
Original Paper

Health Care and Precision Medicine Research: Analysis of a
Scalable Data Science Platform

Jacob McPadden1*, MD; Thomas JS Durant2,3*, MD; Dustin R Bunch2, PhD; Andreas Coppi3, PhD; Nathaniel Price4,

BS; Kris Rodgerson4; Charles J Torre Jr4, MSc; William Byron4, MBA; Allen L Hsiao1, MD; Harlan M Krumholz3,5,6,

MD; Wade L Schulz2,3, MD, PhD
1Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
2Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
3Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT, United States
4Yale New Haven Health Information Technology Services, New Haven, CT, United States
5Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
6Department of Health Policy and Management, Yale School of Public Health, New Haven, CT, United States
*these authors contributed equally

Corresponding Author:
Wade L Schulz, MD, PhD
Department of Laboratory Medicine
Yale University School of Medicine
55 Park Street PS345D
New Haven, CT, 06511
United States
Phone: 1 (203) 819 8609
Email: wade.schulz@yale.edu

Abstract

Background: Health care data are increasing in volume and complexity. Storing and analyzing these data to implement precision
medicine initiatives and data-driven research has exceeded the capabilities of traditional computer systems. Modern big data
platforms must be adapted to the specific demands of health care and designed for scalability and growth.

Objective: The objectives of our study were to (1) demonstrate the implementation of a data science platform built on open
source technology within a large, academic health care system and (2) describe 2 computational health care applications built on
such a platform.

Methods: We deployed a data science platform based on several open source technologies to support real-time, big data
workloads. We developed data-acquisition workflows for Apache Storm and NiFi in Java and Python to capture patient monitoring
and laboratory data for downstream analytics.

Results: Emerging data management approaches, along with open source technologies such as Hadoop, can be used to create
integrated data lakes to store large, real-time datasets. This infrastructure also provides a robust analytics platform where health
care and biomedical research data can be analyzed in near real time for precision medicine and computational health care use
cases.

Conclusions: The implementation and use of integrated data science platforms offer organizations the opportunity to combine
traditional datasets, including data from the electronic health record, with emerging big data sources, such as continuous patient
monitoring and real-time laboratory results. These platforms can enable cost-effective and scalable analytics for the information
that will be key to the delivery of precision medicine initiatives. Organizations that can take advantage of the technical advances
found in data science platforms will have the opportunity to provide comprehensive access to health care data for computational
health care and precision medicine research.

(J Med Internet Res 2019;21(4):e13043) doi: 10.2196/13043

KEYWORDS

data science; monitoring, physiologic; computational health care; medical informatics computing; big data

J Med Internet Res 2019 | vol. 21 | iss. 4 | e13043 | p. 1https://www.jmir.org/2019/4/e13043/
(page number not for citation purposes)

McPadden et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:wade.schulz@yale.edu
http://dx.doi.org/10.2196/13043
http://www.w3.org/Style/XSL
http://www.renderx.com/


Introduction

Background
Health care has seen massive data growth over the last several
years, with some reports estimating that health care data
generation increases by 48% annually [1]. In addition, it has
been estimated that the intelligent use of big data within the
health care sector in the United States could save over US $300
billion [2]. One particular area of medicine that relies heavily
on these big data sources is precision medicine, where massive
amounts of information are needed to provide precision
diagnostics or therapeutics [3-5]. However, efforts to store,
manage, and analyze these growing datasets have stretched the
limits of traditional health care information technology systems
[6].

Many definitions of big data exist, with one of the simplest
being “any dataset that is too large or complex for traditional
hardware or data management tools” [7]. In addition to the
significant increases in volume, health care data are highly
complex due to the presence of many data standards and an
estimated 80% of information being unstructured [8]. These
data can be problematic for traditional enterprise solutions,
which rely heavily on defined data models prior to indexing,
making it difficult to accommodate new data feeds or evolving
data structures [9]. To support the informatics needs for the next
generation of computational health research, novel approaches
to data storage and analysis are necessary.

Fortunately, several applications have emerged that begin to
address the key challenges in big data processing, such as
distributed data storage and scalable processing capacity [10].
One example is the Hadoop platform, a set of open source tools
designed specifically for these tasks [11]. The goal of these
platforms is to create a central repository, called a data lake,
which can store raw data in its native format for later search,
retrieval, and analysis. However, researchers and clinicians in
the health care sector looking to leverage modern big data
architectures are faced with particular challenges in
implementation and little guidance or evidence on the use of
these platforms in parallel with production environments.

With the push for population-wide research initiatives in the
United States such as the Cancer Moonshot [12] and Precision
Medicine Initiative (now called All of Us) [3] that will rely on
large, complex, interrelated data, institutions need to develop
systems that can adequately scale to handle the data influx and
provide sufficient capacity for analytic needs. Nevertheless, any
new approaches must be attentive to the privacy and reliability
requirements associated with health care data. Accordingly, we
present 2 use cases that highlight the architecture and
implementation of a health care data science platform that
enables integrated, scalable, secure, and private health care
analytics. These strategies highlight current best practices for
data management, system integration, and distributed computing,
while maintaining a high level of security and reliability.

Objective
We describe how an integrated data lake and analytics platform
can be used to provide near real-time access to health care and

biomedical research data and the ability to conduct
computational health care research. We describe the
implementation of such a platform, which we have named the
Yale New Haven Health Baikal Data Science Platform. We
highlight the data workflows and use of specialized data storage
formats for 2 common health care use cases: continuous patient
monitoring and real-time laboratory analytics. We chose these
because they use large, real-time datasets that are difficult to
store in traditional health care data warehouses.

Methods

Hardware and Operating Systems
We deployed the Hadoop platform (Apache Software
Foundation) on a 30-node cluster running CentOS7 (Red Hat).
No virtualization layer was used so as to minimize performance
overhead. This cluster has a total of 552 processing cores, 9 TB
of memory, and 714 TB of storage distributed among the nodes,
with a scalable framework that can be used to add additional
capacity. We deployed 5 additional nodes running CentOS7
with a distributed total of 60 cores, 320 GB of memory, and 5
TB of storage to run Elasticsearch (Elasticsearch BV). In
addition to the core data storage and analysis nodes, we created
4 virtual application servers: 2 running CentOS7 and 2 running
Windows Server 2012 R2 (Microsoft Corporation). We also
deployed a virtual machine running CentOS7 as the Ambari
management node (Apache Software Foundation) for the
Hadoop cluster.

Software and System Configuration
We installed Hortonworks Data Platform version 2.6.0, a
commercially supported Hadoop distribution (Hortonworks
Inc), with 3 master nodes, 3 edge nodes, and 24 data nodes. We
deployed Ambari with Ansible (Red Hat) playbooks and
individual Hadoop applications deployed through the Ambari
interface. We installed key software packages from Hortonworks
Data Platform version 2.6.0, including the Hadoop Distributed
File System (HDFS), Zookeeper, Yet Another Resource
Negotiator (more commonly known as YARN), Kafka, Storm,
and Spark, on these nodes, in high-availability mode when
possible. We deployed Docker (Docker Inc) within a Swarm
configuration on the 3 edge nodes. We deployed Hortonworks
Data Flow (HDF) version 3.0 (Hortonworks Inc), based on the
open source NiFi software (version 1.2.0.3), within a Docker
container on 1 edge node.

We deployed Elasticsearch version 6.2.2 within Docker
containers to 5 individual nodes. We configured 1 node as a
dedicated master node, 2 nodes as master-eligible data nodes,
and 2 data nodes. We deployed Kibana version 6.2.2
(Elasticsearch BV) in a Docker container to 1 Linux application
server. Other software components relevant to the use cases
discussed here include version 3.6 of the RabbitMQ software
(Pivotal Software, Inc), the Capsule Neuron software
(Qualcomm Life, Inc), and the Cloverleaf (Infor) interface and
integration engine.

Physiologic monitoring data were validated by a team of nurses,
respiratory therapists, engineers, and physicians simultaneously
reviewing specific bedside monitor results with the real-time

J Med Internet Res 2019 | vol. 21 | iss. 4 | e13043 | p. 2https://www.jmir.org/2019/4/e13043/
(page number not for citation purposes)

McPadden et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


data feed in the data science platform. Random
provider-validated data points within the electronic health record
were also compared with values captured by the data science
platform. Laboratory data feeds were similarly validated by
physician review of randomly selected laboratory orders and
results, as well as by comparison of result counts in the
reference-standard clinical data warehouse and data science
platform.

Compression Efficiency Assessment
We developed a Spark application in the Scala programming
language to compare the storage and analytic efficiency of 3
file formats: standard comma-separated values, Avro, and data
compressed with the Snappy codec (Google LLC). We extracted
data for a 1-month monitoring period for performance testing.
We loaded data elements and then wrote them to HDFS in each
file format. We obtained the execution time for the read and
write efficiency from the Spark shell interface. We repeated
this process on 3 separate edge nodes and calculated the mean
execution time for each measurement.

Results

Platform Architecture and Deployment

Core Components
The core software applications within the Baikal platform
include features that allow for distributed data storage, message
queuing, streaming data processing, distributed computation,
and workflow management (Figure 1). Two key systems form
the basis of the data storage platform: HDFS and Elasticsearch,
a NoSQL database platform. Two message queue applications
are also used within the data science platform. Kafka is used
within the Hadoop environment and RabbitMQ is used on nodes
outside of the Hadoop cluster. Streaming data are processed
with Storm, a distributed real-time computation system, or HDF,
which provides similar features but with a developer-friendly
user interface. Distributed batch computation is done with the
Spark framework and custom applications. Workflow
management and configuration synchronization are done with
the Oozie and Zookeeper applications, respectively. Finally,
Docker is used for the deployment of custom applications that
can be run within the data science platform.

Figure 1. Baikal platform architecture. Cluster services are monitored, deployed, and provisioned by Ambari management console. Workflow management
and configuration synchronization are handled by Zookeeper and Oozie. Data storage frameworks include Hadoop Distributed File System (HDFS)
and a nonrelational database: Elasticsearch. Kafka messaging queues are used for incoming data with subsequent ingest and processing handled by
Storm, Sqoop, and NiFi. Analytics can be performed by Spark and Hive. Kerberos and Ranger are used to secure cluster applications. Lastly, Docker
Swarm is used to deploy custom applications that can be run within the data science platform. YARN: Yet Another Resource Negotiator.

J Med Internet Res 2019 | vol. 21 | iss. 4 | e13043 | p. 3https://www.jmir.org/2019/4/e13043/
(page number not for citation purposes)

McPadden et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Average storage requirements for adult and pediatric patient monitoring and ventilator monitoring. Signal frequency and storage size are the
metrics for a complete 24-hour per-bed monitoring period averaged from 3 independent samples.

Estimated annual storage (GB)Storage size (MB), mean (SD)Signal frequency, mean (SD)Source

6.217.1 (5.0)291,252 (84,568)Adult monitor

4.612.7 (1.8)223,387 (29,543)Pediatric monitor

84.5231.5 (30.6)3,504,162 (236,672)Adult ventilator

Security
Many big data platforms, including Hadoop, have limited
security features enabled by default [13,14]. For example, no
authentication is required to access Web service interfaces by
default in either Hadoop or Elasticsearch [14,15]. This lack of
default security has led to several data breaches over the last
several years [16]. Fortunately, these platforms do allow for
configuration of a robust security system with the use of
Kerberos, Ranger, and Shield [13,17]. Within the Baikal
platform, we deployed a dedicated Kerberos realm for
authentication into the cluster. We deployed Ranger to allow
for permission-based authorization to resources in the cluster
at both the application and data layers.

Electron: A Framework for Physiologic Signal
Monitoring and Analysis
Continuous monitoring of patient vital signs has been standard
practice in intensive care units and emergency departments.
However, these data are rarely kept longer than a few days due
to the storage and technical requirements for such large datasets
with limited impact for clinical use; however, they may have
significant value for future investigation. To support
investigators who require access to these physiologic signals,
we used the Baikal platform to create Electron, a framework to
store and analyze longitudinal physiologic monitoring data. The
code for this platform is available within a GitHub repository
[18].

Data Characteristics
Many bedside patient monitors and ventilators are able to
transmit their settings and recordings to a central application at
specific intervals. Within our institution, these signals are sent
at 1- to 5-second intervals, depending on the device, data
element, and value. These data elements include active data
channels, device and patient metadata, and more intermittent
data elements, such as noninvasive blood pressure and alarms.
In total, data can be transmitted for up to 892 active and
metadata channels for bedside monitors and 45 channels for
ventilators. Individual message size varies based on the number
of metadata elements, the device being used for monitoring,
and frequency of intermittent events. To determine the data
storage requirements for such a platform, we collected data for
3 randomly selected adult and 3 pediatric patients in the

intensive care unit for a 24-hour time frame. A single adult
patient in the intensive care unit generated approximately 17.1
MB of data per 24-hour time frame (Table 1).

Similarly, a 24-hour monitoring period for pediatric patients
averaged approximately 12.7 MB in the same time frame. We
similarly assessed the data volume generated by ventilators in
our health system, which produced approximately 231.5 MB
of data per ventilator per day. When we assessed monitoring
data from a 1-month period, we collected over 6 TB of raw data
from 11 units and a total of 225 beds, often reaching rates of
over 400 messages/s. These units were diverse and included
intensive care, surgical, emergency department, and short-stay
beds.

Electron Framework Architecture
The platform to acquire, store, and analyze the continuous
monitoring data consists of 4 key features: data ingestion, data
processing and denormalization, compressed storage, and
distributed analytics (Figure 2). Our physiologic monitoring
infrastructure consists of attached patient monitoring devices
that send signals to vendor-supported integration servers (Figure
2, box A). Data are then transmitted as Health-Level 7 (HL7)
messages streamed via a Transmission Control Protocol/Internet
Protocol connection to an emissary service that we deployed to
accept the incoming message stream and perform the initial
conversion of HL7 messages into a custom JSON format (Figure
2, box B). Date and time information is converted to
Coordinated Universal Time (UTC), while all other data are
left in their original format. Once processed, messages are
forwarded to a secured Kafka message queue, which allows the
platform to buffer messages during downstream processor
downtime or when under heavy load. The JSON document
contains key elements for downstream processing, as well as a
copy of the original HL7 message to allow for future
reprocessing, if needed (Textbox 1).

The decision to store the original data is often considered a best
practice but has the disadvantage of increasing the storage
requirements for the dataset. While we opted to store the raw
data on the platform, as the HL7 message contains additional
information that may be needed for future studies, the decision
to maintain this information can be made for each use case
dependent on the data storage costs and estimated future utility
of the information.

J Med Internet Res 2019 | vol. 21 | iss. 4 | e13043 | p. 4https://www.jmir.org/2019/4/e13043/
(page number not for citation purposes)

McPadden et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. System architecture for continuous patient monitoring. Multiple, increasing sources of clinical data (A) acquire and transmit the data to
aggregation servers, which then forward Health-Level 7 (HL7) messages to an emissary service (B), where data are normalized and securely forwarded
in standardized JSON format to the Baikal system (C) for denormalization, processing, and storage in the Hadoop Distributed File System (HDFS).
Traditional historic databases (D) are individually prepared for ingestion in the Baikal system and storage in HDFS. The resulting data lake allows for
integrated, distributed analytics by end users.

J Med Internet Res 2019 | vol. 21 | iss. 4 | e13043 | p. 5https://www.jmir.org/2019/4/e13043/
(page number not for citation purposes)

McPadden et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Textbox 1. JSON data model for physiologic data.

{

“msh_ts”:“long”,

“alarm_ts”:“long”,

“source”:"string",

“unit”:“string”,

“text”:“string”,

“channel”:“string”,

“hl7”:“string”

}

Figure 3. Comparison of storage and read/write efficiency. Avro increases storage space and write time modestly while significantly reducing read
time. The addition of Snappy compression increases write time minimally, while significantly decreasing storage space and maintaining minimal read
time. The resulting combination optimizes for single archival write with multiple read usage. CSV: comma-separated values. Error bars represent
standard error.

Storage Formats and Data Processing
While storage costs continue to decline, the cost of long-term
data storage for large datasets remains burdensome. Specialized
data formats and compression can improve the density of data
storage but often come at the cost of increased overhead for
read and write throughput. Fortunately, the frequency of access
to historic data typically decreases over time, which means that
slower data access methods would have less impact on overall
analytic capacity. Other work has compared the storage and
access efficiency for many big data technologies [19]. For this
use case, we predicted that the Avro data format with Snappy
compression would have an appropriate balance of storage and
access efficiency.

Avro is a semi-structured data serialization format designed for
big data storage. In addition to the semi-structured nature of the
Avro format, the files are also splittable, which means that the
Hadoop platform can separate the file into individual sections,
which increases the processing efficiency during data analysis
[20]. To assess the impact of the Avro format and Snappy
compression, we assessed the storage and access efficiency of
monitoring data from several different variables over a 30-day
period in comma-separated raw text, Avro, and
Snappy-compressed Avro formats. Data were filtered and the
length of time needed to write and read data from 3 independent
nodes in the cluster was recorded. Compared with raw text,
Avro-formatted files required approximately 12% more storage
space on disk but showed significantly faster data retrieval time
(Figure 3). The use of Snappy compression showed significant

J Med Internet Res 2019 | vol. 21 | iss. 4 | e13043 | p. 6https://www.jmir.org/2019/4/e13043/
(page number not for citation purposes)

McPadden et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


savings in storage requirements, with an average reduction in
file size of 80.5% compared with raw text files. Also of note
was the large reduction in time needed to access data stored in
Snappy-compressed Avro files.

In addition to the large volume, the high velocity of these data
required a high-throughput data processing pipeline to convert
and store the data efficiently. To achieve this, we developed a
custom application built on the Storm platform that allowed for
distributed, high-throughput processing. Within the Storm
topology, monitor signals were denormalized, converted to the
Avro format, compressed with the Snappy codec, and stored in
HDFS to allow for future analysis. A separate copy of the data
containing the original HL7 message was also stored through
a separate Storm bolt in case reprocessing of the raw data
became necessary.

Analytics
Much like the particular challenges for the acquisition and
storage of big data, specialized needs for the analysis of these
datasets also exist. While the raw data are of use for many
research and clinical projects, derived variables and predictive
analytics are often of interest. For example, computationally
derived features, such as R-R intervals [21], indices of multiple
vital signs [22], and temporal relations between vital signs have
all shown promise as predictive variables [23]. However,
generating these features is often computationally intensive
when performed at scale on entire patient populations.

Traditional analytic methods and tools are often unable to scale
to meet the needs of these analyses. Even in cases where
parallelized computation can be used, the resources necessary
to develop and validate these custom applications is often
prohibitive. To make parallelized computation more accessible,
solutions such as MapReduce [11] and Dryad [24] have been
created, which provide frameworks that manage the complexity
of parallelization. However, these solutions still require
significant technical expertise to develop applications that can
be deployed to production environments. Within the Baikal
platform, we enabled Spark as the primary data analysis tool
for batch analysis. Spark is a general data processing framework
that can be used to write applications in several common
languages, including Java, Scala, Python, and R. A key
advantage of this framework is the ability to maintain data for
MapReduce operations in memory, rather than needing to read
and write each intermediate step to disk. This has been shown
to improve the speed of big data processing significantly [25,26].
We developed several Spark applications that can be used by
data analysts to generate features from the physiologic data,
such as alarm events, and extract subsets of information for
downstream processing, which are available within the GitHub
repository.

While the physiologic data are captured during routine clinical
care, a major goal of this dataset is for use in biomedical
research. Because of the sensitive nature and regulatory
oversight of human subjects research, appropriate approvals,
such as institutional review board approval and patient consent,
are needed prior to the analysis of data within the system. In
addition, our clinical data warehouse (Figure 2, box D) includes
a field that indicates whether patients have explicitly opted out

of research and is used to filter their data from analysis that is
classified as human subjects research.

Nucleus: A Platform for Real-Time Laboratory Business
Intelligence and Data Visualization
In addition to novel data sources such as continuous patient
monitoring, data science platforms can also offer new
approaches for the analysis of more traditional health care
datasets. Examples include real-time data analysis, predictive
analytics, and interactive visualizations. In the era of cost
reduction and an increasing demand for clinical laboratory
services, laboratorians are facing expectations to optimize
laboratory efficiency for the sake of clinical workflows and
improve test utilization without compromising quality and
safety. Therefore, the clinical laboratory has a particular need
for real-time business intelligence to improve testing efficiency
and patient safety [27]. To achieve this, we created a data
science platform with business intelligence dashboards to
monitor testing within our institution’s clinical laboratory [28].

Data Characteristics

Laboratory orders and results are often routed through multiple
systems as they transit between the electronic health record and
laboratory instrumentation. This typically includes message
integration services and middleware platforms that manage the
flow of data between systems created by a number of different
vendors. Within our health care system, approximately 40
million individual results are generated annually from 6
hospitals, 26 satellite locations, and approximately 220
laboratory instruments. A principal challenge for these data is
to provide real-time access and visualizations to end users who
need actionable insights from these disparate systems. Because
of these unique needs, many downstream architectural decisions
varied from the continuous monitoring application described.

Nucleus Platform Architecture
The initial acquisition of data for this stream is similar to that
of the continuous monitoring workflow (Figure 4). Briefly, we
deployed an emissary service to receive an HL7 stream of
clinical observations and results messages from the Cloverleaf
integration engine. Each HL7 message was validated and
mapped to a JSON document by the emissary service, then
forwarded to a secured Kafka message queue. The custom JSON
messages contain key parameters that can be used to index and
parse results during batch analysis (Textbox 2).

Because of the slower message velocity, this data stream was
easily processed with the NiFi/HDF software, which is designed
for real-time data processing. We created custom Python scripts
to process and denormalize the incoming data stream. Each
order and result message was then written to HDFS for
permanent storage and batch analysis and also routed to
Elasticsearch for real-time analysis and visualization. Additional
features that provide key indicators of laboratory efficiency
were generated in real time from the HL7 messages with custom
Python scripts that are executed within the NiFi workflow.
These quality indicators are stored within Elasticsearch and can
be used to visualize turnaround time for laboratory results,
outstanding orders, and order volumes by patient or laboratory
location.

J Med Internet Res 2019 | vol. 21 | iss. 4 | e13043 | p. 7https://www.jmir.org/2019/4/e13043/
(page number not for citation purposes)

McPadden et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. System architecture for laboratory data monitoring. Health-Level 7 (HL7) observations and results messages generated by laboratory
information system and laboratory middleware systems are received by the clinical integration engine Cloverleaf (A). HL7 messages are received and
validated by a custom emissary service (B) and mapped to JSON documents, which are submitted to a Kafka message queue for downstream processing
(C). Custom Python (version 2.7) scripts are executed in NiFi to denormalize messages and calculate quality improvement metrics. Raw HL7 messages
are stored in a Hadoop Distributed File System (HDFS). Processed messages and quality improvement metrics are routed to Elasticsearch (D) for
real-time analysis and Kibana (E) for visualization.

Textbox 2. JSON data model for laboratory data.

{

“msh_ts”:"long",

“pt_mrn”:“string”,

“order_id”:“string”,

“lab_type_code”:“string”,

“order_ts”:"long",

“hl7”:“string”

}

J Med Internet Res 2019 | vol. 21 | iss. 4 | e13043 | p. 8https://www.jmir.org/2019/4/e13043/
(page number not for citation purposes)

McPadden et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Discussion

Principal Findings
Health care information is inherently complex and often has an
evolving data structure; much of the data is not stored in the
electronic health record. Because of this, novel approaches to
data management are needed to integrate the many sources of
health care data. In addition, novel approaches to data analysis
such as machine learning require significant computational
resources for timely analysis. As the use of big data in health
care continues to increase, the implementation of robust
technical solutions to manage and analyze the data will be
important to the success of biomedical big data research [3].

In this paper, we have presented the successful implementation
of a data science platform along with 2 domain-specific
applications deployed within this platform. These applications
focused on the storage of high volume, real-time datasets that
challenge traditional data warehousing strategies due to their
volume and velocity. We have also presented the hardware and
architectural approaches used to manage these data. While
individual components of the platform used here are described
in the nonmedical literature, this platform combines available
technologies to meet the known challenges of big data with
needs specific to health care, including the security and privacy
needs of personal health information.

Often, a single technical solution is unable to address all
concerns or needs for a robust data science environment. For
example, Hadoop has traditionally been used as a platform for
big data storage and batch analysis but had fewer tools available
for streaming data and real-time analytics. Because of this, we
integrated components designed specifically for the management
and visualization of real-time data. This integration allows us
to provide efficient batch analytics, as well as real-time
visualizations, which would be challenging if only a single tool
or platform were used. It should be noted, however, that the
applications described here are rapidly evolving and significant
strides have been made to expand the features of each
component, which may add redundancy between applications
in the future.

Data science platforms such as Hadoop offer many individual
components to address key requirements for data replication,
availability, and security at each stage of the data life cycle,
from acquisition to analysis. Fully implementing each of these
utilities can make data science pipelines complex, but the use
of service-oriented architectures affords the ability to update
individual applications, scale services, and reuse individual

components in multiple workflows. Because of these rapid
developments and the diversity of data, careful testing should
be done during the implementation of data science workflows
to determine the storage and compute the capacity required for
long-term management of the data being obtained. Similarly,
careful attention should be paid to the implementation of built-in
security features to ensure that data are not accidentally made
available to unauthorized users [13].

Limitations
While data science platforms offer significant potential for the
rapid analysis of big data, several limitations exist. In particular,
the complexity of these platforms often requires substantial
technical expertise to use them to their full potential. Multiple
software applications are often needed to implement an entire
workflow, particularly within the Hadoop environment. While
each Hadoop component often provides significant advantages
from developing new applications, personnel with expertise are
needed to implement these technologies effectively. While many
attempts have been made to make the environment fluent with
other tools, such as Python, SAS, and R, seamless integration
with these tools remains difficult, particularly in secured
environments.

Massive resources have been dedicated to big data and data
science in other industries; however, the return on investment
has not always been realized. Therefore, the ultimate success
of these platforms for computational health research will depend
on the ability of the biomedical research community to apply
big data to translational and clinical research. Successful
application of these technologies with applications that can
provide actionable insights from real-world data has the potential
to deliver precision medicine at the point of care, but additional
studies will be needed to fully assess the impact of these systems
on health care delivery and clinical outcomes.

Conclusion
The paucity of literature describing implementation experiences
leaves those interested in developing big data environments
largely unguided, particularly within the health care sector,
which has unique data and regulatory requirements. Careful
attention to the architecture used to create these data science
environments will provide an important foundation for future
studies that create value from big data sources. As the volume
and velocity of health care data continue to increase, additional
analyses on the management of these data will be required to
ensure that the highest-quality data are made available to
efficient analytic systems.

Acknowledgments
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. We
would like to acknowledge Steven Shane and Richard Hurley from Yale New Haven Health Information Technology Services,
New Haven, CT, USA, for their assistance with platform implementation and maintenance. We would also like to thank Patrick
Young and Guannan Gong for their review of the manuscript.

J Med Internet Res 2019 | vol. 21 | iss. 4 | e13043 | p. 9https://www.jmir.org/2019/4/e13043/
(page number not for citation purposes)

McPadden et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Conflicts of Interest
HMK was a recipient of a research grant, through Yale, from Medtronic and the US Food and Drug Administration to develop
methods for postmarket surveillance of medical devices; is a recipient of research agreements with Medtronic and Johnson &
Johnson (Janssen), through Yale, to develop methods of clinical trial data sharing; works under contract with the US Centers for
Medicare & Medicaid Services to develop and maintain performance measures that are publicly reported; chairs a Cardiac
Scientific Advisory Board for UnitedHealth Group Inc; is a participant and participant representative of the IBM Watson Health
Life Sciences Board; is a member of the Advisory Board for Element Science, Inc, and the Physician Advisory Board for Aetna
Inc; and is the founder of Hugo, a personal health information platform. WLS is a consultant for Hugo, a personal health information
platform.

References

1. EMC. The digital universe driving data growth in healthcare. Hopkinton, MA: Dell Inc; 2014. URL: https://www.emc.com/
analyst-report/digital-universe-healthcare-vertical-report-ar.pdf [accessed 2018-10-03] [WebCite Cache ID 72tbbQNwk]

2. Manyika J, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh C, et al. Big data: the next frontier for innovation, competition,
and productivity. New York, NY: McKinsey Global Institute; 2011 Jun. URL: https://www.mckinsey.com/~/media/
McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/
Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_full_report.ashx [accessed 2019-02-04]
[WebCite Cache ID 75wC2TnLO]

3. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med 2015 Feb 26;372(9):793-795. [doi:
10.1056/NEJMp1500523] [Medline: 25635347]

4. Jameson JL, Longo DL. Precision medicine--personalized, problematic, and promising. N Engl J Med 2015 Jun
04;372(23):2229-2234. [doi: 10.1056/NEJMsb1503104] [Medline: 26014593]

5. Gligorijević V, Malod-Dognin N, Pržulj N. Integrative methods for analyzing big data in precision medicine. Proteomics
2016 Mar;16(5):741-758. [doi: 10.1002/pmic.201500396] [Medline: 26677817]

6. Jordan L. The problem with big data in translational medicine. A review of where we've been and the possibilities ahead.
Appl Transl Genom 2015 Sep;6:3-6 [FREE Full text] [doi: 10.1016/j.atg.2015.07.005] [Medline: 27054070]

7. Sun J, Reddy CK. Big data analytics for healthcare. 2013 Presented at: 19th ACM SIGKDD international conference on
Knowledge discovery and data mining; Aug 11-14, 2013; Chicago, IL, USA. [doi: 10.1145/2487575.2506178]

8. IBM. Data-Driven Healthcare Organizations Use Big Data Analytics for Big Gains. Armonk, NY: IBM Corporation; 2013.
9. Fang H. Managing data lakes in big data era: what's a data lake and why has it became popular in data management

ecosystem. 2015 Presented at: 2015 IEEE International Conference on Cyber Technology in Automation, Control, and
Intelligent Systems (CYBER); Jun 8-12, 2015; Shenyang, China. [doi: 10.1109/CYBER.2015.7288049]

10. Patel AB, Birla M, Nair U. Addressing big data problem using Hadoop and Map Reduce. 2012 Presented at: 2012 Nirma
University International Conference on Engineering (NUiCONE); Dec 6-8, 2012; Ahmedabad, India. [doi:
10.1109/NUICONE.2012.6493198]

11. Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Commun ACM 2008;51(1):107-113.
12. Fact sheet: investing in the national Cancer Moonshot. Washington, DC: The White House, Office of the Press Secretary;

2016 Feb 01. URL: https://obamawhitehouse.archives.gov/the-press-office/2016/02/01/
fact-sheet-investing-national-cancer-moonshot [accessed 2019-02-04] [WebCite Cache ID 75wCltSOe]

13. Spivey B, Echeverria J. Hadoop Security: Protecting Your Big Data Platform. Sebastopol, CA: O'Reilly Media, Inc; 2015.
14. Sharma PP, Navdeti CP. Securing big data Hadoop: a review of security issues, threats and solution. Int J Comput Sci Inf

Technol 2014;5(2):2126-2131.
15. Inukollu VN, Arsi S, Ravuri SR. Security issues associated with big data in cloud computing. Int J Netw Secur Appl

2014;6(3):45.
16. Matherly J. Shodan blog. 2017 May 31. The HDFS juggernaut URL: https://blog.shodan.io/the-hdfs-juggernaut/ [accessed

2018-10-03] [WebCite Cache ID 72tbk0pY4]
17. Derbeko P, Dolev S, Gudes E, Sharma S. Security and privacy aspects in MapReduce on clouds: a survey. Comput Sci Rev

2016;20:1-28.
18. Schulz W. Electron. San Francisco, CA: GitHub, Inc; 2018 Aug 12. URL: https://github.com/ComputationalHealth/electron

[accessed 2019-02-05] [WebCite Cache ID 75xwVN7o9]
19. Grover M, Malaska T, Seidman J, Shapira G. Hadoop Application Architectures. Sebastopol, CA: O'Reilly Media, Inc;

2015.
20. Apache Avro 1.8.1 specification. 2016. URL: https://avro.apache.org/docs/1.8.1/spec.html [accessed 2018-10-03] [WebCite

Cache ID 72tbp0DbK]
21. Griffin MP, Moorman JR. Toward the early diagnosis of neonatal sepsis and sepsis-like illness using novel heart rate

analysis. Pediatrics 2001 Jan;107(1):97-104. [Medline: 11134441]

J Med Internet Res 2019 | vol. 21 | iss. 4 | e13043 | p. 10https://www.jmir.org/2019/4/e13043/
(page number not for citation purposes)

McPadden et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://www.emc.com/analyst-report/digital-universe-healthcare-vertical-report-ar.pdf
https://www.emc.com/analyst-report/digital-universe-healthcare-vertical-report-ar.pdf
http://www.webcitation.org/

                                            72tbbQNwk
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_full_report.ashx
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_full_report.ashx
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_full_report.ashx
http://www.webcitation.org/

                                            75wC2TnLO
http://dx.doi.org/10.1056/NEJMp1500523
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25635347&dopt=Abstract
http://dx.doi.org/10.1056/NEJMsb1503104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26014593&dopt=Abstract
http://dx.doi.org/10.1002/pmic.201500396
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26677817&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2212-0661(15)30036-3
http://dx.doi.org/10.1016/j.atg.2015.07.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27054070&dopt=Abstract
http://dx.doi.org/10.1145/2487575.2506178
http://dx.doi.org/10.1109/CYBER.2015.7288049
http://dx.doi.org/10.1109/NUICONE.2012.6493198
https://obamawhitehouse.archives.gov/the-press-office/2016/02/01/fact-sheet-investing-national-cancer-moonshot
https://obamawhitehouse.archives.gov/the-press-office/2016/02/01/fact-sheet-investing-national-cancer-moonshot
http://www.webcitation.org/

                                            75wCltSOe
https://blog.shodan.io/the-hdfs-juggernaut/
http://www.webcitation.org/

                                            72tbk0pY4
https://github.com/ComputationalHealth/electron
http://www.webcitation.org/

                                            75xwVN7o9
https://avro.apache.org/docs/1.8.1/spec.html
http://www.webcitation.org/

                                            72tbp0DbK
http://www.webcitation.org/

                                            72tbp0DbK
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11134441&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


22. Parimi N, Hu PF, Mackenzie CF, Yang S, Bartlett ST, Scalea TM, et al. Automated continuous vital signs predict use of
uncrossed matched blood and massive transfusion following trauma. J Trauma Acute Care Surg 2016 Dec;80(6):897-906.
[doi: 10.1097/TA.0000000000001047] [Medline: 27027555]

23. Bashan A, Bartsch RP, Kantelhardt JW, Havlin S, Ivanov PC. Network physiology reveals relations between network
topology and physiological function. Nat Commun 2012 Feb 28;3:702 [FREE Full text] [doi: 10.1038/ncomms1705]
[Medline: 22426223]

24. Isard M, Budiu M, Yu Y, Birrell A, Fetterly D. Dryad: distributed data-parallel programs from sequential building blocks.
2007 Presented at: 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems; Mar 21-23, 2007; Lisbon,
Portugal.

25. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: cluster computing with working sets. 2010 Presented
at: HotCloud ’10. 2nd USENIX conference on Hot topics in cloud computing; Jun 22-25, 2010; Boston, MA, USA.

26. Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, et al. Resilient distributed datasets: a fault-tolerant abstraction
for in-memory cluster computing. 2012 Presented at: 9th USENIX Symposium on Networked Systems Design and
Implementation; Apr 25-27, 2012; San Jose, CA, USA.

27. Bonini P, Plebani M, Ceriotti F, Rubboli F. Errors in laboratory medicine. Clin Chem 2002 May;48(5):691-698. [Medline:
11978595]

28. Schulz W. Nucleus. San Francisco, CA: GitHub, Inc; 2018 Aug 13. URL: https://github.com/ComputationalHealth/nucleus
[accessed 2019-02-05] [WebCite Cache ID 75xwZ0Qo8]

Abbreviations
HDF: Hortonworks Data Flow
HDFS: Hadoop Distributed File System
HL7: Health-Level 7
YARN: Yet Another Resource Negotiator

Edited by G Eysenbach; submitted 06.12.18; peer-reviewed by J Rudolf, A Benis; comments to author 26.12.18; revised version
received 09.01.19; accepted 13.01.19; published 09.04.19

Please cite as:
McPadden J, Durant TJS, Bunch DR, Coppi A, Price N, Rodgerson K, Torre Jr CJ, Byron W, Hsiao AL, Krumholz HM, Schulz WL
Health Care and Precision Medicine Research: Analysis of a Scalable Data Science Platform
J Med Internet Res 2019;21(4):e13043
URL: https://www.jmir.org/2019/4/e13043/
doi: 10.2196/13043
PMID: 30964441

©Jacob McPadden, Thomas JS Durant, Dustin R Bunch, Andreas Coppi, Nathaniel Price, Kris Rodgerson, Charles J Torre Jr,
William Byron, Allen L Hsiao, Harlan M Krumholz, Wade L Schulz. Originally published in the Journal of Medical Internet
Research (http://www.jmir.org), 09.04.2019. This is an open-access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The
complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license
information must be included.

J Med Internet Res 2019 | vol. 21 | iss. 4 | e13043 | p. 11https://www.jmir.org/2019/4/e13043/
(page number not for citation purposes)

McPadden et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1097/TA.0000000000001047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27027555&dopt=Abstract
http://europepmc.org/abstract/MED/22426223
http://dx.doi.org/10.1038/ncomms1705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22426223&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11978595&dopt=Abstract
https://github.com/ComputationalHealth/nucleus
http://www.webcitation.org/

                                            75xwZ0Qo8
https://www.jmir.org/2019/4/e13043/
http://dx.doi.org/10.2196/13043
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30964441&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

