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Abstract

Background: Investigations into person-specific predictors of stress have typically taken either a population-level nomothetic
approach or an individualized ideographic approach. Nomothetic approaches can quickly identify predictors but can be hindered
by the heterogeneity of these predictors across individuals and time. Ideographic approaches may result in more predictive models
at the individual level but require a longer period of data collection to identify robust predictors.

Objective: Our objectives were to compare predictors of stress identified through nomothetic and ideographic models and to
assess whether sequentially combining nomothetic and ideographic models could yield more accurate and actionable predictions
of stress than relying on either model. At the same time, we sought to maintain the interpretability necessary to retrieve individual
predictors of stress despite using nomothetic models.

Methods: Data collected in a 1-year observational study of 79 participants performing low levels of exercise were used. Physical
activity was continuously and objectively monitored by actigraphy. Perceived stress was recorded by participants via daily
ecological momentary assessments on a mobile app. Environmental variables including daylight time, temperature, and precipitation
were retrieved from the public archives. Using these environmental, actigraphy, and mobile assessment data, we built machine
learning models to predict individual stress ratings using linear, decision tree, and neural network techniques employing nomothetic
and ideographic approaches. The accuracy of the approaches for predicting individual stress ratings was compared based on
classification errors.

Results: Across the group of patients, an individual’s recent history of stress ratings was most heavily weighted in predicting
a future stress rating in the nomothetic recurrent neural network model, whereas environmental factors such as temperature and
daylight, as well as duration and frequency of bouts of exercise, were more heavily weighted in the ideographic models. The
nomothetic recurrent neural network model was the highest performing nomothetic model and yielded 72% accuracy for an
80%/20% train/test split. Using the same 80/20 split, the ideographic models yielded 75% accuracy. However, restricting
ideographic models to participants with more than 50 valid days in the training set, with the same 80/20 split, yielded 85%
accuracy.

Conclusions: We conclude that for some applications, nomothetic models may be useful for yielding higher initial performance
while still surfacing personalized predictors of stress, before switching to ideographic models upon sufficient data collection.
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Introduction

Deeper knowledge of the day-to-day effects of both weather
and physical activity on stress can be valuable for creating
personalized stress-reduction interventions on a just-in-time
basis. Previous investigations have often focused on a
nomothetic approach, pooling data to identify influential features
across individuals [1,2]. However, this approach typically has
a drawback: Insight into any particular individual is limited due
to heterogeneous effects of factors on individual-level stress
and may not be generalized due to biological variability or
overfitting [3]. For example, hot weather may reduce stress for
some participants, but increase stress for others. To remedy this,
some have taken an ideographic approach, developing
personalized stress-prediction models for each person [4-6].

Although this ideographic strategy resolves the issue of
achieving per-individual insights, it does so by discarding
potentially useful data from other individuals. The ideographic
approach also requires the acquisition of at least some data about
a given individual before making predictions for that individual.
Identifying predictors of potentially low-frequency events such
as occurrences of high stress may require substantial data
collection before the ideographic model becomes sufficiently
robust to confidently identify predictors. Thus, prior to obtaining
reliable predictors of stress, a given individual may have to
complete a long period of self-tracking, which may not be
acceptable to some individuals.

Here, we first compared individual-level predictors of stress
identified through nomothetic models to those identified in
ideographic models. We next explored the accuracy of a
model-switching paradigm that begins with a nomothetic model
and progressively changes to an ideographic model for data for
the individual accumulate. We hypothesized that beginning with
a nomothetic model would maximize accuracy during the early
phase of data collection (referred to as a “warm start”) and
subsequently, switching to ideographic modeling for higher
personalization and performance would be the most effective
approach to maximizing accuracy throughout data collection.

Methods

Overview
This paper used the data collected in an observational study of
79 participants who were followed for up to 1 year, starting
between January and July 2014; the study continuously and
objectively monitored the physical activity of the participants
by actigraphy and the perceived stress rating through ecological
momentary assessment (EMA) reports on a mobile app [6].
Participants were healthy individuals, aged 18 years or older,
who responded to fliers posted throughout the buildings of
Columbia University Medical Center (New York City, NY) and
who, on phone screening, reported only intermittent engagement
in exercise and having access to a personal computer and iOS

or Android smartphone. Individuals with significant medical
comorbidities, occupational work demands requiring rigorous
physical activity, or inability to read and speak English were
excluded. During a baseline interview, demographic
characteristics including age, sex, race, ethnicity, education,
partner status, and living situation were collected.

Measures
Stress was measured using an end-of-day text message survey
on the participant’s own iPhone or Android phone, with the
question “Overall, how stressful was your day?” Each evening,
the participant was also asked, “Overall, how stressful do you
think tomorrow will be?” Each morning, the participant
responded to the questions “How stressful do you expect today
to be?” and “How likely are you to exercise today?” All
responses were rated on a scale from 0 (not at all) to 10
(extremely). All surveys were administered using Qualtrics
software (Qualtrics, Seattle, WA). Two participants’ data were
excluded for almost no variance in the self-reported stress
ratings, leading to a total of 77 participants for the analysis.

Physical activity was measured using a wrist-worn Fitbit (Fitbit,
Inc, San Francisco, CA) to track daily physical activity,
including the steps taken, calories burned, and intensity of
physical activity for each minute of the day. Participants were
instructed to sync and charge the device every 5 to 7 days. In
this analysis, a bout of “exercise” was defined as any
consecutive 30-minute period within which 24 or more minutes
of moderate- or vigorous-intensity activity was performed. We
followed the recommendations of Ward et al [7] regarding best
practices for the use of accelerometer data in research on
physical activity. Specifically, physical activity guidelines
recommend exercising for at least 30 minutes a day while
accommodating interruptions. Further, when analyzing
accelerometer data, the conventional approach is to quantify
exercise in bouts of 10 minutes with allowances for 2 minutes
of interruption (ie, total exercise for 8 of 10 min). Extrapolating
the definition based on 10 to 30 minutes of activity, this yielded
24 of 30 minutes of activity. Software was written to determine,
for each day, whether there was any 30-minute period within
which at least 24 minutes of moderate or vigorous activity was
performed; this was our objectively assessed measure of a
30-minute period of exercise. Days in which the Fitbit device
was worn for fewer than 10 hours were excluded from all
analyses.

External and environmental variables, including temperature
(high, low, average, and range), hours of daylight, precipitation,
and day of the week, were retrieved from the meteorological
station in Central Park (New York City, NY); these data are
made publicly available by the National Oceanic and
Atmospheric Administration’s National Center for
Environmental Information.
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Statistical Analysis
We developed models for stress rating using neural network,
decision tree, and linear approaches across all participants, as
well as participant-specific decision trees. Each model predicted
a person’s self-reported stress rating (range, 0-10), using the
previous 3 days of weather, self-reported stress, and actigraphy
data. Because the previous 3 days were used as inputs, periods
missing a stress rating were excluded.

The continuous prediction for stress was then converted into a
binary classification as either above or below a participant’s
median self-reported stress value in the training set. We chose
this approach, because if the stress rating was left as a
continuous value, it was not clear at what rating an intervention
should be initiated. Further, using the participant’s median as
a reference slightly adjusts for participants who did not utilize
the full range of the 11-point scale. In this way, the high-stress
rating was individualized for each participant. The Keras Python
library [8] was used to train neural network models, and the
scikit-learn Python library [9] was used to train linear and
decision tree-type models. Dropout, a regularization method
for neural networks, was also used in the neural network models
during training to decrease overfitting.

Model performance was compared based on regression (mean
absolute error) and classification (area under the curve [AUC],
F1 score, accuracy) error in predicting stress self-report. Feature
importances were also compared between models. The AUC
of a classifier is equivalent to the probability that the classifier
will rank a randomly chosen positive instance

higher than a randomly chosen negative instance [10]. A model
with an AUC closer to 1 is generally better. An F1 score is the
harmonic mean of a model’s precision and recall, with values
between 0 and 1, in which values closer to 1 are better. Model
selection was performed through exhaustive grid search of the
corresponding hyperparameters for each model using 3-fold
cross-validation and optimizing on the mean absolute error.

For the ideographic decision trees, the Gini importance, as
implemented in scikit-learn, was used to derive the significance
of each input variable for each participant. Layer-wise relevance
propagation (LRP) [11] was used to interpret our neural network
models. LRP propagates the relevance of each input variable
back through the network from a specific prediction. In other
words, for this dataset, a participant with 30 valid days in the
dataset would yield 30 sets of LRP relevance scores, each set
having one score for each input variable. These scores can be
positive or negative in a similar fashion as linear coefficients,
and the greater the magnitude of the score, the more that
particular variable increased or decreased that particular
prediction for stress rating. LRP was used in favor of other
methods such as Deep Learning Important Features (DeepLIFT)
and Integrated Gradients, because it does not require a baseline
or reference value. However, LRP can be viewed as an
approximation of DeepLIFT when bias terms are 0 and the

reference values are set to 0 [12]. This, in turn, approximates
Shapley values [13], which is another method of interpreting
neural network output. As such, to leverage the visualizations
for Shapley values built in the Shapley Additive Explanations
Python library and to add an additional method of visual
interpretation, bias terms for the neural net were locked to 0;
this did not impact model performance.

The following variables were used for the ideographic models:
the number of hours with ≥10 activities, total exercise duration
in minutes during bouts of exercise with ≥24 minutes of activity
out of 30 minutes, the number of exercise bouts with ≥24
minutes of activity out of 30 minutes, the binary presence of
any exercise bout of ≥24 minutes of activity out of 30 minutes,
the total number of exercise bouts, the binary presence of any
exercise bout, total exercise duration, stress rating, minimum
outdoor temperature, maximum outdoor temperature, average
outdoor temperature, total daylight minutes, and total
precipitation. Several person-level variables were included in
the nomothetic models that were not included in the
per-participant models, as they would have been static for a
given participant and would not have contributed to
performance. These included height, weight, age, and sex. The
inclusion of these variables in the nomothetic models slightly
improved their performance.

Additionally, all models were trained with varying training set
sizes to test the hypothesis that ideographic models may be
more reliable at large-enough training set sizes for each
participant. Training set sizes ranged from 30% to 80% of valid
days for each participant. For example, the first 30% of days in
which a participant documented his or her stress was used to
train a model predicting the subsequent 70% of days. The results
for an 80% train/20% test split are highlighted here, with a total
of 4050 training set samples and 678 testing set samples
available to all nomothetic models.

All models were compared to a baseline model that simply
predicted the median of the stress self-report values from a
participant’s training set, for all test samples.

Results

Overview
The average age of the participants was 32 years (range, 20-58
years), with a height of 169 cm and weight of 75 kg. The study
sample included 34 men and 43 women in the dataset. Table 1
depicts the basic descriptive statistics on the age, height, and
weight of our set of participants.

The pattern of stress ratings differed significantly among
participants. Figure 1 shows plots of stress by day for the 10
participants with the greatest number of valid responses in the
dataset. Days without responses are shown without points
plotted.
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Table 1. Basic summary statistics for the participants (N=77).

Max75%a50%a25%aMinMean (SD)Statistic

583827242031.62 (9.42)Age (years)

187176168162149.4168.71 (8.49)Height (cm)

138.685.574.762.543.375.68 (17.46)Weight (kg)

aQuartile ranges.

Figure 1. Plots of stress ratings for the participants with the greatest amount of responses.
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Table 2. Summary statistics and count of stress ratings, grouped by occurrence of missing stress ratings for the 3 days before the date of the predicted
stress rating.

Max75%a50%a25%aMinMean stress (SD)CountResponse

1063203.60 (2.58)1728000

1053103.40 (2.57)1077001

1053103.36 (2.63)292010

1053103.31 (2.51)973011

1043103.16 (2.54)973100

1053103.35 (2.63)239101

1043103.17 (2.48)889110

1043102.93 (2.35)4060111

aQuartile ranges.

Table 3. Percentage of stress ratings grouped by the occurrence of missing stress ratings for the 3 days before the date of the predicted stress rating.
Each column corresponds to the value of the stress rating, and each cell represents what percentage of stress ratings had that value and response pattern.

109876543210Response

2.261.504.408.398.915.7315.7414.4714.4712.2111.92000

2.881.582.796.418.736.4112.9116.3416.0612.2613.65001

3.770.003.427.197.886.1613.7017.1213.369.9317.47010

2.980.413.195.967.717.0911.5120.4514.5911.5114.59011

2.880.722.266.376.376.0616.1414.8013.7713.0517.57100

2.090.425.029.216.695.0213.8115.9013.3910.8817.57101

2.810.792.255.297.315.2914.4018.6715.7511.2516.20110

2.390.642.093.894.985.9113.4218.9217.0215.1215.62111

Table 2 shows the mean stress rating grouped by the occurrence
of missing stress ratings for the 3 days before the date of the
predicted stress rating. The response column describes the
occurrence of stress ratings: 000 represents no stress ratings in
any of the 3 days, 001 represents presence of only one stress
rating recorded just before the predicted day, and 111 represents
presence of all three stress ratings. Periods missing a stress
rating were more often followed by a higher stress rating than
periods that were not missing any stress ratings.

Table 3 shows the percentage of stress ratings grouped by the
occurrence of missing stress ratings for the 3 days before the
date of the predicted stress rating. The frequency of high-stress
ratings is slightly higher for response patterns with missing
stress ratings.

Accuracy of Nomothetic Versus Ideographic Models
With an 80% training set/20% testing set split, the nomothetic
recurrent neural network model AUC was 74.20% and the F1

score was 79.21%. In addition, the per-participant decision tree

AUC was 0.67 and the F1 score was 0.83. The full results can
be found in Multimedia Appendix 1. Nomothetic models, on
an average, outperformed ideographic models for shorter
training set sizes. As the training set size increased (ie, allowing
for longer duration of assessments), group-level model
performance generally increased across all models, and the
nomothetic and ideographic model performances converged.
However, when separately applying models to individual
participants, ideographic models generally outperformed the
nomothetic ones once the days with valid data exceeded 50
days.

Table 4 lists performance metrics for each model, grouped by
training set proportion and model used. Precision, recall, F1

score, AUC, and accuracy are performance metrics. Training
set size ranges from 30% to 80%. “Ideographic decision tree
over 100 days” represents the performance metrics, only for
participants who had at least 100 valid days, which is the same
for the 50-day model.
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Table 4. Performance metrics across all models, grouped by training set size.

ModelTraining set size
(%)

Accuracy
(%)

Area under the
curve

F1 score (%)Precision
(%)

Average number of days
for training set size

Ideographic Decision Tree30.0060.6953.3971.9574.2216.7215

Ideographic Decision Tree Over 50 Days30.0061.5354.4072.6375.7616.7215

Ideographic Decision Tree Over 100 Days30.0060.2152.7371.8676.6116.7215

Random Forest30.0069.7562.8878.7777.8016.7215

Gradient Boosted Decision Tree30.0070.1064.2578.7278.8316.7215

Recurrent Neural Network30.0069.6965.3277.9379.9016.7215

Baseline30.0065.1864.7172.6981.0916.7215

Elastic Net30.0073.3668.2181.0381.2016.7215

Neural Network30.0070.0168.0077.3982.4116.7215

Ideographic Decision Tree Over 100 Days40.0061.3754.4472.4075.3521.7595

Ideographic Decision Tree40.0062.7957.1273.0676.4821.7595

Ideographic Decision Tree Over 50 Days40.0062.3756.3272.9676.9621.7595

Gradient Boosted Decision Tree40.0067.9662.0877.0977.8721.7595

Random Forest40.0070.2563.1679.2378.1521.7595

Baseline40.0063.6163.7471.1180.9321.7595

Recurrent Neural Network40.0068.4766.2376.2581.4721.7595

Elastic Net40.0072.4868.1580.1581.7021.7595

Neural Network40.0071.9068.5579.4082.3321.7595

Ideographic Decision Tree50.0063.4752.4175.3675.7627.3291

Ideographic Decision Tree Over 50 Days50.0064.0652.5275.9577.0927.3291

Ideographic Decision Tree Over 100 Days50.0063.0750.1075.5677.2727.3291

Random Forest50.0074.6067.5482.6582.4127.3291

Gradient Boosted Decision Tree50.0073.8067.2981.9482.4527.3291

Recurrent Neural Network50.0075.1569.7982.7184.0227.3291

Baseline50.0068.5767.8976.3184.8127.3291

Elastic Net50.0077.0072.7383.8985.8427.3291

Neural Network50.0076.7975.6983.0988.7627.3291

Ideographic Decision Tree60.0065.5954.6376.9978.5432.7215

Ideographic Decision Tree Over 100 Days60.0065.7753.4077.4578.8532.7215

Ideographic Decision Tree Over 50 Days60.0066.3454.8777.6979.4132.7215

Random Forest60.0075.7569.1383.7385.9032.7215

Baseline60.0067.3666.8376.0586.5332.7215

Gradient Boosted Decision Tree60.0076.1973.2483.4988.7632.7215

Elastic Net60.0078.4775.6285.1989.8032.7215

Recurrent Neural Network60.0075.1575.2082.2090.7832.7215

Neural Network60.0073.6275.0880.7391.3532.7215

Baseline70.0071.6562.8780.9080.6938.1646

Ideographic Decision Tree70.0074.0967.1782.5084.5238.1646

Ideographic Decision Tree Over 50 Days70.0075.9669.0683.7884.6438.1646

Random Forest70.0079.2374.6985.7187.3538.1646

Gradient Boosted Decision Tree70.0077.0874.2383.8187.8338.1646
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ModelTraining set size
(%)

Accuracy
(%)

Area under the
curve

F1 score (%)Precision
(%)

Average number of days
for training set size

Elastic Net70.0077.7275.3684.2188.5738.1646

Ideographic Decision Tree Over 100 Days70.0083.2576.7688.9988.6038.1646

Recurrent Neural Network70.0073.8874.0780.6989.1638.1646

Neural Network70.0076.2875.6982.7689.5738.1646

Baseline80.0072.8163.9481.7981.4443.2025

Ideographic Decision Tree80.0074.8267.7283.0084.1043.2025

Ideographic Decision Tree Over 50 Days80.0084.6276.8090.0788.3143.2025

Elastic Net80.0077.7175.6384.2089.0043.2025

Gradient Boosted Decision Tree80.0076.8075.1883.4389.0043.2025

Random Forest80.0078.3576.2284.7089.2543.2025

Recurrent Neural Network80.0072.1674.2078.9190.3843.2025

Ideographic Decision Tree Over 100 Days80.0085.8279.8790.7890.5743.2025

Neural Network80.0067.2772.0673.8790.8943.2025

Predictors of Stress
In our ideographic models, there was significant heterogeneity
in the effect of features of weather and exercise. Figure 2 shows
a series of horizontal bar plots, visualizing the Gini importance
values, or the factors that significantly predicted day-to-day
variability in stress rating for the 9 individuals with at least 100
valid days of data.

The most frequent important predictors for each participant
included daylight minutes, temperature, and exercise behavior
for the current or preceding 3 days. Often, variables that were
assessed closer (temporally) to the stress rating being predicted
exhibited greater importance.

Viewing feature importance in aggregate for all the participants
in the dataset, the Gini importance values from their
corresponding decision tree model were sorted and then ranked.
Thereafter, the number of times that each input variable ranked
in the top 5 spots across participants’ rankings was retrieved to
create Figure 3. Decision tree models appear to have most
frequently and highly ranked exercise-related features, followed
by environmental variables.

Figure 4 depicts the relevance scores for the recurrent neural
network model, which were derived using LRP. Like the
decision tree models, the scores ranged widely, even among
participants. To retrieve a metric more comparable with the
strictly positive Gini importance values derived from the
decision trees, the absolute value of the LRP scores was taken
for each participant, followed by the median value for each
input variable. The neural network model often ranked the
highest, preceding stress self-reports, but there was also
significant variety across features such as weather (eg, average
or minimum temperature on the day of the stress rating), exercise
(eg, number of minutes of exercise or number of exercise bouts
the previous day), age, height, and weight.

In Figure 5, as with the decision tree models, the relevance of
each input variable was ranked and then counted across
participants.

Figure 6 depicts the F1 score, AUC, and accuracy for the
nomothetic recurrent neural network model and the ideographic
decision trees across multiple training set sizes. For individuals
with fewer than 50 valid days, the nomothetic models generally
outperformed or performed comparably as the ideographic ones.
Nomothetic model performance and ideographic model
performance converged as training set size per participant
increased. However, for the 16 individuals with more than 50
valid days and the 9 individuals with over 100 valid days,
ideographic performance overtook nomothetic performance.
Each dot corresponds to a training set size proportion, ranging
from 30% to 80% in increments of 10%. The number of days
included in the training set for each proportion across all
participants, on an average, was as follows: 17 days for 30%,
22 days for 40%, 27 days for 50%, 33 days for 60%, 38 days
for 70%, and 43 days for 80%.

Using LRP for the nomothetic model, a per-sample feature
importance method, allows us to gain insight on what influenced
a participant’s predicted stress score for a given day. In Figure
7, a particular participant’s actual stress self-reports, predicted
stress self-reports, outside temperature, and the neural network
model’s LRP values are depicted across several consecutive
days. On day 5, the neural network model assigned a high
importance to the average temperature. As shown in the figure,
as the average temperature increased (temperature here is
standardized to fit on the same scale as the other values),
predicted stress and the true stress value increased. Note that in
the following graphs, the left-hand y-axis contains the scale for
the input variable and the LRP value, and the right-hand y-axis
contains the scale for both predicted and true stress rating. The
x-axis simply denotes consecutive dates, marked as integers,
rather than true dates.
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Figure 2. Most important predictors for the ideographic decision tree models for the 9 individuals with at least 100 valid days of data.
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Figure 3. A horizontally stacked bar chart of occurrences of the most frequently appearing predictor variables, and how often they ranked in the top 5
spots across participants’ predictor variable importance rankings from the ideographic models.

Figure 4. A horizontal bar chart of the 15 predictor variables with the highest median absolute layer-wise relevance propagation scores. LRP: layer-wise
relevance propagation.
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Figure 5. A horizontally stacked bar chart of occurrences of the most frequently appearing predictor variables, and how often they ranked in the top 5
spots across participants’ predictor variable importance rankings from the nomothetic recurrent neural network model.

Figure 6. A plot comparing the F1 score, area under the curve, and accuracy across the neural network model and the ideographic models. Training
set size varies on the x-axis, and performance of participants with more than 50 valid days and more than 100 valid days is shown separately for the
ideographic models. The y-axis is the same in all 3 figures.
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Figure 7. A plot of the actual stress rating, predicted stress rating, layer-wise relevance propagation value, and average temperature for an individual
participant, with average temperature standardized to fit on the same graph. LRP: layer-wise relevance propagation.

Figure 8. A plot of the actual stress rating, predicted stress rating, layer-wise relevance propagation value, and average temperature for an individual
participant, with the average temperature standardized to fit on the same graph. LRP: layer-wise relevance propagation.

For another participant represented in Figure 8, an increase in
the maximum temperature on a particular day was associated
with a decrease in predicted stress, demonstrating
individual-specific response patterns to environmental variables.

Exercise, as measured through total minutes or number of
separate bouts, was often inversely related with stress rating,
where less exercise increased the predicted stress rating (Figure
9).

However, there is a risk when interpreting feature importance
presented as a time series. Although a variable may carry a high
positive influence for a given day, it may be outweighed by a
high cumulative negative impact of other variables, causing an
improper inference. As such, it is useful to visualize a prediction
for a given day not as a time series, but as a force plot of
contributions from different variables, allowing us to more
easily disentangle their influences. Treating LRP values as
approximations for Shapley values, we can retrieve the following

force plot depicted in Figure 10 of feature importance for a
specific prediction.

Here, the predicted stress self-report value is 1.07. The stress
rating 2 days ago of 2 and the stress rating 3 days ago of 6 push
the prediction downward. The minimum temperature of 35°F
3 days ago and the absence of any exercise bouts of greater than
24 minutes of moderate-to-vigorous physical activity out of a
30-minute period push the prediction upward.

We can also aggregate these force plots across a set of
predictions to understand how our nomothetic neural network
model behaves more generally. In Figure 11, each horizontal
line displays the LRP values for an input variable, across the
entire testing set. The variables are sorted by the sum of the
magnitudes of their values, in descending order. The figure
shows that higher stress ratings preceding a predicted stress
rating typically increase predicted stress, whereas lower
minimum temperatures typically increase predicted stress.
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Figure 9. A plot of the actual stress rating, predicted stress rating, layer-wise relevance propagation value, and exercise minutes for a participant, with
exercise minutes standardized to fit on the same graph. A lower value for exercise minutes on the previous day was associated with a high layer-wise
relevance propagation value and a higher predicted stress rating. LRP: layer-wise relevance propagation.

Figure 10. A force plot visualizing the contributions of different input variables to a predicted stress rating for a single participant.
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Figure 11. Layer-wise relevance propagation values for each input variable across the entire testing set. Each horizontal line corresponds to a single
input variable. LRP: layer-wise relevance propagation.

Discussion

Overview
Many studies have examined relationships among exercise,
weather, and stress using both linear and nonlinear approaches,
and a mix of self-report questionnaire responses and
automatically gathered sensing data. Some have taken an
exclusively nomothetic approach; Wang et al [1] used both
EMA data and automatically sensed activity and sociability data
to explore correlates of stress, depression, and loneliness, but
did not use a personalized machine learning approach or
investigate individual predictors. Using a large set of
meteorological data paired with responses to a self-report
questionnaire and a mixed modeling approach, Beecher et al
[2] found that increased sun exposure decreased reported
distress.

In contrast, other studies have taken an ideographic approach.
Tuarob et al [4] used a variety of machine learning techniques
and questionnaire data to train ideographic models predicting
participant mental states but relied on self-reported input data
and did not investigate predictors for each individual. Sharmin
et al [14] used sensor data and self-reported stress reports to
create personalized visualizations that were then manually
examined for temporal trends in stress. Plarre et al [5] trained

ideographic decision trees using electrocardiographic and
respiration-related data to predict self-reported stress after
performing activities in the laboratory setting, such as public
speaking or mental arithmetic. Burg et al [6] analyzed the same
EMA and exercise data as those used here and estimated
ideographic random coefficient mixed models; they found that
the influence of exercise on self-reported stress was
heterogeneous, as was the effect of self-reported stress on
exercise.

Finally, taking an integrative approach and using the same
dataset as that used by Burg et al [6] and us, Cheung et al [15]
compared the performance of ideographic and nomothetic
methods to predict whether an individual will exercise on a
given day, again showing that for some, but not all participants,
self-reported stress was a predictor of exercise.

In this paper, heterogeneity in the effects of predictors on stress
was confirmed, highlighting the value of using an ideographic
modeling approach. Further, it was demonstrated that the
nomothetic model performs better (ie, is more accurate) than
the ideographic model initially, but as data collected
accumulates, the performance of the ideographic model equals
and then surpasses that of the nomothetic model, providing a
motivating example for a “warm start” strategy to leverage the
advantages of each modeling approach. Put into practice, one
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might continuously monitor the performance of a nomothetic
model and an ideographic model on a particular individual and
adjust the weight of each model’s contribution to the predicted
output accordingly.

Retrieving individual predictors yields hypotheses that we can
test for a particular participant and, perhaps, act on. For example,
if a clinician repeatedly sees that low average temperatures are
driving higher predicted stress values, they may be able to
recommend a particular intervention for the patient. Of course,
not all situations are so easily interpretable, and the relationship
of a predictor to the outcome may not be linear. This is both an
advantage and a disadvantage, allowing a model to potentially
be flexible to multiple climates but limiting the ease of
generalizability to other participants, and requires either manual
inspection as mentioned above or a more rigorous and automated
method of consistent linear predictor detection.

Here, the LRP values from our nomothetic neural network
model, and Gini importance values from our ideographic
decision trees, suggested different predictors for each individual.
The nomothetic neural network model gave preceding stress
self-reports higher weight on an average (Figure 10). This may
be a result of training the neural network using dropout, in which
increasing the weight given to preceding stress reports was an
optimal way to manage the heterogeneity of participant response
patterns. Notably, Sarker et al [16] reported similar results that
stress episodes increase the likelihood of subsequent episodes,
although these were within-day data.

Although Figure 4 presents a small sample of individuals and
a relatively small dataset overall, it depicts the LRP values for
the nomothetic neural network model and motivates discussion
of real-world applications of such a model for just-in-time
predictions. From this, it seems likely that it is effective to start
with a nomothetic model to maximize predictive performance
and gain initial insights into the possible correlates of stress
before switching to (or increasing the weight of, with an
ensemble-type implementation) an ideographic model once
enough responses have been collected. This assumes that
immediate interventions are necessary, valuable, and worth the
cost of potentially introducing bias in the dataset for that
individual. Alternatively, predictions could be withheld until
sufficient data are collected for ideographic models to be used,
but this might come at the expense of disengaging participants
during the process of data collection. More generally, adopting
a framework, as proposed by Nahum-Shani et al [17], to specify
specific proximal outcomes while managing participant
engagement is prudent.

Future Directions and Limitations
There is no current industry or academic standard for retrieving
feature importance values from neural networks. Layer-wise
relevance propagation, the method used here, has drawbacks of
not meeting certain axiomatic properties of ideal feature
importance methods [18]. In this case, however, LRP was used
because it does not require a baseline, whereas other methods
require some reference input for comparison. This instance is
not one in which it is immediately clear what that input would
be. Other model-agnostic, sensitivity-based approaches exist,
such as Locally Interpretable Model Explanations [19].

Regardless of the approach for retrieving feature importance
values, we retrieved per-participant predictors from the
nomothetic neural network model by taking the median of the
absolute value of LRP scores across a subset of the highest-stress
events in a participant’s test set. Other strategies may yield
features that are more representative of an individual’s stress.
Further research in the field may be required to elaborate on
strengths and weaknesses of different approaches in terms of
interpretability, generalizability, and suitability for inclusion in
a clinical decision process.

Next, in this setting, individuals who deviate significantly from
the rest of the population may create large gradient updates to
a neural network, potentially reducing performance for other
individuals. Although this can be mitigated through techniques
such as batch normalization and dropout, these strategies, in
turn, reduce the degree to which the model can closely fit the
data and obscure important differences among individuals.
Similarly, individuals contributing a larger number of samples
to the training set can bias the model. If an exhaustive
hyperparameter search is performed without regularization
strategies like L1/L2 penalties, max-norm constraints, dropout,
or early stopping, the model may be further overfit to these
individuals. As a result, some settings might still be best served
by an ideographic approach for safety, but even N-of-1 decision
trees may need to be constrained in their complexity to prevent
overfit, especially while still acquiring data.

With self-report values, similar to item ratings, variable
distributions may be skewed for particular individuals based on
their perception of the scale. For example, in this dataset, some
individuals never reported their stress to be above a value of 7,
despite the scale going up to 10. Examples of these differing
response patterns can be found in Figure 1. It is also highly
unlikely that responses are missing at random. In fact, these
days may be more stressful than the ones reported. The same
issue may exist with Fitbit nonwear data. Time series forecasting
methods often rely on either excluding or interpolating time
windows that have missing data. Here, we do not interpolate
missing data and instead, choose to exclude them. As a result,
in situations in which self-report data are used, individual
response patterns should be taken into account, whether through
techniques such as feature engineering or increased data
collection.

In our analyses, samples with missing stress ratings prior to the
predicted stress rating were excluded. Based on the observed
difference in distributions between stress ratings preceded by
missing stress ratings, and ones that were not preceded by such
ratings, it is possible that the ratings may not be missing at
random. Instead, unobserved stress ratings may be indicative
of higher stress in some patients. As a result, we primarily
explored imputation using a dummy value, but models trained
using these values severely underperformed, likely due to the
relatively small size of the dataset; therefore, those results were
not reported here. Alternatively, missing stress ratings could be
imputed using a rule-based approach such as incrementing the
most recently observed stress rating. However, for a practical
implementation, we believe that with sufficient dataset size,
missing stress ratings could be replaced by dummy values to
avoid manually biasing predictions and improve generalization.
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Further, current Fitbit devices and other accelerometers provide
continuous heart rate monitoring data, which may provide
additional useful predictors and mitigate the effect of missing
stress ratings.

Finally, as confidence intervals were not retrieved, we lacked
a measure of certainty per prediction. This could be alleviated
by using Bayesian neural network or dropout-based methods.

Conclusions
Through the combination of a nomothetic neural network model,
recent advances in retrieving per-sample feature importance,
and ideographic decision trees, we show that high predictive
performance can be achieved while recognizing individual
differences and surfacing personalized predictors of stress. Key
predictors in the nomothetic models were typically related to
recent stress experience and weather activity. In addition, key
predictors in the ideographic models displayed significant

heterogeneity but were often weather or exercise related for
individuals from whom more data were collected. Environmental
variables were also shown to affect stress differently in different
participants; for example, high temperatures predicted high
stress in one individual but low stress in another. These
predictors can be used to provide individuals with insights into
what may contribute to their stress, as indicated by Yoon et al
[20]. These models can also be operationalized to generate
interventions or encouragements just before instances of high
stress when the model predicts, with a sufficient degree of
confidence, impending stress based on what is expected to be
effective for that particular individual. Finally, ideographic
models surpassed a nomothetic one after sufficient data
collection, supporting the use of a “warm start” model-switching
approach. Further work is needed to explore interpretable and
repeatable ways to assess personalized predictors in nonlinear
settings, as applied to disentangling correlates of stress.
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