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Abstract

Background: Stroke is one of the most common diseases that cause mortality. Detecting the risk of stroke for individuals is
critical yet challenging because of a large number of risk factors for stroke.

Objective: This study aimed to address the limitation of ineffective feature selection in existing research on stroke risk detection.
We have proposed a new feature selection method called weighting- and ranking-based hybrid feature selection (WRHFS) to
select important risk factors for detecting ischemic stroke.

Methods: WRHFS integrates the strengths of various filter algorithms by following the principle of a wrapper approach. We
employed a variety of filter-based feature selection models as the candidate set, including standard deviation, Pearson correlation
coefficient, Fisher score, information gain, Relief algorithm, and chi-square test and used sensitivity, specificity, accuracy, and
Youden index as performance metrics to evaluate the proposed method.

Results: This study chose 792 samples from the electronic records of 13,421 patients in a community hospital. Each sample
included 28 features (24 blood test features and 4 demographic features). The results of evaluation showed that the proposed
method selected 9 important features out of the original 28 features and significantly outperformed baseline methods. Their
cumulative contribution was 0.51. The WRHFS method achieved a sensitivity of 82.7% (329/398), specificity of 80.4% (317/394),
classification accuracy of 81.5% (645/792), and Youden index of 0.63 using only the top 9 features. We have also presented a
chart for visualizing the risk of having ischemic strokes.

Conclusions: This study has proposed, developed, and evaluated a new feature selection method for identifying the most
important features for building effective and parsimonious models for stroke risk detection. The findings of this research provide
several novel research contributions and practical implications.

(J Med Internet Res 2019;21(4):e12437) doi: 10.2196/12437
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Introduction

Background and Research Objective
Stroke is the second most popular cardiovascular disease (CVD).
The World Health Organization estimated that 17.7 million

people died from CVDs in 2017, of which 6.7 million had
stroke, representing 31% of all deaths caused by diseases in the
world [1]. The epidemiological characteristics of stroke in
developing countries have gradually become closer to those of
developed countries [2]. The prevalence and mortality of stroke
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are still on the rise. As of 2016, there were 13 million people
with stroke in China [3]. Stroke prevention was the theme set
by the World Stroke Organization for the 2017 World Stroke
Day. Therefore, timely detection and prevention of stroke
become essential.

People may go to a hospital for a full physical examination to
assess stroke risk. Specific examination items include blood
biochemical tests, blood pressure, electrocardiogram, vascular
ultrasound, vascular computerized tomography angiography,
magnetic resonance angiography, electroencephalography,
magneto encephalography, single photon emission computerized
tomography, positron emission computerized tomography,
magnetic resonance imaging, and digital subtraction
angiography. Plaque image analysis based on image
segmentation technology has also been explored for risk
detection of strokes [4,5].

As traditional medical risk assessment is expensive and not
scalable, automated detection of stroke risk has been
increasingly studied in recent years (eg, [6-11]), which falls into
2 broad categories: stroke risk assessment modeling and brain
image analysis. Many countries have employed automated
detection models for stroke, such as systematic coronary risk
evaluation [12], QRISK (QRFSEARCH cardiovascular risk
algorithm) [13], and Reynolds risk score [14]. The Framingham
risk assessment model is a typical risk detection model of stroke.
Pencina et al used an extended Framingham model to develop
a 30-year risk detection model with data collected from 4506
patients aged 20 to 59 years [15]. The model detected the
30-year risk using 8 risk factors, including gender,
antihypertensives, blood pressure, total cholesterol, high-density
lipoprotein (HDL), smoking, impaired glucose tolerance, and
left ventricular hypertrophy. Flueckiger et al further extended
the Framingham model to establish a score detection model of
stroke in a multiethnic study of atherosclerosis in conjunction
with nontraditional risk markers [16]. The detection model
included demographics, medical history, anthropometrics, and
conventional risk factors. However, the Framingham model
overestimates the risk of stroke in China because of obvious
differences in the disease spectrum and risk factors [17,18]. A
joint Chinese-American research group constructed a risk
detection model of ischemic stroke and hemorrhagic stroke with
6 risk factors, including systolic blood pressure, sex, age, total
cholesterol (TC), diabetes, and smoking [19].

Stroke consists of ischemic stroke and hemorrhagic stroke.
Ischemic stroke accounts for 60% to 80% of stroke occurrence
in China, which is the main context of this study. The detection
of risk for ischemic stroke is aimed to reduce or prevent the
incidence of clinical events and premature death associated with
ischemic stroke by early prevention. A key limitation of existing
research on stroke risk assessment lies in the lack of systematic
guidance for feature selection while building stroke risk
detection models, which is essential to the performance of such
models. Previous studies chose predictive features largely in an
ad hoc manner and did not incorporate the latest results of
medical research. So, the core research question of this study
is how to select important risk factors that should be included

in a risk detection model for ischemic stroke as predictive
features?

To address this research question, we proposed, developed, and
evaluated a new hybrid feature selection method, namely
weighting- and ranking-based hybrid feature selection
(WRHFS). WRHFS integrates the strengths of various filter
algorithms and deploys continuous weighting and ranking of
individual features by following the principle of a wrapper
approach. It then selects the top N ranked features as the most
important features. This study makes a significant research
contribution by proposing a new methodological approach to
feature selection, which can lead to improved performance of
risk detection models.

Related Work
The key to accurate stroke risk detection is to select the most
important and influential features of stroke patients, which may
vary among patients at different regions.

Past research has shown that stroke is significantly associated
with age [20], gender [21], blood pressure [20,21], low-density
lipoprotein [22], triglyceride [23], drinking [24], smoking [25],
creatine kinase (CK) [25], height [26], TC [27], HDL [24,27],
body mass index (BMI) [22,25,28], serum total cholesterol
[22,29], smoking [22,24,30], and diabetes [22,31]. Recently,
some new risk factors have been discovered by medical research.
For example, alkaline phosphatase [32] and
hypercholesterolemia [33] are found to increase the probability
of the mortality of stroke patients. Studies have also shown that
there is a clear epidemiological relationship between stroke risk
and hyperlipidemia [34]. However, no single study has used all
features that are theoretically related to stroke because of their
availability in data.

Traditionally, detectors of stroke risk were identified based on
the findings of medical research and practice. However,
collecting data for risk factors (also referred to as features in
this paper) based on the results of medical research is extremely
difficult. In the past decade, there has been increasing research
on building automated stroke risk detection models by
leveraging machine-learning techniques and patient data. One
of the essential steps in building such models is to select
effective features (ie, influential factors) that are associated with
stroke, which is often referred to as the feature selection process.
We categorized feature selection methods used in automated
stroke risk detection models into semisupervised, unsupervised,
and supervised methods [35,36], as summarized in Table 1.
Semisupervised feature selection methods are suitable for
datasets with a small number of labeled samples and a large
number of unlabeled samples [37]. The key challenge lies in
how to use the labeled samples to efficiently process the
unlabeled samples. At present, unsupervised feature selection
methods mainly focus on clustering-based models, for example,
Laplacian score [38], trace ratio [39], and sparsity
regularization–based models [40]. For example, a coregularized
unsupervised feature selection algorithm was proposed in a
study by Zhu et al [41], which was intended to ensure that the
selected features could preserve both data distribution and
reconstruction.
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Table 1. Classification of feature selection methods.

Sample studiesLimitationsRationaleMethods

Supervised

[42]Signal objective functionMutual information basedFilter

[43]Neglecting the correlation between the features and class labelsRanking based

[44]Lacking the uniform standards of selecting featuresWeighting based

[45]Overfitting and high computational complexityEvaluating the accuracy of the classifierWrapper

[46]Only for certain specific fieldsGuiding the wrapper using a filterHybrid

[37]Relying on small labeled samplesGuiding by the labeled samplesSemisupervised

[40]Relying on certain data distributionClustering-based modelsUnsupervised

Supervised feature selection methods can be further divided
into filter, wrapper, and hybrid methods. The filter feature
selection method consists of mutual information and ranking-
and weighting-based methods. Mutual information–based filter
methods use mutual information to evaluate the relevance of
features to class labels and the redundancy of candidate features.
However, they suffer from the problem that the objective
function only uses a single statistic measure of a dataset (eg,
standard deviation, information gain [42,47], or Fisher score
[48]), while ignoring the fusion of multiple measures. For
example, a standard deviation–based filter model relies on the
distance between feature value and mean value for feature
selection. Information entropy is often used to measure the
uncertainty of the value of a random variable. Information gain,
referred to as the change in information entropy, of a feature in
a dataset can be used to rank features. The greater the
information gain is, the more a feature contributes to
classification.

Feature ranking methods (eg, maximal relevance and minimal
redundancy objective [43]) are independent of classification
algorithms. They select a feature subset with metrics such as
the Relief algorithm [49-51] and correlation estimate [43,52].
The Relief algorithm has been successfully applied to feature
weighting because of its simplicity and effectiveness [41,42,47].
It is inspired by instance-based learning algorithms according
to their ability to discriminate neighboring patterns. Linear
in-time complexity, Relief has a great advantage in
computational efficiency. It selects a sample x randomly and
then finds the nearest neighbor sample NearHit(x) in the same
class and the nearest neighbor sample NearMiss(x) in another
class. However, its significant disadvantage lies in that feature
ranking overemphasizes the relevance of a certain feature to a
class label or the correlation with other individual features based
on a single objective function, while neglecting the correlation
between the combined features and a class label. In addition,
when the independent relevance of a feature is emphasized, the
redundancy of feature ranking will be increased, which
contradicts to the objective of minimization of redundancy.

Feature weighting methods attempt to assign a weight value,
usually in the range of 0 to 1, to each feature. Features with
weights near 1 will be selected to form a feature set, whereas
other features will be discarded [44]. Those methods are lacking
the uniform standards for selecting features because of the
fuzziness of near 1. Overall, filter models select features by
weighting and ranking features based on their statistical
relevance to class labels and a threshold to filter out irrelevant
features to improve the classification accuracy [53].

Wrapper methods search for the optimal subset of features in a
feature space and use a classifier to evaluate the effectiveness
of a feature subset. For a particular classifier, wrapper methods
may find good feature subsets [45]. However, they are prone
to overfitting and high computational complexity.

Hybrid models use a filter model to guide a wrapper model to
solve these problems of filter and wrapper methods [46,54-56].
In summary, for stroke risk detection, traditional feature
selection methods have a variety of limitations, negatively
affecting the quality of selected features and the performance
of stroke risk detection models.

Methods

Design
In this study, we proposed a new hybrid feature selection model
called WRHFS, which selects features by integrating various
filter and wrapper methods. Being different from previous hybrid
methods, WRHFS selects the best n filter models (in this study,
n=3) from a candidate set to guide a wrapper model. Figure 1
shows the process of WRHFS, which consists of 4 parts.
WRHFS selects the top 3 filter methods from a set of candidate
filter models.

• Filter stage: ranking features with multiple filter models.

(1) Randomly choosing 3 different models from a set of
candidate filter models.
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Figure 1. Weighting- and ranking-based hybrid feature selection.

(2) Ranking features based on each filter model. WRHFS uses
the ordered features of the filter models to train multiple
classification models based on the backward searching strategy
and measures classification accuracies and contribution vectors
ω from the 3 filter models.

• Wrapper stage: constructing an aggregated contribution
vector W using the 3 contributions of individual features
from the 3 filter models.

(3) Creating W by aggregating the 3 contribution vectors ωi

(i=1, 2, and 3) generated by the 3 filter models. W is expressed
as follows:

W=∑ω i, i=1, 2, 3 (1)

• Voting stage: voting features based on a contribution matrix.

(4) Building a classification contribution matrix C based on the
3 contribution vectors. C is expressed as follows:

C=[ω1ω2ω3] (2)

(5) Building a cumulative classification contribution matrix D
on the 3 contribution vectors ωi. D1, D2, and D3 are the
cumulative contribution vectors based on the vectors ωi,
respectively. D is expressed as follows:

D=[D 1D 2D 3] (3)

• Assessment stage: assessing the effectiveness of the 3 filter
feature selection models and selecting the most important
features.
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(6) Building the effectiveness coefficient vector P of the 3
models and assessing the effectiveness of those models. P is a
3-dimensional vector, which contains the effectiveness
coefficients of the 3 filter models. P is defined as follows:

P=W x D (4)

WRHFS assesses the first 3 filter models according to the
effectiveness coefficient vector P, then replaces the worst filter
model by choosing a filter model from the remaining filter
models in the candidate set. Then, it repeats steps (1) to (6) until
the candidate model set is empty. Finally, the top 3 filter models
will be chosen based on the effectiveness coefficient vector P
to develop the optimal feature selection model.

(7) Calculating the weight Wr of each selected individual feature.
The formula of Wr is as follows:

W r= P x C T(5)

(8) Ranking features based on the weights Wr.

(9) Selecting the top N key features based on their weights, in
which the cumulative contribution of key features is more than
50% and generating the risk index map for diseases using the
surface fitting technique based on key features.

Performance Measures
We evaluated the performance of WRHFS in terms of
sensitivity, specificity, accuracy, and Youden index using a
real-world dataset. We adopted the most common performance
measures of classification models in medical diagnostics,
including sensitivity, specificity, accuracy, and Youden index.
There are 4 categories of potential outcomes: true positive
(people with ischemic risk correctly identified), false positive
(healthy people incorrectly identified as having risk), true
negative (healthy people correctly identified as healthy), and
false negative (people with ischemic stroke incorrectly identified
as without risk). Sensitivity (also called the true positive rate
or recall) measures the proportion of actual positives correctly
detected as people with stroke risk, as shown in equation (6).
Specificity (also called the true negative rate) measures the
proportion of actual negatives that are correctly identified as
healthy people, as shown in equation (7). Accuracy is defined
as equation (8). Among the 3 measures, sensitivity is the most
important medical criterion. Youden index, also called Youden
J statistic, captures the performance of a dichotomous diagnostic
test. Youden index is defined in equation (9).

Sensitivity = True positives / (True positives + False
negatives) = True positives / Sick individuals (6)

Specificity = True negatives / (True negatives + False
positives) = True negatives / Well individuals (7)

Accuracy = (True positives + True negatives) / All =
True individuals / All individuals (8)

Youden index=Sensitivity + Specificity – 1 (9)

We employed 6 filter methods commonly used in the medical
field, including those based on standard deviation [57], Pearson
correlation coefficient [58], Fisher score [59], information gain
[60], Relief [61], and chi-squared test [62]. We used a 10-fold
cross-validation to train and test classification models. In the

evaluation, we selected methods based on standard deviation,
Pearson correlation coefficient, and Fisher score, initially. We
adopted support vector machine (SVM), Bayes [63],
classification based on associations [64], back-propagation
neural networks [65], classification and regression tree [66],
C4.5 (the decision tree learner) [67], and extreme learning
machine [68] to build different detection models because they
are the commonly used classification algorithms. Afterward,
we kept the top 3 filter methods as the benchmark feature
selection models and compared their performances against that
of the proposed WRHFS method.

Results

Dataset
This study adopted a retrospective cohort. We collected a dataset
that consisted of records of 80,672 patients from a community
hospital. Among them, 13,421 patients suffered from ischemic
stroke in the past 5 years. We extracted their records before
their diagnoses of ischemic stroke. Given the purpose of
modeling, we only chose and used features that did not have
missing values in the entire dataset. We did not use missing
value supplementation techniques because of concerns of
possible biases or noises that may incur when applying those
techniques.

At the end, there were 792 complete records in the dataset, each
including 24 blood test features, as shown in Table 2. We also
included 4 demographic features of the patients, including
gender, age, height, and BMI. Descriptive statistics of age and
gender are reported in Table 3. Among the 792 qualified patient
records, 398 were diagnosed with ischemic stroke and labeled
as class 1 instances, whereas the remaining 394 were not
diagnosed with ischemic stroke and were labeled as class 2
instances.

Weighting of Features Using Weighting- and
Ranking-Based Hybrid Feature Selection
WRHFS assessed the effectiveness of filter feature selection
methods given in the dataset. Afterward, we discarded the filter
method with lower effectiveness coefficients. The greater the
coefficient, the higher the effectiveness. As shown in Table 4,
information gain, Relief, and standard deviation led to the top
3 model performances. Table 5 shows the weights of the features
based on standard deviation The weights of the features based
on Relief and information gain are shown in Multimedia
Appendices 1 and 2. Here, “accuracy” refers to the classification
accuracy of the SVM classifier on the basis of the backward
searching strategy, whereas “C” and “q” indicate the optimal
penalty parameter and the kernel bandwidth in the SVM
algorithm, respectively. Feature contribution is reflected by the
difference between the accuracy of a model including a specific
feature versus the accuracy of the model without it. We used
the normalized result between 0 and 1 to eliminate the difference
between positive and negative. “SD (0-1)” and “Contribution
(0-1)” indicate the normalized results of “accuracy” and
“contribution”, respectively. “Weight” reflects the overall
performance of the features, which is the sum of standard
deviation (0-1) and the contribution (0-1).
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In Table 6, “weight sum” indicates the sum of the weights
calculated by the 3 filter feature selection models. In Table 7,
columns 2 to 4 compose the contribution matrix C, whereas
columns 5 to 7 compose the cumulative contribution matrix D.
In Table 8, the results of the weighted sum of the features using
WRHFS are sorted in decreasing order, with a larger weight
indicative of higher importance.

Table 9 presents the optimal performance of the trained risk
detection models in terms of the 4 measures, including
sensitivity (the positive detection rate), specificity (the negative
detection rate), accuracy (the overall classification accuracy),
and Youden index. From Table 9 it can be seen that the proposed
WRHFS method achieved sensitivity of 82.7% (329/398) and
classification accuracy of 81.5% (645/792) using only the top
9 features, and different classification models achieved the best
performance when using different features. For example,
information gain achieved the best classification accuracy of
72.5% (574/792) when using the top 10 features, and the

accuracy began to decline when adding the eleventh feature.
Similarly, standard deviation achieved the best classification
accuracy of 73.2% (580/792) with the top 20 features presented
in Table 5, and Relief achieved 72.9% (577/792) with the top
13 features. Therefore, we calculated sensitivity, specificity,
accuracy, and Youden index of those methods by only using
those optimal features that resulted in the best performed
models. Among these feature selection methods, the proposed
WRHFS method resulted in the highest performance measures
with the fewest features. As shown in Table 8, Age, α-HBD,
SCr, LDH, Height, TBIL, CK, Apo-B, and CK-MB are the top
9 most important features among the 28 features identified by
WRHFS. Their cumulative contribution was 0.51. Table 10
presents the performances of models developed by different
classifiers, as explained in Section “Performance Measures”
using the same 9 features identified by WRHFS. Among all the
models, SVM using WRHFS achieved the best performance in
all 4 measures.

Table 2. 24 blood test items.

Type of dataUnitAbbreviationFull name

IntegerIU/Lα- HBDα Hydroxybutyric dehydrogenase

IntegerIU/LGGPGamma glutamyl transpeptidase

Realmmol/LLDHLactate dehydrogenase

Realmmol/LLDLLow-density lipoprotein

Realmmol/LHDLHigh-density lipoprotein

Realmmol/LBUNBlood urea nitrogen

Integerumol/LUAUric acid

Realmmol/LTCTotal cholesterol

Realumol/LTBILTotal bilirubin

Integerg/LTPTotal protein

Realmmol/LTGTriglyceride

Integerg/LAlbAlbumin

Realumol/LDBILDirect bilirubin

IntegerIU/LALPAlkaline phosphatase

Realmmol/LPISerum phosphorus

Integerumol/LSCrSerum creatinine

IntegerIU/LCKCreatine kinase

IntegerIU/LCK-MBCreatine kinase isoenzyme

Realmmol/LGluGlucose

IntegerIU/LALTAlanine aminotransferase

IntegerIU/LASTAspartate aminotransferase

Realg/LApo-A1Apolipoprotein A1

Realg/LApo-BApolipoprotein B

Realmmol/LCaSerum calcium
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Table 3. Descriptive statistics of age and gender of patients in the dataset (N=792)

Statistics, n (%)Age (years) and gender

≥ 45 and ≤60

105 (13.3)Male

167 (21.1)Female

>60 and ≤75

151 (19.1)Male

246 (31.1)Female

>75 and ≤90

76 (9.6)Male

47 (5.9)Female

Table 4. Effectiveness coefficients of the filter feature selection methods.

Effective coefficientMethod

63Information gain

61Relief

52Standard deviation

49Pearson correlation coefficient

46Fisher score

40Chi-squared test
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Table 5. Weighting of the 28 features based on standard deviation.

WeightContribution (0-1)SD (0-1)ContributionAccuracy (%)qCStandard deviationFeaturea

—1.001.00—b56.10.5160.21CK

1.000.300.991.0057.10.5640.21LDH

1.520.370.911.5258.68.01280.19α-HBD

−1.260.000.81−1.2657.38.080.17Height

1.520.370.721.5258.84.020.15ALP

−0.250.130.48−0.2558.68.010.10UA

3.280.600.413.2861.94.0160.09SCr

−0.250.130.40−0.2561.62.0160.08GGP

0.000.170.370.0061.68.020.08TP

6.311.000.366.3167.91.0640.08AGE

−0.380.120.31−0.3867.61.01280.07ALT

0.380.220.270.3867.91.0640.06AST

1.260.330.231.2669.20.21280.05CK-MB

0.380.220.220.3869.60.11280.05Alb

2.530.500.162.5372.10.52560.04TBIL

0.630.250.120.6372.70.3640.03BMI

0.000.170.040.0072.70.31280.01Glu

0.380.220.040.3873.10.5640.01DBIL

−0.130.150.03−0.1373.00.5640.01BUN

0.250.200.020.2573.20.5640.01TC

−0.250.130.02−0.2573.01.01280.01LDL

−0.130.150.02−0.1372.91.01280.00TG

0.130.180.000.1373.01.01280.00Gender

0.000.170.000.0073.00.5640.00Ca

0.250.200.000.2573.21.01280.00Apo-A1

−0.130.150.00−0.1373.11.01280.00HDL

0.000.170.000.0073.11.01280.00Apo-B

−0.130.150.00−0.1373.01.01280.00PI

aThe full forms of all abbreviations are shown in Table 2.
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Table 6. Weighting of the 3 feature selection models.

Weight sumInformation gainReliefStandard deviationFeatureaOrder

1.91240.00011.00000.9123α-HBD1

0.51560.04980.06570.4000GGP2

0.30010.02110.05920.2198Alb3

0.04590.02360.00260.0197LDL4

0.01590.00010.00020.0156TG5

0.00420.00100.00000.0032HDL6

0.43160.11410.00550.3120ALT7

0.40850.09850.03660.2734AST8

0.54170.06380.06370.4142SCr9

1.64680.05490.59191.0000CK10

0.41500.16570.01900.2303CK-MB11

0.87990.10510.05090.7239ALP12

1.40771.00000.05030.3574AGE13

0.11460.08450.00050.0296BUN14

0.48780.00370.00240.4817UA15

2.02540.07880.95820.9884LDH16

1.36210.12350.42400.8145Height17

0.33280.21460.00110.1171BMI18

0.13980.13490.00000.0049Gender19

0.00400.00000.00000.0040Ca20

0.08130.08120.00010.0000PI21

0.45930.41540.00090.0430Glu22

0.45620.45250.00010.0036Apo-A123

0.70000.69870.00010.0013Apo-B24

0.29960.26290.00030.0364DBIL25

0.06300.03820.00000.0248TC26

0.71430.51880.03230.1633TBIL27

0.50290.04170.09460.3667TP28

aThe full forms of all abbreviations are shown in Table 2.
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Table 7. Contribution of individual features.

Cumulative contributionContributionFeaturea

Information gainReliefStandard deviationInformation gainReliefStandard deviation

6.22821.00001.66540.00011.00000.9123α-HBD

5.12292.50002.89870.04980.06570.4000GGP

5.81593.44284.94880.02110.05920.2198Alb

5.57036.27146.56550.02360.00260.0197LDL

6.36857.88566.71550.00010.00020.0156TG

6.09669.45717.41550.00100.00000.0032HDL

3.73696.07144.18210.11410.00550.3120ALT

4.04395.00004.39880.09850.03660.2734AST

4.84223.08572.76540.06380.06370.4142SCr

4.95621.65711.00000.05490.59191.0000CK

2.44745.84284.73210.16570.01900.2303CK-MB

3.81583.64282.03200.10510.05090.7239ALP

1.00004.64284.06541.00000.05030.3574AGE

4.19307.39996.23210.08450.00050.0296BUN

5.92996.54282.16540.00370.00240.4817UA

4.58781.65711.29870.07880.95820.9884LDH

3.64921.77141.66540.12350.42400.8145Height

2.30706.88575.69880.21460.00110.1171BMI

2.64929.21426.89880.13490.00000.0049Gender

6.52649.71427.06550.00000.00000.0040Ca

4.35098.12857.73220.08120.00010.0000PI

2.06147.14285.86550.41540.00090.0430Glu

1.82468.41427.26550.45250.00010.0036Apo-A1

1.43868.72857.58220.69870.00010.0013Apo-B

2.30707.62856.08210.26290.00030.0364DBIL

5.43878.95716.43220.03820.00000.0248TC

1.70185.38575.44880.51880.03230.1633TBIL

5.28082.04283.06540.04170.09460.3667TP

aThe full forms of all abbreviations are shown in Table 2.
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Table 8. Weighting of the 28 features using weighting- and ranking-based hybrid feature selection.

Weight (0-1)Cumulative contributionContributionWeightFeatureaOrder

10.130.13176.31Age1

0.420.190.0688.36α-HBD2

0.380.250.0683.02SCr3

0.300.300.0570.59LDH4

0.300.350.0570.32Height5

0.270.390.0566.18TBIL6

0.220.440.0459.22CK7

0.200.480.0455.61Apo-B8

0.190.510.0454.09CK-MB9

0.150.550.0348.60Alb10

0.150.580.0347.49AST11

0.130.610.0345.36GGP12

0.100.640.0340.76DBIL13

0.090.670.0339.35Glu14

0.080.700.0337.99Gender15

0.070.720.0336.26ALP16

0.070.750.0335.60Apo-A117

0.060.770.0335.22TP18

0.060.800.0234.34Ca19

0.060.820.0234.34TC20

0.060.850.0233.90BMI21

0.050.870.0233.16HDL22

0.050.890.0232.92BUN23

0.050.920.0232.61PI24

0.050.940.0232.37TG25

0.030.960.0230.70UA26

0.010.980.0227.46LDL27

01.000.0225.56ALT28

aThe full forms of all abbreviations are shown in Table 2.

Table 9. Classification performances of support vector machine with different feature selection methods.

Youden indexAccuracy (N=792), n (%)Specificity (N=394), n (%)Sensitivity (N=398), n (%)FeaturesMethod

0.63645 (81.5)317 (80.4)329 (82.7)9WRHFSa

0.47574 (72.5)284 (72.1)297 (74.6)10Information gain

0.43577 (72.9)290 (73.7)277 (69.6)13Relief

0.45580 (73.2)291 (73.9)283 (71.1)20Standard deviation

aWRHFS: weighting- and ranking-based hybrid feature selection.
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Table 10. Classification performances of different models with weighting- and ranking-based hybrid feature selection.

Youden indexAccuracy (N=792), n (%)Specificity (N=394), n (%)Sensitivity (N=398), n (%)Classifier

0.63645 (81.5)317 (80.4)329 (82.7)SVMa

0.30520 (65.7)197 (50.02)319 (80.2)Bayes

0.53605 (76.4)300 (76.1)305 (76.6)CBAb

0.26501 (63.2)220 (55.8)280 (70.4)BPNNc

0.42562 (71.0)283 (71.8)280 (70.4)CARTd

0.44571 (72.1)302 (76.6)269 (67.6)C4.5

0.19469 (59.2)249 (63.2)220 (55.3)ELMe

aSVM: support vector machine.
bCBA: classification based on associations.
cBPNN: back-propagation neural networks.
dCART: classification and regression tree.
eELM: extreme learning machine.

We visualized the change trend of the risk levels of ischemic
stroke in Figure 2 using the surface fitting technique based on
the 9 key features. The synthetic value (SV) indicates the linear
combination of the feature value and its weight. The risk of
ischemic stroke is reflected in the SV, which is defined as
follows:

SV=AGE+0.42 x α-HBD+0.38 x SCr+0.3 x LDH+0.3
x HEIGHT+0.27 x TBIL+0.22 x CK+0.2 x
Apo-B+0.19 x CK-MB

where age, α-HBD, and other features indicate the feature
values, and 0.42, 0.38, and other values are the weights
associated with individual features. Figure 2 presents the surface
chart for stroke risk detection, in which the Y axis represents
the age between 45 and 90 years, the Z axis represents risk index
of suffering from ischemic stroke, and the X axis represents the
SV. Figure 3 presents the risk index map for ischemic stroke
detection, which is a top view of Figure 2. There were 33 ranks
of risk index: “≤1.5” means no risk; “>1.5 but ≤2” means low
risk; and “>2” means high risk. Different colors indicate
different levels of risks.
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Figure 2. A surface chart for risk detection.

Figure 3. A risk index map for ischemic stroke detection.

J Med Internet Res 2019 | vol. 21 | iss. 4 | e12437 | p. 13https://www.jmir.org/2019/4/e12437/
(page number not for citation purposes)

Zhang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Discussion

To address the limitations of existing risk detection models and
expensive detection costs in hospitals, we proposed a new
feature selection method, namely WRHFS, for risk detection
of ischemic stroke. In this study, WRHFS selected features
through the guidance of the top 3 filter methods based on the
28 risk factors. It provided an aggregated importance weight
for each feature. As shown in Table 8, the top 9 features that
achieved sensitivity of 82.7% (329/398) were selected for
detecting the risk of ischemic stroke. WRHFS can also evaluate
the effectiveness of the existing filter feature selection methods
based on effective coefficients and choose the top 3 filter
methods. On the basis of the sorted results of the importance
weights of individual features, we chose 9 features and produced
the change trend of risk levels and the risk index map for
ischemic stroke.

Principal Findings
We compared the performance of the proposed feature selection
method WRHFS against those of standard deviation, Relief,
and information gain. The results revealed that age is the most
important influence factor because it has the largest weight
value, which is consistent with the literature on stroke [6,13].
Through ranking the features in decreasing order of their
importance to the performance of a risk detection model,
WHRFS enables us to choose the most effective features that
have the highest contributions to the performance measures of
a model. Results of evaluation demonstrate that WRHFS can
achieve a contribution rate of 0.51 with only the first 9 features,
whereas the other 3 traditional feature selection methods require
more. As a feature selection method, WRHFS is superior by
being able to calculate effectiveness coefficients of individual
features.

The contributions of the other 27 risk factors, excluding age,
vary in the models constructed by the 4 feature selection
methods, including WRHFS, standard deviation, Relief, and
information gain. More specifically, the contribution of α-HBD
assessed by Relief is significantly greater than that assessed by
other feature selection methods, and the contribution of CK was
ranked highest by standard deviation but almost 0 by Relief. It
implies that a single objective function may not be able to
measure the importance of risk factors comprehensively.

Age is the most important feature found in this study. The
contribution of age to the model’s performance is approximately
13%. The risk of stroke was reflected in the SV. Therefore, age
should be integrated in the SV. In general, the risk of ischemic
stroke increases with age. As shown in Figure 2, A and B have
the same age but are much older than C. However, B has higher
risk than A because of the higher SV. In contrast, C is younger
than A but has a higher risk than A also because of a higher SV.
Therefore, the risk of ischemic stroke is influenced by the SV.
A person would have low risk of ischemic stroke if the SV is
far from the high-risk interval (HRI; ie, 1675, 2175), which is

shown in Figure 3. The findings of this study will not only
provide methodological guidance on how to select more
effectiveness features for automated detection of stroke risk but
also potentially help physicians improve their diagnosis in
medical practice.

The major contribution of this research is WRHFS, a new
generic feature selection method. WRHFS deploys continuous
weighting and ranking of individual features by following the
principle of a wrapper approach that integrates the strengths of
various filter methods for feature selection. The evaluation
shows that WRHFS can result in a superior risk detection model
that achieves better performance with fewer features than the
existing feature selection methods, demonstrating the
effectiveness of WRHFS.

The findings of this study also provided multiple practical
implications for physicians. First, the top 9 features are
extremely easy to obtain. Physicians can calculate the
corresponding SV and easily detect the ischemic stroke risk
indexes using the risk index map as an auxiliary diagnostic
method. As shown in Figure 3, the range between 1675 and
2175 of the SV (where the black arrow points) can be called
the HRI. There seems a parabolic envelope curve. In addition,
elderly people whose ages are between 70 and 90 years tend to
have a high risk of ischemic stroke, whereas the risk becomes
lower when the SV is smaller (800 to 1500) or larger (3000 to
3250). In addition, an automated stroke risk detection platform
can be developed easily by use of the above findings for stroke
during the physical examination of people.

Limitations
This study has a couple of limitations that offer future research
opportunities. First, the acquisition of medical samples is very
difficult. We were unable to find data samples that included all
of the risk factors that have been discovered in the literature. It
would be worthy to conduct a future study with a larger and
different dataset with more features to examine if the finding
of this research can still hold. Second, we used a straightforward
way to aggregate the rankings of individual filter methods,
which may or may not be optimal. We plan to explore other
means in future research.

Conclusions
Automatic detection of stroke risks has been increasingly studied
in recent years. How to select important factors for risk detection
models is critical to the model’s performance. Existing research
on automatic detection of stroke risks through machine learning
faces a significant challenge in the selection of effective features
as predictive cues. Therefore, how to develop more effective
methods for feature selection is critical. This study proposed,
developed, and evaluated a new feature selection method, which
can help identify the most important features for building
effective and parsimonious models for stroke risk detection.
The proposed method, WRHFS, provides a novel
methodological research contribution and practical implications.
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