initial meeting with the experimenter, participants
received the Web link to a daily diary survey, an electronic
wearable to measure physiological parameters while sleeping,
and the testing kit for evaluating urinary LH (ClearBlue
Advanced Fertility Monitor, SPD Swiss Precision Diagnostics
GmbH). Registered with the US Food and Drug Administration
as a fertility aid device, the wristworn Ava bracelet (Ava AG)
measures 7 physiological parameters simultaneously including
WST, heart rate, HRV, respiratory rate, and skin perfusion. The
Ava bracelet also measures a user’s sleep quantity and sleep
quality. These variables were not of interest to the research
question presented here and thus are not included in our
analyses. Study participants were instructed to wear the bracelet
on the dorsal side of their wrist nightly while sleeping. The
electronic wearable automatically saves physiological
information every 10 seconds throughout the night. During their
initial appointment, participants were shown how to sync the
device with the complementary app on their smartphone and
were instructed to do so each morning upon waking.

In addition to syncing their bracelet daily, participants also
completed a Web diary entry about their activities during the
last 24 hours. Previous research has indicated that engaging in
aerobic exercise or consuming caffeine, alcohol, or food in the
3 hours before bed can affect physiological parameters of
interest to our study (eg, body temperature [40-43]). To control
for potential covariates, we asked participants to indicate
whether they, in the 3 hours preceding sleep, had sexual
intercourse, exercised heavily, eaten, drank coffee, or consumed
alcohol. In addition, we asked if participants had taken a
pregnancy test that day and, if so, whether they were pregnant.

Finally, participants tracked and reported their LH peak each
cycle using the ClearBlue Advanced Fertility Monitor. An
at-home LH test, it has been widely used in previous research
to estimate the day of ovulation (OV) and close of the fertile
window [12,14]. The ClearBlue Fertility Advanced Fertility
Monitor shows a smiling face when it detects LH levels
indicating peak fertility (typically 1 day before OV [14]). From
5 days after the onset of menses and through OV, participants
measured their LH levels each morning; they reported their
result in their daily diary entry.

In keeping with previous research [17,24], we divided the
menstrual cycle into the following 5 phases: (1) menstruation,
starting with the first day of menses and lasting 5 days; (2) the
follicular phase, starting on the first day post menses and lasting
through 6 days before ovulation (OV –6); (3) the fertile window,
starting 5 days before ovulation and lasting through ovulation
(OV –5 to OV); (4) the early luteal phase, starting 1 day after
ovulation through a week after ovulation (OV+1 to OV+7); and
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(5) the late luteal phase, starting 8 days after ovulation (OV+8)
and lasting through the day before the onset of menses.

All research was performed in accordance with the Declaration
of Helsinki. The clinical protocol was reviewed and approved
by the Cantonal Ethics Committee Zurich, Switzerland (BASEC
-Nr 2016-02241). It was registered in ClinicalTrials.gov under
the identifier NCT03161873 as well as with the Swiss Federal
Complementary Database (Portal) before data collection.
Informed consent was obtained from all subjects before their
study involvement.

Statistical Analysis
We conducted all data processing and analysis using R (v3.5.1)
and Python 3.5. To account for the variation in physiological
parameters that arises from sleep onset and awakening [44], we
excluded the first 90 and the last 30 min of each night’s data a
priori. In addition, each parameter underwent locally estimated
scatterplot smoothing (LOESS smoothed) before statistical
analysis, thereby reducing artificial fluctuations owing to
potential measurement error and consistent with best practices
[45]. We tested the underlying assumptions of multilevel
modeling by examining the residuals of the 5 base models and
plotting their respective q-q plots [46].

Next, to probe whether physiological parameters changed across
the menstrual cycle, we ran a series of multilevel models with
random slopes and random intercepts. Our data were inherently
structured, with nightly measurements nested within menstrual
cycles and menstrual cycles nested within participants. Thus,
we specified cross-classification in our models. The first random
effects term specified participant identification number as the
random intercept and the cycle number from which the
observation was drawn as the random slope. In the second
random effects term, we specified the cycle number as the
random intercept and the phases of the menstrual cycle as the
random slopes. We optimized the model fit via Residual
Maximum Likelihood and Satterthwaite degrees of freedom.
Specifically, the R packages (R Foundation for Statistical
Computing) lme4 [47], lmerTest [48], optimx [49], and
multcomp [50] enabled us to test phase-based changes in
physiology across the menstrual cycle. When possible, we chose
the model using the percentile of data (stable maxima) with the
lowest kurtosis and best fit. When missing data rendered it
impossible to compare the fit of 2 models, we conservatively
chose the model more closely approximating the median
observations (eg, the 70th percentile over the 90th percentile).

Given the large number of covariate models we were testing,
we implemented a Bonferroni correction to ensure that the
family-wise alpha level did not rise above .05. We divided the
desired alpha level of .05 by the total number of models we
tested (n=50) to arrive at a revised significance level of less
than or equal to .001. We adjusted our definition of marginal
significance in turn to comprise an alpha value ranging from
.05 (the desired family-wise significance level) to .001. We used
the Bonferroni-corrected significance level throughout the paper.

Creation of the Fertility Algorithm
After retrospectively analyzing the clinical data, we turned to
techniques from machine learning to develop an algorithm for

predicting and detecting in real time a woman’s fertile window.
We used a cycle-based, random 75:25 split for the training and
testing datasets with each user belonging to only 1 category;
the training dataset consisted of physiological observations from
186 users across 499 cycles, whereas the validation dataset
initially contained data from 51 users across 166 cycles. We
then trained a random forest with 1000 trees and a max feature
parameter of 3 on the training dataset, using the Python module
sklearn.ensemble.RandomForestClassifier [51] and the setting
max_features=3. We provided 11 input features engineered
from the base physiological signals including heart rate,
breathing rate, WST, and HRV. We used 3 classes for the initial
classification: follicular phase, fertile window, and luteal phase;
whereas in our clinical analysis we removed cycles with 20%
or more missing data, we kept all cycles in our training dataset.
For cycles where participants had synced their data nightly at
least 80% of the time, our model used those features in
estimating the fertile window. For cycles where nightly data
were synced less than 80% of the time, however, the algorithm
instead predicted the upcoming fertile window based on the
user’s previous cycle length and length of their typical luteal
phase.

Following the fertility algorithm’s training, we tested it using
the validation dataset to determine its performance. We removed
cycles where women had synced less than 80% of the days from
the validation dataset before calculating the reported
performance metrics, reflecting the manufacturer’s instructions
for recommended use. This left us with a validation dataset
comprised of 85 cycles spread across 24 users. Interested in our
algorithm’s ability to correctly predict the fertile window, we
then grouped the follicular and luteal phase classifications
together into a single nonfertile comparison group. This
reclassification allowed us to calculate the algorithm’s overall
accuracy and F score. The F score serves as a measure of an
algorithm’s effectiveness, computed by taking the harmonic
average of the mean precision and recall metrics [52].

Results

Physiological Changes Across the Menstrual Cycle 

Population Characteristics
From the initially recruited 237 participants, we excluded 44
women’s data. In total, 25 participants could not confirm an LH
surge in any cycle. In addition, 5 participants had only
irregularly long or short menstrual cycles during the course of
our study, thereby not meeting the inclusion criteria. Finally,
in keeping with previous research and best practices for
maximizing fertility prediction algorithms [6,40-43], we also
excluded data from 14 women who reported measurements and
synchronized their bracelet with the cellphone app less than
80% of days in the cycle.

The final sample included 1194 cycles spread across 193
participants (mean 33.02 [SD 3.68] years); of the 1194 recorded
cycles, only 708 met the inclusion criteria for analysis (ie,
participants synced their device with the app ≥80% of cycle
days and recorded a positive LH test). On average, participants
recorded 3.57 analyzable cycles (SD 2.41), with a mean cycle
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length of 28.21 (SD 2.87) days and a mean BMI of 22.70 kg/m2

(SD 3.40). Although some women discontinued study
participation after a few cycles to pursue in vitro fertilization
(n=2) or because they no longer wanted to conceive (n=13), no
women cited discomfort from the device as a reason for
discontinuation.

Physiological Changes in Relation to Cycle Phases
We observed significant changes in physiological parameters
as captured by the wearable device across the menstrual cycle.
Significant findings from the phase-based analysis of each
physiological parameter are reported below, with the fixed

effects presented in Table 1; the cross-classified full model for
each physiological parameter, including random effects, can be
found in Multimedia Appendix 1. In addition, changes in
physiological parameters across the menstrual cycle are
presented concurrently in Figure 1. Across all models, the
menstrual phase served as the reference group, with each of the
other 4 phases compared with it directly. Furthermore, we tested
each base model separately before including potential covariates;
unless otherwise noted, individual (eg, BMI and age),
cycle-specific (eg, duration), and/or daily (eg, drinking alcohol
in the 3 hours preceding sleep) covariates did not change the
direction or significance of phase-based effects.

Table 1. Multilevel linear mixed models reveal the relationship between menstrual phase and physiological parameters.

Skin perfusionaRespiratory rateaHeart rate variabilityaHeart rateaWrist skin temperatureaPredictors

1306.54b (75.39)16.92b (0.14)1.70b (0.10)58.62b (0.44)34.08b (0.08)Intercept

Cycle phase

Reference groupReference groupReference groupReference groupReference groupMenstrual

−44.32c (14.80)−0.39b (0.04)0.11c (0.03)−1.54b (0.20)−0.24b (0.02)Follicular

−73.58c (18.25)−0.48b (0.04)0.08c (0.03)−0.03 (0.26)−0.25b (0.03)Fertile

−12.02 (18.49)−0.20b (0.04)−0.11 (0.05)2.01b (0.20)0.01 (0.02)Early luteal

51.33 (26.96)0.22b (0.03)−0.20c (0.04)2.46b (0.29)0.20b (0.02)Late luteal

aUnstandardized b-coefficient values reported, with SEs in parentheses.
bP<.001 with a Bonferroni correction.
cP<.05 with a Bonferroni correction.
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Figure 1. Wearable technology can detect changes in 5 physiological parameters across the menstrual cycle. The smoothed, normalized values of each
physiological parameter (with 95% CIs) collapsed across individuals (n=193) and cycles (n=708) are shown, centered around participant-reported
luteinizing hormone peak.

Wrist Skin Temperature
Regressing nightly WST on menstrual phases using the 50th
percentile data revealed women had a significantly lower WST
in the follicular phase (mean 33.87 °C [SD 0.84]; t5.06=–11.12;
P<.001) and fertile window (mean 33.88 °C [SD 0.78];
t4.96=–8.97; P<.001) compared with menses (mean 34.11 °C
[SD 0.84]). WST was also significantly higher in the late luteal
(mean 34.32 °C [SD 0.82];t14.80=10.96; P<.001) phase compared
with menses.

Controlling for individual, cycle-level, or daily covariates did
not change the effect of menstrual phase on WST. In general,
women with higher BMIs had significantly lower nightly WST
(t184.69=–3.70; P<.001). Compared with nights when she did
not eat or had only a small meal in the 3 hours before sleep, a
woman had significantly lower WST after eating a medium-
(t16220=–3.58; P<.001) or large-sized meal (t16240=–5.10;
P<.001; see Table 2).

Heart Rate
There was a significant effect of cycle phase on average nightly
heart rate in the data drawn from the 30th percentile. In

particular, heart rate was significantly lower in the follicular
phase (mean 56.56 [SD 6.29] beats per minute [bpm]) compared
with the menstrual phase (mean 57.92 [SD 6.27] bpm;
t8.43=–7.66; P<.001). Nightly heart rate was significantly higher
in the early (mean 59.98 [SD 6.50] bpm; t5.74=9.93; P<.001)
and late luteal phases (mean 60.47 [SD 6.45] bpm; t6.02=8.53;
P<.001) than in menses, however.

Daily and cycle-level variables significantly affected nightly
heart rate, over and above the effect of the menstrual phase.
Women who ate a large-sized meal (t16220=8.16; P<.001), drank
at least 1 serving of alcohol (1 to 4 units, t16250=12.43; P<.001;
≥5 units, t16250=18.28; P<.001), and/or exercised for at least 60
min (t16280=4.84; P<.001) in the 3 hours before sleep had
significantly higher heart rates on a given night. Finally, during
a longer cycle, women were significantly more likely to have
an increased heart rate on a given night (t14000=5.44; P<.001).
Inclusion of these covariates in the model did not affect the
direction or significance of phase-based effects (see Table 3).
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Table 2. Multilevel linear mixed models reveal the relationship between menstrual phase, covariates, and wrist skin temperature.

Model 9aModel 8aModel 7aModel 6aModel 5aModel 4aModel 3aModel 2aModel 1aPredictors

35.01b (0.64)34.24b

(0.10)
33.32b

(0.48)
34.09b

(0.08)
34.09b

(0.08)
34.09b

(0.08)
34.09b

(0.08)
35.40b

(0.36)
34.12b

(0.08)

Intercept

Cycle phase

Reference
group

Reference
group

Reference
group

Reference
group

Reference
group

Reference
group

Reference
group

Reference
group

Reference
group

Menstrual

–0.23b (0.03)–0.24b

(0.03)
–0.24b

(0.03)
–0.24b

(0.03)
–0.24b

(0.02)
–0.24b

(0.03)
–0.24b

(0.03)
–0.23b

(0.03)
–0.24b

(0.03)

Follicular

–0.24b (0.03)–0.26b

(0.03)
–0.26b

(0.03)
–0.26b

(0.03)
–0.25b

(0.03)
–0.26b

(0.03)
–0.26b

(0.03)
–0.25b

(0.03)
–0.26b

(0.03)

Fertile

0.02 (0.03)0.00 (0.02)0.00 (0.03)0.00 (0.02)0.01 (0.02)0.00 (0.02)0.00 (0.02)0.01 (0.03)0.00 (0.02)Early luteal

0.20b (0.02)0.19b

(0.02)
0.20b

(0.02)
0.19b (0.02)0.19b

(0.02)
0.19b (0.02)0.19b

(0.02)
0.20b

(0.02)
0.19b (0.02)Late luteal

Mealc

Reference
group

———————dReference
group

Small or no
food

–0.03b (0.01)———————–0.03b

(0.01)

Medium meal

–0.05b (0.01)———————–0.05b

(0.01)

Large meal

–0.05b (0.02)——————–0.06b

(0.02)

—Body mass index

(kg/m2)

0.01 (0.01)—————0.00 (0.01)——Coffeec

Exercisec

Reference
group

————Reference
group

———No exercise

0.01 (0.01)————0.01 (0.01)———<60 min

0.01 (0.01)————0.02 (0.01)———>60 min

–0.02e (0.01)———–0.02e

(0.01)

————Sexual intercoursec

Alcoholc

Reference
group

——Reference
group

—————No alcohol

0.00 (0.01)——–0.01 (0.01)—————1-4 units

0.07d (0.02)——0.05e (0.02)—————≥5 units

0.02 (0.01)—0.02 (0.01)——————Age (years)

–0.01e (0.00)–0.01e

(0.00)

———————Cycle duration

aUnstandardized b-coefficient values reported, with SEs in parentheses.
bP<.001 with a Bonferroni correction.
cWithin the 3 hours preceding the onset of sleep.
dIndicates a predictor was not considered in a given model.
eP<.05 with a Bonferroni correction.
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Table 3. Multilevel linear mixed models reveal the relationship between menstrual phase, covariates, and heart rate.

Model 9aModel 8a,bModel 7aModel 6aModel 5aModel 4a,bModel 3a,bModel 2aModel 1aPredictors

53.52c (5.06)56.51c

(0.58)
60.37c

(3.81)
58.38c (0.44)58.60c

(0.44)
58.53c (0.44)58.58c

(0.44)
54.02c

(2.86)
58.40c (0.44)Intercept

Cycle phase

Reference
group

Reference
group

Reference
group

Reference
group

Reference
group

Reference
group

Reference
group

Reference
group

Reference
group

Menstrual

–1.62c (0.22)–1.31c

(0.07)
–1.55c

(0.20)
–1.58c (0.22)1.57c

(0.21)
–1.30c (0.07)–1.29c

(0.07)
–1.57c

(0.21)
–1.57c (0.21)Follicular

–0.02 (0.24)0.19d

(0.06)

–0.02
(0.24)

–0.04 (0.24)–0.04
(0.25)

0.19d (0.07)0.19d

(0.07)

–0.03
(0.23)

–0.04 (0.25)Fertile

2.00c (0.17)2.01c

(0.06)
1.96c

(0.17)
1.98c (0.18)1.95c

(0.18)
2.01c (0.06)2.01c

(0.06)
1.98c

(0.16)
1.95c (0.19)Early luteal

2.40c (0.25)2.37c

(0.07)
2.40c

(0.24)
2.41c (0.25)2.40c

(0.24)
2.37c (0.07)2.37c

(0.07)
2.40c

(0.24)
2.39c (0.24)Late luteal

Meald

Reference
group

———————eReference
group

Small or no
food

0.05 (0.06)———————0.08 (0.06)Medium meal

0.31c (0.07)———————0.56c (0.07)Large meal

0.20 (0.13)——————0.21 (0.12)—Body mass index

(kg/m2)

–0.14 (0.08)—————0.02 (0.08)——Coffeed

Exercised

Reference
group

————Reference
group

———No exercise

0.05 (0.06)————0.03 (0.06)———<60 min

0.36c (0.07)————0.33c (0.07)———>60 min

–0.04 (0.06)———0.03 (0.06)————Sexual intercoursed

Alcohold

Reference
group

——Reference
group

—————No alcohol

0.53c (0.05)——0.62c (0.05)—————1-4 units

2.70c (0.16)——2.82c (0.15)—————≥5 units

–0.05 (0.12)—–0.05
(0.11)

——————Age (years)

0.06c (0.01)0.07c

(0.01)

——————Cycle duration

aUnstandardized b-coefficient values reported, with SEs in parentheses.
bThe model would not converge with the cross-classification term, so only random intercepts were included.
cP<.001 with a Bonferroni correction.
dP<.05 with a Bonferroni correction.
dWithin the 3 hours preceding the onset of sleep.
eIndicates a predictor was not considered in a given model.
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Heart Rate Variability
Analysis of data from the 90th percentile revealed a marginally
significant effect of cycle phase on the criterion. The average
nightly HRV ratio was higher in the follicular phase (mean 1.86
[SD 0.91]; t4.10=3.28; P=.03) and fertile window (mean 1.86
[SD 0.91]; t3.49=3.37; P=.03) than in the menstrual phase (mean
1.78 [SD 0.88]). The HRV ratio dipped during the luteal phase,
tending to be lower on a given night in the late luteal phase
(mean 1.62 [SD 0.79]) than during menses (t4.38=–5.50; P=.004).
Not meeting the more conservative Bonferroni corrected alpha
level of .001, however, these phase-based differences only
trended toward significance.

A covariate analysis revealed only a significant effect of
daily-level predictors on HRV, over and above the effects of
the menstrual phase. In particular, women had lower HRV ratios
on a given night if they had eaten a large-sized meal
(t16280=–4.35; P<.001) compared with nights where they fasted
or ate only a small meal in the 3 hours before bed. Nevertheless,
the phase-based trends in HRV ratio remained robust; compared
with menses, the HRV ratio was higher in the follicular phase
and fertile window, but lower during the luteal phase (see Table
4).

Respiratory Rate
Examining data from the 90th percentile of nightly observations,
respiratory rate was significantly lower in the follicular phase
(mean 16.57 [SD 2.06] breaths/min; t8.55=–9.96; P<.001), fertile
window (mean 16.40 [SD 2.00] breaths/min; t9.52=–11.59;
P<.001), and early luteal phase (mean 16.68 [SD 1.96]
breaths/min; t9.39=–5.44; P<.001) compared with menses (mean
16.86 [SD 2.03] breaths/min). Finally, during the late luteal
phase, a woman’s respiratory rate was significantly faster (mean
17.04 [SD 1.97] breaths/min; t7.52=6.74; P<.001) than during
menses.

Eating a large meal (t16210=5.39; P<.001) or consuming alcohol
(1 to 4 units, t16200=8.86; P<.001; ≥5 units, t16210=12.56;
P<.001) in the 3 hours preceding sleep was associated with a
significant increase in nightly respiratory rate, over and above
the effects of the menstrual phase. When considered alongside
all measured covariates in a single model, having sexual
intercourse significantly decreased a woman’s nightly
respiratory rate compared with nights where she was abstinent,
over and above the effects of the menstrual phase (t15250=–3.50;
P<.001). Accounting for the effects of individual covariates,
however, did not alter the direction or significance of the
menstrual phase on respiratory rate (see Table 5).

Skin Perfusion
Mixed-effects modeling with random slopes and random
intercepts using the 90th percentile data revealed a marginally
significant effect of cycle phase on skin perfusion; on average,
wrist skin was less perfuse during the follicular phase (mean
1438.78 [SD 599.43]; t6.33=–3.00; P=.02) and the fertile window
(mean 1384.02 [SD 577.19]; t7.37=–4.03; P=.004) compared
with menses (mean 1431.53 [SD 592.22]).

Inclusion of covariates in the base model did not affect the
direction of the relationship between menses and the follicular
phase or menses and the fertile window (see Table 6). Drinking
1 to 4 units of alcohol (t16247.87=–4.11; P<.001) in the 3 hours
before sleep significantly decreased nightly skin perfusion, over
and above the marginally significant effects of cycle phase. In
addition, eating a medium- (t16237.84=–3.67; P<.001) or
large-sized meal (t16254.02=–5.85; P<.001) in the 3 hours
preceding sleep significantly reduced nightly perfusion,
compared with when a woman fasted or had only a small meal
before bed.
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Table 4. Multilevel linear mixed models reveal the relationship between the menstrual phase, covariates, and heart rate variability.

Model 9a,bModel 8aModel 7aModel 6a,bModel 5a,bModel 4a,bModel 3aModel 2aModel 1aPredictors

0.32 (0.64)1.70c

(0.11)

0.77 (0.49)1.75c (0.09)1.74c

(0.09)
1.74c (0.09)1.73c

(0.10)
1.51c

(0.37)
1.75c (0.10)Intercept

Cycle phase

Reference
group

Reference
group

Reference
group

Reference
group

Reference
group

Reference
group

Reference
group

Reference
group

Reference
group

Menstrual

0.11c (0.01)0.17d

(0.03)
0.12d

(0.03)
0.11c (0.01)0.11c

(0.01)
0.11c (0.01)0.12d

(0.03)
0.12d

(0.03)
0.12d (0.03)Follicular

0.06c (0.01)0.08d

(0.02)
0.07d

(0.02)
0.07c (0.01)0.07c

(0.01)
0.07c (0.01)0.08d

(0.02)
0.07d

(0.02)
0.08d (0.02)Fertile

–0.11c (0.01)–0.12d

(0.04)
–0.12d

(0.04)
–0.11c (0.01)–0.11c

(0.01)
–0.11c (0.01)–0.11d

(0.04)
–0.11d

(0.04)
–0.12d

(0.04)

Early luteal

–0.19c (0.01)–0.20d

(0.04)
–0.20d

(0.04)
–0.19c (0.01)–0.19c

(0.01)
–0.19c (0.01)–0.12d

(0.01)
–0.20d

(0.04)
–0.20d

(0.04)

Late luteal

Meale

Reference
group

———————fReference
group

Small or no
food

–0.02e (0.01)———————–0.02d

(0.01)

Medium meal

–0.03e (0.01)———————–0.04c (0.01)Large meal

0.01 (0.02)——————0.01 (0.02)—Body mass index

(kg/m2)

–0.02 (0.01)—————–0.03d

(0.01)

——Coffeee

Exercisee

Reference
group

————Reference
group

———No exercise

0.01 (0.01)————0.01 (0.01)———<60 min

0.00 (0.01)————0.01 (0.01)———>60 min

–0.01 (0.01)———–0.02
(0.01)

————Sexual intercoursee

Alcohole

Reference
group

——Reference
group

—————No alcohol

–0.01(0.01)——–0.02d

(0.01)

—————1-4 units

–0.05(0.02)——–0.06d

(0.02)

—————≥5 units

0.03d (0.01)—0.03d

(0.01)

——————Age (years)

0.00 (0.00)0.00 (0.00)———————Cycle duration

aUnstandardized b-coefficient values reported, with SEs in parentheses.
bThe model would not converge with the cross-classification term, so only random intercepts were included.
cP<.001 with a Bonferroni correction.
dP<.05 with a Bonferroni correction.
eWithin the 3 hours preceding the onset of sleep.
fIndicates a predictor was not considered in a given model.

J Med Internet Res 2019 | vol. 21 | iss. 4 | e13404 | p. 10http://www.jmir.org/2019/4/e13404/
(page number not for citation purposes)

Goodale et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 5. Multilevel linear mixed models reveal the relationship between menstrual phase, covariates, and respiratory rate.

Model 9aModel 8aModel 7aModel 6aModel 5aModel 4aModel 3aModel 2aModel 1aPredictors

16.15b (1.72)16.88b

(0.17)
17.82b

(1.28)
16.88b

(0.14)
16.92b

(0.14)
16.92b

(0.14)
16.91b

(0.14)
15.39b

(0.97)
16.89b

(0.14)

Intercept

Cycle phase

Reference
group

Reference
group

Reference
group

Reference
group

Reference
group

Reference
group

Reference
group

Reference
group

Reference
group

Menstrual

–0.39b (0.05)–0.38b

(0.04)
–0.38b

(0.05)
–0.38b

(0.05)
–0.38b

(0.04)
–0.38b

(0.04)
–0.38b

(0.04)
–0.39b

(0.05)
–0.38b

(0.04)

Follicular

–0.46b (0.04)–0.47b

(0.04)
–0.47b

(0.04)
–0.48b

(0.04)
–0.46b

(0.04)
–0.48b

(0.04)
–0.47b

(0.04)
–0.48b

(0.04)
–0.48b

(0.04)

Fertile

–0.21b (0.04)–0.21b

(0.04)
–0.21b

(0.04)
–0.21b

(0.04)
–0.21b

(0.04)
–0.21b

(0.04)
–0.21b

(0.04)
–0.22b

(0.04)
–0.21b

(0.04)

Early luteal

0.22b (0.03)0.22b

(0.03)
0.22b

(0.03)
0.21b (0.03)0.22b

(0.03)
0.22b (0.03)0.22b

(0.03)
0.21b

(0.03)
0.21b (0.03)Late luteal

Mealc

Reference
group

———————dReference
group

Small or no
food

–0.01 (0.02)———————0.00 (0.02)Medium meal

0.04e (0.02)———————0.09b (0.02)Large meal

0.06 (0.04)——————0.07 (0.04)—Body mass index

(kg/m2)

0.03 (0.02)—————.06e (0.02)——Coffeec

Exercisec

Reference
group

————Reference
group

———No exercise

–0.01 (0.02)————–0.01 (0.02)———<60 min

0.03 (0.02)————0.03 (0.02)———>60 min

–0.05b (0.02)———–0.04e

(0.01)

————Sexual intercoursec

Alcoholc

Reference
group

——Reference
group

—————No alcohol

0.10b (0.01)——0.11b (0.01)—————1-4 units

0.46b (0.04)——0.48b (0.04)—————>5 units

–0.02 (0.04)—–0.03
(0.04)

——————Age (years)

0.00 (0.00)0.00 (0.00)———————Cycle duration

aUnstandardized b-coefficient values reported, with SEs in parentheses.
bP<.001 with a Bonferroni correction.
cWithin the 3 hours preceding the onset of sleep.
dIndicates a predictor was not considered in a given model.
eP<.05 with a Bonferroni correction.
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Table 6. Multilevel linear mixed models reveal the relationship between menstrual phase, covariates, and skin perfusion.

Model 9a,bModel 8aModel 7a,bModel 6aModel 5aModel 4a,bModel 3aModel 2a,bModel 1aPredictors

1080.00d

(426.30)
1325.16c

(85.35)
1629.12c

(319.49)
1315.27c

(72.86)
1308.46c

(72.59)
1316.50c

(74.72)
1308.46c

(72.58)
811.67d

(244.86)
1338.17c

(72.65)

Intercept

Cycle phase

Reference
group

Reference
group

Reference
group

Reference
group

Reference
group

Reference
group

Reference
group

Reference
group

Reference
group

Menstrual

–26.76d (8.35)–49.29d

(15.09)
–30.89c

(8.32)
–50.23d

(15.28)
–48.22d

(15.12)
–30.93c

(8.27)
–49.94d

(15.20)
–27.30c

(8.28)
–49.62d

(15.07)

Follicular

–43.89c (7.96)–68.04d

(16.87)
–48.91c

(7.74)
–68.17d

(16.74)
–65.00d

(16.99)
–48.69c

(7.70)
–68.77d

(17.03)
–45.20c

(7.69)
–68.23d

(16.94)

Fertile

–1.53d (7.53)–7.06
(17.68)

–14.68
(7.54)

–6.88
(17.56)

–5.64
(17.54)

–12.76
(7.51)

–7.14
(17.37)

–15.96d

(7.50)

–6.37
(17.48)

Early luteal

33.43c (8.13)61.94
(29.06)

33.83c

(8.14)

60.18
(28.75)

61.94
(28.71)

33.85c (8.11)60.73
(28.60)

34.01c

(8.09)

60.82
(28.62)

Late luteal

Meale

Reference
group

———————fReference
group

Small or no
food

–20.55d (7.29)———————–26.43c

(7.21)

Medium meal

–40.31c (8.52)———————–47.36c

(8.09)

Large meal

21.19d (10.33)——————22.08d

(10.21)

—Body mass index

(kg/m2)

–0.04 (9.77)—————–7.00
(9.77)

——Coffeee

Exercisee

Reference
group

————Reference
group

———No exercise

–18.56d (7.45)————–17.81d

(7.46)

———<60 min

7.65 (8.11)————11.12 (8.03)———>60 min

–4.90 (7.03)———–11.42
(7.00)

————Sexual intercoursee

Alcohole

Reference
group

——Reference
group

—————No alcohol

–16.89d (6.33)——–24.71c

(6.01)

—————1-4 units

–13.31 (18.56)——–17.64
(18.50)

—————>5 units

–6.59 (9.49)—–9.56
(9.36)

——————Age (years)

–0.01 (1.61)–0.62
(1.59)

———————Cycle duration

aUnstandardized b-coefficient values reported, with SEs in parentheses.
bThe model would not converge with the cross-classification term, so only random intercepts were included.
cP<.001 with a Bonferroni correction.
dP<.05 with a Bonferroni correction.
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eWithin the 3 hours preceding the onset of sleep.
fIndicates a predictor was not considered in a given model.

Fertility Prediction Algorithm Performance
Having demonstrated the significant changes in physiological
parameters across the menstrual cycle, we proceeded to develop
a predictive real-time model for detection of the fertile window.
Employing an ensemble tree-based machine learning method
resulted in good separation between the different phases of the
menstrual cycle, with some phases easier to isolate than others
(see Multimedia Appendix 2 for the confusion matrix). The
overall method performance based on the F score was 0.78
(95% CI 0.74 to 0.82; specificity=0.93, 95% CI 0.92 to 0.94;
sensitivity=0.81, 95% CI 0.77 to 0.85); furthermore, the
algorithm accurately detected the 6-day fertile window in 90%
of cycles (95% CI 0.89 to 0.92; see Multimedia Appendix 3 for
full performance metrics). A 2018 review of smartphone apps
for tracking the menstrual cycle found that fewer than a third
of the 73 apps surveyed (17.3%) could predict a 6-day or smaller
fertile window, achieving an accuracy between 11% and 81%
(mean 53% [SD 21%]) [53]. In addition to having a shorter
fertile window than most of the apps studied, our algorithm had
a higher accuracy metric. Although NFP techniques have
demonstrated an achieved accuracy of up to 98%, they require
assumptions about the next cycle’s duration to determine
accuracy and do so at the expense of providing a broader fertile
window (ranging from 8 to 64 days for the rhythm method)
[53]. By drawing on machine learning and users’ detailed
physiological profiles across multiple cycles, our fertility
prediction algorithm achieves higher accuracy than previous
smartphone apps and pinpoints a fertile window more precisely
than traditional NFP.

Discussion

Principal Findings
Probing wearable technology’s ability to monitor multiple
physiological parameters concurrently, our study demonstrated
how WST, heart rate, HRV, respiratory rate, and skin perfusion
vary across the menstrual cycle. In line with previous research
[17], we captured a biphasic shift in WST; compared with
menses, women had significantly lower WST in the follicular
and fertile phase and significantly higher WST in the late luteal
phase. The phase-based changes in WST mirror findings from
studies using more traditional BBT methods for temperature
tracking [4,6,31]. Wearable technology renders similar readings
and conclusions as BBT in a less invasive manner, solving many
of BBT’s inherent disadvantages (eg, the need to take one’s
temperature at the same time daily [7]). Our study also upholds
conclusions from previous research, which revealed women
have significantly higher resting pulse rates [26,28-30,54] and
respiratory rates [29,30] during the luteal phase compared with
earlier in their menstrual cycle. Although we have previously
captured phase-based changes for a single parameter in an
ambulatory setting [17,24], we have demonstrated here for the
first time that wearable technology can track multiple
physiological parameters across the menstrual cycle
simultaneously. In turn, this increase in recorded features

allowed us to harness machine learning to predict the opening
and closing of the fertile window with high accuracy.

Limitations
Not all phase-based changes in physiological parameters
manifested as we predicted, however. Previous research
considering the effect of the menstrual cycle on perfusion led
us to expect significantly less skin perfusion in the luteal and
menstrual phases compared with the follicular phase or fertile
window [55]. However, our results trended in the opposite
direction, with skin perfusion lower during the follicular phase
and fertile window compared with menses. Methodological
differences in protocol may partially explain the discrepancy
between our findings and past work. Although most researchers
measured skin perfusion via sensors on a participant’s finger
or their forearm [55], participants in this study wore our device
on the dorsal side of their wrist. Previous research has found
that, even within the same study, population, and time frame,
conclusions about the physiological changes in skin perfusion
across the menstrual cycle may differ depending on where on
a participant’s finger the measuring instrument was placed [56].
Future research should consider how the location of sensors
monitoring peripheral blood flow moderates phase-based
differences in skin perfusion.

Like skin perfusion, HRV also showed marginally significant
phase-based changes across the menstrual cycle in the opposite
direction than anticipated. Multiple studies have reported women
have higher HRV ratios during the luteal phase than earlier in
their cycle [27,28,54]. In contrast, we found that the HRV ratio
increased during the follicular phase compared with menses
before decreasing during the luteal phase. Although a definitive
explanation would require follow-up studies, we believe this
difference may be due to variability in the experimental context.
Owing to wearable technology’s ambulatory nature, we could
measure HRV every 10 seconds throughout the night as
participants slept. Previous research, however, required subjects
to report to a laboratory or hospital during the day, where
experimenters collected HRV measurements for a comparatively
brief period (eg, 30 min [29]). In addition to a smaller sampling
distribution owing to temporal constraints, the participant’s
waking state may have contributed to differences in findings.
Time awake has been shown to moderate the effect of the
menstrual cycle on HRV ratio, with sleep deprivation
significantly increasing sympathetic activity during the
midfollicular phase [57]. To better understand why our findings
trended in the opposite direction than expected, follow-up
studies may wish to directly compare phase-based changes in
the HRV ratio across participants’ sleep and waking states.

An additional limitation of our study was that we computed the
fertility prediction algorithm’s accuracy based on compliant
users who synced their bracelet with the smartphone app at least
80% of the days in a given cycle. Previous research suggests
that real-world adherence to reproductive health protocol varies
greatly, however. Studies looking at technology-based
contraception methods, for example, calculate both the perfect
use as well as the typical use rate of unintended pregnancies,
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assuming an average user may not follow directions as written
all the time (eg, [15,21]). Although we required users to sync
their wearable device at least 80% of the days in a given cycle,
we attempted to simulate how our algorithm would perform for
less compliant users. To do so, we wrote a Python script to
randomly remove 10%, 30%, or 50% of the nightly observations
from the validation dataset and then recalculated the algorithm’s
accuracy and key performance metrics for each simulated
amount of noncompliance. As may be expected, the fertility
prediction algorithm became increasingly less accurate as more
observations were deleted from the dataset. Nevertheless, even
with 50% of the observations removed, our fertility algorithm
accurately predicted the fertile window in more than 86% of
cycles (95% CI 0.85 to 0.89) and had an F1 score equal to 0.72
(95% CI 0.68 to 0.76; see Multimedia Appendix 3 for the
performance metrics across all degrees of simulated
noncompliance). Planned future analyses will consider the effect
of protocol adherence on algorithm prediction accuracy among
real-world users. Given our simulated results, we expect a
relatively high performance even among users who sync less
than 80% of the time.

Conclusions
Menstrual cycle tracking has numerous applications in health
care, further augmented by the development of wearables. First,
identification of the fertile window can aid couples planning a
pregnancy. A retrospective survey of women who conceived
with the help of a fertility monitor found mistiming sexual
intercourse to be a leading reason for unexplained infertility;
knowledge about their fertile window allowed 49.5% of women
in the sample to conceive the subsequent menstrual cycle [58].
Wearables improve upon this possibility, triangulating the fertile
window through continuous, high-frequency measurement of

multiple parameters. Detection of the fertile window can also
assist women who wish to avoid pregnancy but cannot or do
not want to use hormonal contraception [15].

Wearable devices provide women with an accurate, convenient
alternative to other methods for predicting the fertile window.
We have described the measurement, analysis, and interpretation
of menstrual cycle–related physiological changes using a
wearable device. In our study, wristworn wearables show similar
sensitivity and specificity as more invasive, time intensive NFP
methods, including cervical mucus monitoring and LH testing
[59]. Wearable technology can provide women with real-time
insight into their bodies and menstrual cycles, serving as an
at-home educational tool. Furthermore, access to cyclic data
via a mobile app enables long-term cycle tracking and can lead
to more informed lifestyle and medical decisions. Future
research should consider how wearable technology can help
elucidate physiological patterns underlying women’s health
care concerns.

We reproduced the results of previous studies using a more
accurate, distributable technology. Significant phase-based
differences emerged for 3 of the physiological parameters of
interest; the remaining 2 physiological parameters showed
similar trends toward phase-based differences, despite a
conservative correction to reduce Type I error rates. On the
basis of signals collected by the wearable device, we created
an algorithm that predicts each woman’s most fertile days in a
given cycle. Our study suggests wearables’ imperviousness to
confounding factors; the wristworn device detected changes in
the menstrual phase over and above daily, cyclical, or individual
level fluctuations in parameters. Wearable sensor technology
enables the first real-time predictive model of ovulation and
represents a valuable addition to women’s health care.
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