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Abstract

Background: Recent advances in molecular biology, sensors, and digital medicine have led to an explosion of products and
services for high-resolution monitoring of individual health. The N-of-1 study has emerged as an important methodological tool
for harnessing these new data sources, enabling researchers to compare the effectiveness of health interventions at the level of a
single individual.

Objective: N-of-1 studies are susceptible to several design flaws. We developed a model that generates realistic data for N-of-1
studies to enable researchers to optimize study designs in advance.

Methods: Our stochastic time-series model simulates an N-of-1 study, incorporating all study-relevant effects, such as carryover
and wash-in effects, as well as various sources of noise. The model can be used to produce realistic simulated data for a near-infinite
number of N-of-1 study designs, treatment profiles, and patient characteristics.

Results: Using simulation, we demonstrate how the number of treatment blocks, ordering of treatments within blocks, duration
of each treatment, and sampling frequency affect our ability to detect true differences in treatment efficacy. We provide a set of
recommendations for study designs on the basis of treatment, outcomes, and instrument parameters, and make our simulation
software publicly available for use by the precision medicine community.

Conclusions: Simulation can facilitate rapid optimization of N-of-1 study designs and increase the likelihood of study success
while minimizing participant burden.

(J Med Internet Res 2019;21(4):e12641) doi: 10.2196/12641
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Introduction

The Promise of N-of-1 Studies
N-of-1 studies have shown great promise as a tool for
investigating the effects of drugs, supplements, behavioral
changes, and other health interventions on individual patients
[1-7]. An N-of-1 study (Figure 1) is a multiple-crossover
comparative effectiveness study of a single patient. Competing

treatments are administered in blocks, within which treatment
order is randomized or counterbalanced [6]. The outcome of
interest is compared across different treatment periods to find
the treatment with the greatest efficacy for that specific patient.

N-of-1 studies inform the care of individual patients while
simultaneously generating evidence that can be combined with
other N-of-1 studies to yield population-level analyses [8-10].
These studies will likely play a key role in precision medicine,
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with its focus on narrowly defined patient cohorts, rare conditions, and complex comorbidities [5].

Figure 1. Example of an N-of-1 study comparing two blood pressure medications. An N-of-1 study consists of a set of N blocks, each of which contains
J different treatment periods. The order of the treatment periods within each block is usually randomized. Parameters: X0=160, E1=-40, E2=-30,
tau1=6.0, gamma1=3.0, tau2=2.0, gamma2=10.0, alpha=0.5, P=30, N=2, J=2, sigma_b=0.9, sigma_p=1.0, sigma_0=4.0. In this example, one sample
was taken per day.

Challenges to N-of-1 Studies
However, the design and analysis of N-of-1 studies present
several methodological challenges. Although the Agency for
Healthcare Research and Quality has recently released a set of
statistical guidelines for N-of-1 studies [6,11], drawing attention
to potential treatment effect confounders like underlying time
trends, carryover effects, and autocorrelated measurements,
there is currently no universal methodological or statistical
framework for the design and analysis of N-of-1 trials.
Treatments are often compared graphically or ad hoc measures
of efficacy are used that differ from study to study; a review of
N-of-1 trials published between 1985 and 2010 found that only
49% used any statistical measure to compare treatments [2]. As
a result, it is difficult to compare findings from different studies
or understand how specific analytic choices influence study
results.

N-of-1 studies must also overcome daunting practical and
logistical challenges. For example, although researchers might
like to administer treatments over dozens of blocks to increase
statistical power, such designs are burdensome to the patient
and increase the likelihood of attrition. It is also difficult to
convince individuals to revisit earlier treatments, especially if
these are perceived as less effective [1,6]. Practically speaking,
this means the number of treatment blocks in an N-of-1 study
is limited, as is the total duration of the study. Although a
statistician might prefer more shorter blocks relative to few
longer blocks (since the number of samples in a traditional
N-of-1 analysis is linear in the number of blocks), rapid
switching among treatments may obscure true differences in
efficacy because of carryover effects from earlier treatments.
Many treatments, such as antidepressants, also take time to
display their full effects. Decisions about the length and
arrangement of treatment periods can have a profound effect
on statistical effect estimates in N-of-1 studies.
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Simulating N-of-1 Studies
Simulation has played a crucial role in clinical trial design,
increasing the efficiency and cost-effectiveness of clinical trials,
especially in the pharmaceutical industry [12]. Inspired by this,
we have developed a stochastic time-series simulation model
for N-of-1 studies that incorporates all study-relevant effects,
such as carryover and wash-in effects. The model can be used
to produce realistic simulated data for a near-infinite number
of N-of-1 study designs, treatment profiles, and patient
characteristics. The model also incorporates noise parameters
like baseline drift, short-term fluctuations (process noise), and
measurement error to provide realistic sources of variation that
can obscure treatment effects in real-patient settings. Using
simulation, we can cheaply and easily investigate how design
parameters like sampling frequency, number, and location of
samples within blocks, treatment order within blocks, treatment
period duration, and total number of blocks impact statistical
estimates of treatment effects.

In this paper, we use the model to analyze two N-of-1 case
studies, showing how simulation can both optimize study
designs and assist researchers in deciding on an appropriate
analysis protocol. We then use the model to produce a set of
design recommendations for N-of-1 studies on the basis of
parameters related to the study outcome, instrument used to
measure the outcome, and treatment(s) themselves. We provide
our simulation software as a supplement to the paper.

Methods

Stochastic Time-Series Model
Assume that there are J total treatments in an N-of-1 study. Let
B(t) denote the patient’s true baseline at time t. Let Xj(t) denote
the effect of treatment j (j=1, …, J) at time t so that the total
treatment effect at time t is X= ΣjXj(t). Let Tj(t) be 1 if treatment
j is in process at time t and 0 otherwise (see Figure 1). Let Z(t)
denote the patient’s true outcome state at time t, and let Y(t)
denote the patient’s observed outcome at time t.

The underlying effect driver for each treatment is described as
an ordinary differential equation:

dXj = [((Ej – Xj) / τj) Tj(t) – (Xj/ γj) (1 – Tj(t))] dt

Here each Xj(t) is an exponential decay toward a target value
that changes over time—either Ej or 0, depending on Tj(t) —with
time constant τj during run-in (decay toward Ej) and γj during
wash-out (decay toward 0).

Baseline drift is simulated as a discretized Wiener process,

where normal noise with variance σb
2Δ t is applied every Δ t:

B(t + Δt) = B(t) + ΔB(t)

where

ΔB(t) ~ Normal(0, σb
2 Δt)

The outcome variable Z(t) is also a discrete-time stochastic
process,

Z(t + Δt) = Z(t) + ΔZdet(t) + ΔZstoch(t)

where Δ Zdet(t) is a deterministic exponential decay toward the
target Xj(t)+B(t):

ΔZdet(t) = Q(t) + [Z(t) – Q(t)] exp(-Δt/∝)

Q(t) = B(t) + ΣjXj(t)

with time constant ∝ and

ΔZstoch(t) ~ Normal(0, σp
2Δt)

The observed outcome differs from the true outcome only
through the addition of normally distributed observation noise:

Y(t) ~ Normal(Z(t), σo)

All of the model parameters are summarized in Table 1.
Transformations of Y(t) can be used to model different types of
outcome parameters, such as scores, counts, and binary
outcomes (Table 2).

Table 1. The parameters underlying data generation for an N-of-1 study. The parameters are divided into study design parameters (D), treatment-related
parameters (T), measurement parameters (M), and outcome-related parameters (O).

DescriptionTypeParameter

Sampling timesD{t1,…,tn}

Number of blocks (each with J periods in random order)DN

Number of treatment periods per blockDJ

Treatment period lengthDP

Effect sizes for treatments 1 through JTE1,…,EJ

Run-in time constants for treatments 1 through JTτ1,…, τJ

Wash-out time constants for treatments 1 through JTγ1,…, γJ

Sensitivity to treatment effectO∝

Variance of baseline drift processOσb
2

Variance of process noiseOσp
2

Variance of observation noiseMσo
2
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Table 2. Suggested transformations of Y for simulating discrete outcomes.

TransformationDistribution of YRange of outcomeOutcome type

Identity—aReal numbersNumeric

Identity (round, truncate)—[0,…,M]Score

λ = exp(Y)Poisson(λ)[0,…,infinity)Count

P=1/(1 + exp(-Y))Binomial(M, p)[0,…,M]Proportion

P=1/(1 + exp(-Y))Bernoulli(p){0, 1}Binary

aNot applicable.

Hypertension Case Study
A sample data set and all parameter values for the hypertension
case study can be found in Figure 1. The study involves 2
different blood pressure medications, one of which reduces
systolic blood pressure by 10 more points than the other in the
long run. The more effective medication, treatment 1, takes
longer to reach its full effect (τ1=6.0, τ2=2.0) and less time to
wash out (γ1=3.0, γ2=10.0). The sampling rate is 1 sample/day,
which we chose to model blood pressure that is monitored using
a cuff.

We chose a statistical model for this study that incorporated
fixed effects for both block ID and treatment, on the basis of
the recommendations provided by the Agency for Healthcare
Research and Quality (AHRQ) and others [6,11]:

y=β0 + β1 x1 + β2 x2 + … + βN xN

where x1 is 1 if treatment 2 is in progress at the time of the
sample, and 0 otherwise, and xn is 1 if block n is in progress,

and 0 otherwise. Note that there are only n−1 indicator variables
for blocks; block 1 is used as the reference block. We
experimented with other models but found that although
modeling choices could affect power, effect size estimates did
not change much among models. Our software provides the
ability to choose from among several different models.

To create Figure 2, we repeated the data generation and analysis
process, varying the following parameters and keeping the rest
constant:

1. Treatment period orderings were varied among 1 2 1 2, 1
2 2 1, 2 1 1 2, and 2 1 2 1.

2. Sampling frequency was varied from 1 sample per day to
1 sample per treatment period, holding the treatment period
ordering fixed at 2 1 2 1.

3. Upon holding sampling frequency constant at 1 sample per
day, period length was varied from 2 to 120 days.

4. Study length was held constant at 120 days, and the number
of blocks was varied from 1 to 6.
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Figure 2. Variation in effect estimates for the hypertension study by study design parameters, including (a) treatment period ordering, (b) sampling
frequency, (c) treatment period length, and (d) number of blocks for a fixed study length. The true effect size is 10, illustrated by the dashed lines in the
figures. The red diamonds correspond to the median effect size for the statistically significant results within each group. Power estimates were obtained
by calculating the ratio of the number of colored dots to the number of total dots. There are 50 trials shown for each parameter setting.

Pain Management Case Study
The trial design used in this case study emulated the design
described in a study by Wegman et al [13]. Although we did
not have access to the raw data for this trial and had to estimate
reasonable noise parameters and wash-in/wash-out time
constants, our goal was simply to compare the analysis technique
from the paper with a more traditional approach involving a
regression model with fixed effects for treatment and blocks

[11]. The regression model we chose was the same as for the
first case study.

The parameters we chose for this model can be found in Figure
3. We based our decisions about the wash-in and wash-out
parameters (τ and γ) on the fact that the authors chose a wash-out
period of 1 week for the different treatments and the fact that
both nonsteroidal anti-inflammatory drugs (NSAIDs) and
paracetamol are short-acting drugs. We converted the numeric
value of the patient state to a discrete score by rounding and
truncating it as shown in Table 2.
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Figure 3. Analyzing a published N-of-1 study comparing NSAIDs to paracetamol. (top) An example simulation in which the true diary score on the
NSAID is 2 and on paracetamol is 4. The black line shows the simulated mean outcome (unobserved) at each timepoint, and the colored bars show the
observed data, which are discrete scores between 0 and 6. (bottom) A comparison of median differencing, the analysis method described in the paper,
with a standard regression model. At the noise levels and effect sizes shown in (top), median differencing will recommend an NSAID only about 60%
of the time (black rectangle), whereas a regression model will recommend it 100% of the time. Model parameters: tau1=tau2=1.0 day,
gamma1=gamma2=3.5 days, alpha=1.0, sigma_b=0.0 (no baseline drift), sigma_p=0.5, sigma_o=1.0. NSAID: nonsteroidal antiinflammatory drug.

Simulations for Design Recommendations
All of the simulations in Figure 4 use a baseline of 0 and time
constants (τ1, τ2, γ1, and γ2) of 0.01. Since treatment 1 is assumed
to be placebo, its effect size, E1, is 0. We used a high value for
the “sensitivity to treatment effect” parameter (α=10) to produce
a near-instantaneous effect. The first and second experiments
in Figure 4 used only a single block, as in the absence of any
sources of noise except observation noise, block design does
not matter. The rest of the parameter choices are outlined in the
figure. Each dot represents an average of 50 trials. The smoothed

lines shown in Figure 4 are LOESS (LOcally-Estimated
Scatterplot Smoothing) fits produced using geom_smooth with
default parameters in ggplot, with spans of 0.4, 0.3, 1.0, 1.0,
and 1.0 for subfigures a, b, c, d, and e, respectively.

Data and Code Availability
The simulation software is available in the n1-simulator
repository under the HD2i organization on GitHub. Full details
of the available experiments and associated plots are included
with the software, along with the data sets generated in the
course of making the figures.
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Figure 4. Examining the effect of study design choices on power and accuracy of effect size estimates for an N-of-1 study with effectively instantaneous
transitions between treatment states. (a) Effect size vs power for fixed observation noise (sigma_0=1.0) and no process noise or baseline drift. (b)
Average deviation of estimate from true value vs. effect size for fixed observation noise (sigma_0=1.0) and no process noise or baseline drift. (c)
Minimum treatment period length (ie. number of samples per treatment, with sampling rate fixed at 1 sample per time unit) required to attain a power
of 0.8, for varying degrees of process noise and varying effect sizes. No observation noise or baseline drift is present. (d) Same as (c) except effect size
is fixed at 1.0 and alpha (individual treatment response) is varied. (e) Average deviation of effect size estimate from its true value, as a function of
baseline drift and number of blocks. The effect of baseline drift on the estimate is much more pronounced when fewer blocks are used. Editorial Notice:
in (a) and (b), x-axis labels should correctly read “Number of samples per treatment.”

Results

Modeling the Key Features of an N-of-1 Study
The complete set of parameters for our model can be found in
Table 1. The basic model comprises an underlying deterministic
process (the growth and decay of treatment effects over time)
in addition to 3 types of noise: random baseline drift (eg,
long-term illness onset and recovery processes, gaining/losing
weight, long-term changes in blood pressure), process noise,
which manifests as short-term fluctuations (eg, heart rate and
blood pressure volatility, periods of activity/inactivity, and
changes in sleep and diet from day to day), and observation
noise, which is a function of the instrument and is not related
to any underlying biological effect (eg, the measurement noise
associated with the cuff that is used to monitor blood pressure).

We divided the parameters into 4 groups: study design
parameters, which the study designer can vary, treatment
parameters, which are immutable features of the particular
treatments under consideration, a measurement parameter,
which is a feature of the device used to measure the outcome,
and outcome parameters, which are features of the underlying
biological process under consideration and may vary from
individual to individual. A diagram of an N-of-1 block design

and our model of how treatment effects vary over time is shown
in Figure 1.

Case Study: Optimizing Study Design
Simulation allows us to investigate the impact of subtle design
choices on the likelihood of study success. To illustrate this,
we simulated a study of 2 different blood pressure medications
and their impact on systolic blood pressure, similar to the data
shown in [5] (see the Methods section for details). The study
parameters, underlying (unobserved) data, and observed data
are shown in Figure 1. The results of several hundred
simulations of this study are shown in Figure 2. We used one
of the standard N-of-1 regression models outlined in [6] and
[11] to estimate treatment effect and obtain an associated P
value.

In Figure 2, we see that the ordering of treatment periods has a
strong effect on both statistical power and effect size estimates.
On the basis of these 50 simulations, when treatments are
administered in the order 1 2 1 2, power (at a standard 5%
significance level) is 0.62, for 1 2 2 1 it is 0.82, for 2 1 1 2 it is
1.00, and for 2 1 2 1 it is 0.98. The median effect size estimate
is also impacted by treatment ordering: for 1 2 1 2 it is 5.8, for
1 2 2 1 it is 6.6, for 2 1 1 2 it is 11.2, and for 2 1 2 1 it is 12.0.
The true effect size is 10.0. We observe lower power and
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diminished effect size estimates for treatment orderings 1 2 1
2 and 1 2 2 1 relative to 2 1 1 2 and 2 1 2 1 as Treatment 1 takes
longer to reach its full effect than Treatment 2, and the patient
starts at a relatively high baseline (systolic blood pressure=160);
therefore, when it is administered first, Treatment 1 never attains
its full effect during the first treatment period before the
transition to Treatment 2 takes place.

In Figure 2, we see the effect of sampling frequency on study
power. Increasing the sampling frequency causes power to
increase but only to a point. On the basis of these 50 simulations,
when only 1 sample is taken at the end of each treatment period
(sampling interval of 30 days), which is the most common
approach to analyzing N-of-1 studies [6,11], power is only 0.14.
Sampling every day (sampling interval of 1 day) yields a power
of 0.84; sampling every 2 days yields a power of 0.74, every 5
days yields a power of 0.76, every 10 days yields a power of
0.56, and every 15 days yields a power of 0.50. On the basis of
these results, it appears that sampling every 2 or 5 days could
substantially reduce patient burden while causing only a modest
reduction in power.

Figure 2 shows the effect of treatment period length, keeping
the total number of blocks fixed at 2 and the sampling rate fixed
at 1 sample per day. On the basis of these 50 simulations, when
the treatment period length is 2 days, power is 0.18 and the
mean effect size estimate is –1.5. For a period length of 5 days,
power is 0.54 and the mean effect size is 3.1. For a period length
of 15 days, power is 0.44 and the mean effect size is 9.7. For a
period length of 30 days, power is 0.94 and the mean effect size
is 10.2. For period lengths of 40, 60, and 120 days, power and
mean effect sizes are 0.92 and 8.3, 0.98 and 9.7, and 0.96 and
10.6, respectively. This indicates that for a period length of 30
days, one obtains approximately as accurate an effect estimate
as a period length of 60 days while shrinking the total study
duration from 240 to 120 days. Period lengths that are too long
run the risk of higher variance in estimates because of baseline
drift, as we see with a period length of 120 days in Figure 2.

Finally, Figure 2 shows the effect of different block designs for
a study of fixed length (120 days). On the basis of these 50
simulations, power for 1, 2, 3, 4, 5, and 6 blocks is 0.74, 0.86,
0.78, 0.84, 0.74, and 0.60, respectively. Mean and standard
deviation of the effect size estimates are 9.7 (5.8), 9.8 (3.8), 8.7
(3.6), 8.3 (2.9), 7.0 (2.5), and 6.6 (1.8), respectively. Using 2-4
blocks appears to be the best approach, as this reduces variance
in the effect size estimate relative to a single-block study.
Adding more than 4 blocks increases the impact of
wash-in/carryover effects on the estimate, which deviates further
from its true value of 10 with each additional block.

Case Study: Evaluating Analysis Protocols
Simulation can also help us evaluate the likely success of new
analysis protocols and decision criteria for N-of-1 studies. We
simulated a previously published study [13] in which the
outcome was a “diary score” on a scale of 0 to 6, with 0
representing “no complaints at all” and 6 representing
“unbearable complaints.” The study design used 5 blocks, each
with 2 treatment periods; only data from the last week of each
treatment period were analyzed.

In this paper, the data were analyzed as follows: the researchers
took differences in median diary scores between NSAID and
paracetamol treatment periods in each block and then calculated
the number of treatment blocks for which the NSAID score was
at least one point lower than the paracetamol score for the
patient’s main complaint. An NSAID was recommended if this
was true in at least 4 out of 5 blocks. We refer to this method
as median differencing from now on.

We compared median differencing to the same regression model
used in the previous section [11]. Simulations show that median
differencing is much more conservative in recommending an
NSAID than a standard regression model trained on the same
data (Figure 3). For a true effect difference of size 2 (NSAID
reduces pain by 2 points relative to paracetamol), median
differencing will only recommend an NSAID, on average, 61%
of the time, compared with 100% of the time for the regression
model. In addition, median differencing will recommend an
NSAID more frequently in cases where the diary score on
paracetamol is already low (the patient is not in much pain);
when the score is high, it becomes harder for it to detect an
effect. For a patient with a paracetamol diary score of 6 (the
maximum possible pain), if the NSAID reduces the diary score
to 4, median differencing will only recommend an NSAID 30%
of the time, as opposed to 100% of the time for the regression
model. The difference between the models is even more
pronounced when the NSAID only reduces the pain score by
1; in that case, median differencing will only recommend an
NSAID, on average, 7% of the time, as opposed to 92% of the
time for the regression model.

Design Considerations for N-of-1 Studies
Figure 4 shows the results of a set of simulations on the basis
of best-case scenarios — no variation in parameters other than
those under investigation, as well as instantaneous treatment
effects (ie, no carryover effects). The technical details of the
simulations can be found in the Methods section. All of the
graphs in Figure 4 relate the study design parameters to (1)
statistical power—the ability to detect a treatment effect
difference if it exists, and (2) the accuracy of the effect size
estimates produced by the model. All compare a single treatment
against placebo.

In Figures 4a and 4b, observation noise (σo) is fixed at 1.0, with
no process noise or baseline drift. As a result, “effect size really
describes a signal-to-noise ratio and is treatment and instrument
agnostic." We observe that this ratio impacts power but not the
accuracy of the effect estimate (Figure 4).

In Figure 4a, we see that for effect sizes of 0.1, 0.2, and 0.3,
more than 100 samples per treatment are needed to obtain a
power of 0.8 (at a standard 5% significance level). For an effect
size of 0.4, at least 100 samples per treatment are needed. For
effect sizes of 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0, the numbers of
samples per treatment needed to attain a power of 0.8 are
approximately 65, 45, 35, 26, 21, and 18, respectively. Even
more samples will be needed under real experimental conditions
where process noise, baseline drift, and carryover effects all
play a role. This indicates that unless the effect size is very high
relative to the observation noise, N-of-1 studies using only a
few blocks, with a single sample taken per block (the traditional
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approach to analyzing N-of-1 studies), will be vastly
underpowered.

A separate consideration is the error in the effect size estimate,
which declines monotonically with the number of samples. In
Figure 4b, we see that to obtain an estimate within 0.2 σo of the
true estimate, at least 30 samples per treatment are needed; to
reach 0.1 σo, over 100 samples per treatment are needed.

Figure 4c shows the impact of process noise on the number of
samples needed to attain a power of ≥0.8 at a 5% significance
level in the absence of observation noise and baseline drift. In
this figure, the intersample interval is fixed at 1 sample/time
unit and the process noise is defined relative to that; σp=1.0
indicates that if no treatment effect were present, the variance
of the Wiener process underlying the process noise would be 1
outcome unit/time unit. For an effect size of 0.5 and σp=0.0,
0.4, 0.8, 1.2, 1.6, 2.0, the numbers of samples per treatment
needed to obtain a power of 0.8 are 61, 76, 89, 111, 135, and
176, respectively. For an effect size of 1.0, the numbers of
samples per treatment needed are 20, 24, 28, 34, 43, and 53,
respectively. Regardless of effect size, increasing the process
noise from 1.0 to 2.0 roughly doubles the number of samples
it takes to attain a power of 0.8. However, the effect is nonlinear;
below σp≈1.0, the number of samples needed flattens out in the
absence of other sources of noise.

In Figure 4d, we see the impact on study outcome of individual
sensitivity to treatment. The lower the value of the treatment
sensitivity parameter (α) is, the less effect changes in treatment
have on the outcome relative to random fluctuations caused by
process noise. We see this when we contrast the effect of
increased process noise on the minimum samples required to
attain a power of 0.8 at a significance level of 5% under
conditions of low treatment sensitivity (α=0.1) and high
treatment sensitivity (α=10.0). For σp=0.0, 0.4, 0.8, 1.2, 1.6,
2.0 and α=0.1, the numbers of samples per treatment required
are 36, 64, 110, 174, 228, and 250, respectively. For α=10.0,
the numbers of samples required are only 20, 23, 28, 34, 42,
and 53, respectively.

Finally, Figure 4e shows us why we bother to have blocks at
all: to guard against baseline drift. The figure shows what
happens in a study of a total length of 240 days when block
designs incorporating 1, 2, 3, or 4 blocks are used. As baseline
drift increases (holding process and observation noise constant
at σp= σo=0.0), the effect size estimate provided by the model
increasingly deviates from its true value. This effect is most
pronounced in studies with only a single block and decreases
as the number of blocks increases. For example, for only 1
block, with σb=0.00, 0.09, 0.18, 0.27, 0.37, and 0.46, the average
deviation of the effect size estimate from the true value is 0.21,
0.33, 0.54, 0.77, 1.01, and 1.26, respectively. However, with 4
blocks, with the same progression of σb values, the average
deviation of the effect size estimate is 0.21, 0.22, 0.25, 0.28,
0.32, and 0.37, respectively.

Discussion

Summary of the Paper
We have developed a stochastic time-series model that simulates
an N-of-1 study, facilitating rapid optimization of N-of-1 study
designs and increasing the likelihood of study success while
minimizing participant burden. We have used this model to
evaluate 2 case studies, showing how the number of treatment
blocks, ordering of treatments within blocks, duration of each
treatment, sampling frequency, and study analysis protocol
affect our ability to detect true differences in treatment efficacy.
Our simulation software is available on GitHub as described in
the Methods section.

Recommendations for the Design of N-of-1 Studies
An N-of-1 study should have as many blocks as possible to
avoid baseline drift (Figure 4). If no wash-in or carryover effects
are present, a single sample should be taken at the end of each
of JN different treatment periods, where N is the number of
blocks and J the number of treatments; N should be made as
high as possible; each block should be made as short as possible.
However, in practice, the number of blocks we can use in a
study is bounded by the dangers of administering different
treatments in rapid succession, the time it takes treatments to
ramp up to their full effects (“run-in”: Table 1), the time it takes
them to stop working when they are discontinued (“wash-out”:
Table 1), and participant patience.

It is important to consider the fact that most N-of-1 studies of
reasonable length and reasonable sampling frequency will be
underpowered unless the difference in treatment effects is at
least on the order of the standard deviation of the observation
noise (Figure 4). The goal, perhaps obvious, should be to
measure the outcome with as little noise as possible and at as
high a frequency as possible, and/or to continue the study until
enough samples are obtained to ensure that the effect will be
detected if it is there.

Finally, it is important to remember the difference between
power and accuracy. Just because a statistically significant
difference in treatment effects is detected, it does not mean that
the quantitative estimate of E2−E1 reported by the model is
accurate. Even when a study is sufficiently powered, the effect
size estimate will almost always improve with the addition of
more samples.

Beyond these general statements, our main recommendation
for N-of-1 study designers is to simulate the study. We can see
from Figures 4c and d that process noise and individual
sensitivity to treatment can have a dramatic impact on the
number of samples needed to adequately power a study,
especially if the effect size is small. The choice of analysis
method can also have a substantial impact on study outcome
and treatment recommendations (Figure 3); therefore, it is
important to compare novel analysis methods to the standard
models provided by the AHRQ and others [6,11]. Simulations
can help in both cases.
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Modeling Different Outcome Types
Most of our analyses in this paper concerned a continuous (or
near-continuous) random variable, such as blood pressure or
heart rate. However, many N-of-1 trials examine outcomes that
are better modeled as counts, proportions, binary random
variables (yes/no), or discrete bounded scores (such as surveys).
Studies with these outcome types can be simulated by
transforming the output of the stochastic differential equation
model using a set of transformations similar to those for
generalized linear models (see Table 2). We used one such
transformation to discretize the scores for the pain management
case study.

Sources of Treatment and Instrument Parameters
By far, the strongest drawback to the simulation approach is
the difficulty associated with identifying reasonable simulation
parameters, especially in cases where the outcome is not a
continuous value (see Table 2).

Some parameters have relatively clear interpretations and can
be found by looking at the known characteristics of treatments
and instruments. For example, in the case of a continuous-valued
outcome, we can think of the treatment effect, Xj(t), as the
treatment’s maximum impact—at each point in time—on the
outcome in the absence of any noise, in a population of people
exactly like the one who is undergoing the study. The treatment
effect is governed by 3 parameters: τj, the time constant of
“wash-in” for that treatment, γj, the time constant of “wash-out”,
and Ej, the asymptotic effect size (the change from baseline that
the person would experience in the long run was he/she to
continue on this treatment). In the case of a pharmaceutical
intervention, these are important parameters that have probably
been estimated in earlier clinical trials and used to guide
dosages, dosing frequencies, etc. Similarly, reasonable values
for σo can often be obtained from technical specifications of
whatever instrument is used to monitor the outcome.

The emerging field of mobile health may provide some help in
estimating parameters like σp and σb, which are properties of
an outcome and its natural variation over time [14]. As we begin
to monitor patients longitudinally with increasingly higher
resolution, our quantitative understanding of long- and
short-term variation in biological processes will naturally
increase. However, in simulations at present, we recommend
experimenting with varying parameter scales and examining
raw plots of the data to see if the level of noise produced by the
model is reasonable. It may also make sense to test ranges of

α, σb, and σp and examine plots like those shown in Figure 4
to assess the effect of these parameter choices on statistical
models.

Study Limitations and Future Work
This study fits simulated data with a simple regression model
recommended by the AHRQ, but the data themselves are
simulated using a more realistic model. A natural next step
would be to use the full simulation model as the basis for fitting
data. Future versions of our software will allow users to fit data
using the AHRQ model and the full time-series model in a
Bayesian framework, which infers the model parameters using
posterior probability distributions given the data rather than
point estimates [15,16]. Thus, uncertainty is an inherent part of
the model. This will provide a basis for directly comparing the
performance of the full time-series model against the simple
AHRQ model for making treatment recommendations. In
addition, posterior parameter distributions inferred from real
data can be used to generate more realistic simulated data. This
will be especially useful for studies with discrete outcomes,
where the linkage between model parameters and outcome data
is more difficult to interpret. Another advantage of a Bayesian
parameter estimation approach is that it allows parameter
estimates for N-of-1 studies to be continually updated as more
individuals undergo the same study, creating a system that learns
from past data to adapt the design of future studies.

One important limitation of our model is that although it
incorporates multiple sources of noise, it ignores more structured
sources of outcome variation (eg, variation in heart rate does
not principally happen stochastically with time, but the heart
rate does show structured change across hours, days, and
ovulatory cycles). It is also possible that long-term seasonal,
day of week, and time of day effects can influence the outcome
of N-of-1 studies. Future versions of our model may incorporate
parameters for these effects and fit them using methods akin to
those of Prophet [17] or other Bayesian time-series models. In
the meantime, users can address these issues by manually adding
known sources of variation to the baseline drift term or by
choosing outcome parameters that “average out” known sources
of variation (eg “heart rate daily mean”).

In general, the development of realistic simulations of N-of-1
studies is an ongoing process. We believe that simulation will
prove crucial as N-of-1 studies enter mainstream clinical
practice, especially in the realm of precision medicine, and we
hope that our model will inspire others to adopt N-of-1 studies
as a tool in their own research.
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