
Original Paper

Privacy-Preserving Record Grouping and Consent Management
Based on a Public-Private Key Signature Scheme: Theoretical
Analysis and Feasibility Study

Stephan Jonas1, Dr rer medic; Simon Siewert2; Cord Spreckelsen2, PD, Dr rer nat
1Department of Informatics, Technical University of Munich, Garching, Germany
2Department of Medical Informatics, Uniklinik Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany

Corresponding Author:
Stephan Jonas, Dr rer medic
Department of Informatics
Technical University of Munich
Boltzmannstrasse 3
Garching, 85748
Germany
Phone: 49 49 089 289 18
Email: jonas@in.tum.de

Abstract

Background: Clinical and social trials create evidence that enables medical progress. However, the gathering of personal and
patient data requires high security and privacy standards. Direct linking of personal information and medical data is commonly
hidden through pseudonymization. While this makes unauthorized access to personal medical data more difficult, a centralized
pseudonymization list can still pose a security risk. In addition, medical data linked via pseudonyms can still be used for data-driven
reidentification.

Objective: Our objective was to propose a novel approach to pseudonymization based on public-private key cryptography that
allows (1) decentralized patient-driven creation and maintenance of pseudonyms, (2) 1-time pseudonymization of each data
record, and (3) grouping of patient data records even without knowing the pseudonymization key.

Methods: Based on public-private key cryptography, we set up a signing mechanism for patient data records and detailed the
workflows for (1) user registration, (2) user log-in, (3) record storing, and (4) record grouping. We evaluated the proposed
mechanism for performance, examined the potential risks based on cryptographic collision, and carried out a threat analysis.

Results: The performance analysis showed that all workflows could be performed with an average runtime of 0.057 to 42.320
ms (user registration), 0.083 to 0.606 ms (record creation), and 0.005 to 0.198 ms (record grouping) depending on the chosen
cryptographic tools. We expected no realistic risk of cryptographic collision in the proposed system, and the threat analysis
revealed that 3 distinct server systems of the proposed setup had to be compromised to allow access to combined medical data
and private data. However, this would still allow only for data-driven deidentification. For a full reidentification, all 3 trial servers
and all study participants would have to be compromised. In addition, the approach supports consent management, automatically
anonymizes the data after trial closure, and provides basic mechanisms against data forging.

Conclusions: The proposed approach has a high security and privacy level in comparison with traditional centralized
pseudonymization approaches and does not require a trusted third party. The only drawback in comparison with central
pseudonymization is the directed feedback of accidental findings to individual participants, as this is not possible with a
quasi-anonymous storage of patient data.
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Introduction

Background
Medical progress relies on evidence from trials involving
patients, healthy participants, or both. Many relevant study
designs (especially cohort studies) require long-term efforts,
which need to merge data for each participant. The same holds
true for studies that capture and then integrate data from
heterogeneous data sources or from different locations to
describe individual participants. While handling sensitive health
data, such studies require the highest standards of data privacy
and data security. Specifically, they have to ensure that sensitive
data cannot be traced back to individual participants by
unauthorized access. Obviously, these two
requirements—enabling record grouping for individual
participants and disabling the identification of participants (given
the data)—are extremely hard to reconcile even if data are
managed by a single institution or study center. Here, data can
be collected, then joined using participants’ identifiers, and
anonymized only before data analysis. This involves a high risk
of leaking identifying information in case of security breaches
before anonymization. In addition, anonymization needs to
minimize the reidentification risk based on characteristic
combinations of superficially anonymized data.

The problem is addressed by establishing k-anonymity [1],
meaning that the identifying information of a person is
indistinguishable from at least k−1 other datasets. Often
k-anonymity can only be achieved by generalizing some
attribute values, for example by reducing birthdates to ages.
Further approaches to solve the reidentification problem involve
a more sophisticated protection against attacks due to low data
diversity and background knowledge in k-anonymized datasets
[2] or small systematically randomized changes to the original
data considered irrelevant for subsequent data analytics, but
obfuscating individual characteristics [3].

Applying anonymization at the very end of data acquisition is
most problematic in long-term studies while sensitive health
data are stored nonanonymized over long periods of time,
leaving the data vulnerable to attackers. With distributed data
acquisition for the same patient, a downstream anonymization
prior to data communication between trial centers becomes
simply unfeasible, as identifying information needs to be shared
to merge patient data.

Let’s assume the following use-case as an example of potential
risks. A clinical trial is performed to monitor population
depression through weekly Web-based questionnaires. Each
data entry (1 filling of the questionnaire) is stored as an
individual record, and records are linked through the users’
accounts.

Immediate anonymization is not an option here. Simple
k-anonymization of the data would result in losing the possibility
to link new records to existing datasets and, thereby,
participant-individual trend assessment would not be possible.
Instead, data might be pseudonymized. Pseudonymization
removes all data directly identifying a person (such as name,
address, and place and date of birth) and replaces this

information with a generated data key, which, considered solely,
will not unveil any hint leading to the real person, but is
associated consistently with all data describing the same person.
Consistent association of the same pseudonym with a person’s
data is the main task to be solved by pseudonymization
approaches. Solutions established so far either (1) use a
pseudonymization table or dictionary, which serves as a lookup
device when new data need to be pseudonymized, or (2) adopt
a function, deterministically calculating the pseudonym from
identifying data [4] (ie, a hash function).

Even enhancing plain pseudonymization with encryption yields
some problems. At any point in time, the records of the study
participants could be grouped by pseudonym and possibly
identifying information could be drawn from the combined
information. Even the encryption of pseudonymized data by
some master secret poses a risk, as an attacker would need to
obtain only a single key.

The optimal solution to the attack scenario stated above would
be to fully decouple identifying and study data during
acquisition, meaning that no connection between the submitting
participant and the records can be drawn at any point in time.

Such a solution needs to (1) remove all directly identifying data
and (2) avoid using the same (pseudonym) key for datasets
related to the same person. However, (3) records should still be
grouped by study participant at the end of the study to analyze
individual trends, and (4) participants should be enabled to
trigger the deletion of all their data without disclosing their
identity.

Objective
To the best of our knowledge, no such technique is yet available.
Therefore, we propose a strong, decentralized pseudonymization
technique based on shared public-private key cryptography that
has the potential to de facto anonymize study data on acquisition
while maintaining the possibility to group data by participant.
In the following, we introduce the approach, demonstrate
feasibility based on a proof-of-concept implementation, report
related performance data, and address scalability based on
adopting distributed computing (MapReduce).

Methods

Public-Private Key Scheme
To disconnect identifying participant information, such as user
account name or email address, from study records, digital
signatures based on asymmetric cryptography are employed.
Users sign their records using a private key known only to them.
These private keys are encrypted by a user’s password and
stored on a central server. Each time users add a new record to
their dataset, they sign the record using their private key. Thus,
each record is stored with a 1-time pseudonym (the signature),
which can still be grouped based on available public keys
without knowing the private key and, thus, without knowing
the participant who created the record.

The matching public keys for each user are centrally stored on
the server side. The records can be grouped by verifying the
records’ signatures using the combination of all public keys.
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Wherever possible, cryptographic salt (a random sequence)
should be added to hashes and signatures to increase entropy.
The salt is stored alongside the hash or signature in the same
database. For example, if a user submits the same answers to a
questionnaire twice without salt, the same signature is created
for both records; thus, they can be grouped without knowledge
about the public key. With a random salt, 2 different signatures
are created, since the sequences differ and grouping without
knowledge of the public key is not possible.

System Setup
To ensure further privacy, the user data can be distributed over
several servers (Figure 1). Identifying information such as email
addresses or user names is stored in a user database. Study data
such as filled questionnaires are stored in a record database,
along with the record signature of the user and added
cryptographic salt. For cryptographic data, a cryptographic hash
with added salt of the user password is stored in the user
database for identification; private keys are stored encrypted
by the user’s password in the user database with added
cryptographic salt; and public keys are stored in a separate
public key database.

Figure 1. Study database division and workflows.

Workflows
The main workflows can be split into 4 activities: (1) user
registration, (2) user log-in, (3) record storing, and (4) record
grouping.

During (1) user registration, a user with their respective
public-private key pair is created. This is performed on the client
side. The user chooses a username and password, and a
public-private key pair is generated in the Web browser. The
following information is then transmitted to the server
infrastructure (Figure 1). First, the user database stores the
potentially identifying user information such as user name and
email address, as well as a cryptographic hash of the user’s
password with added cryptographic salt. In addition, the private
key is symmetrically encrypted with the password as key and
stored in the user database as well. Second, the public key
database stores the public key. Both substeps are carried out
independently and use separate databases.

On (2) user log-in, the user database is queried for the salt, and
the hashed user password is generated on the client side and
transmitted to the user database for authentication. If the
authentication was successful, the encrypted private key is also
returned and decrypted using the user’s password in the Web
browser.

Once logged in, the user can (3) generate and store a new
record. The record is treated as binary data and hashed to reduce
the amount of data to be signed. A cryptographic salt is added

to the hash and the full sequence is signed with the private key.
Record, salt, and signature are stored in the record database.

The records can be (4) grouped using the available public keys
from the public key database. For this task, every record and
salt from the record database is loaded and the signature is
decrypted using each public key. If the decrypted value is
identical to the hash of the record and salt, the signature was
created with the corresponding private key (Figure 2). This is
the well-known standard procedure for verifying a digitally
signed document (Figure 3). The procedure is used here to assign
all records that can be verified with the same public key to the
same group. For the sake of a better visualization of our
approach, we introduce a graphical shorthand notation of the
verification process in Figure 4.

One crucial point should be highlighted: our approach never
discloses the identity of the key owner. This is in sharp contrast
to the usual verification of digitally signed documents, which
relies on an approved association of the signer’s identity with
the public key. Instead, our approach collects the public keys
of all participants in a public key store without any trace to the
key owner’s identity.

In order to group the records (ie, to join all records belonging
to the same, but unknown, participant), all public keys are
applied to all records. Records verified by the same public key
must have been created using the same private key and, thus,
belong to the same participant. Figure 5 shows the essence of
this approach.
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Figure 2. Grouping algorithm as pseudocode.

Figure 3. Standard procedure to verify a digitally signed document.

Figure 4. Shorthand graphical notation for the verification step of a digitally signed document as detailed in Figure 3.

Notification to Participants of Trial Analysis
In most trials, participants should be notified if specific diseases
or other incidental findings are generated based on the collected
data. In our example, a participant could be notified that
depression has been diagnosed based on their replies. While
our approach does not allow for direct communication to an
individual patient identified based on their record, it still allows
for directed feedback to just 1 distinct patient. This can be
performed by encrypting a message with the public key
associated with the diseased participant and sending this

encrypted message to all participants (eg, through a mobile app
or the Web interface of the trial). Since the message is encrypted
with the distinct patient’s public key, only the associated private
key is able to decrypt and read the message. Delivery to the
correct patient is therefore guaranteed. However, since all
patients need to be contacted for the right patient to log in,
patients might be confused by potentially alarming messages.
Thus, specific times should be scheduled for the communication
(or log-in of the patient) or these findings should be
communicated with general feedback from the study through
the Web interface.
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Figure 5. Record grouping using the public key store.

Public Key–Based Consent Management
While the approach actually relies on the mechanism of digital
signatures, it is possible to implement privacy-preserving,
participant-managed consent declaration. The participant’s
declaration of consent is treated exactly like a record. It is signed
electronically by the participant’s private key and enclosed in
the record database. While the document is signed digitally,
there is no need for further identifying information in the
declaration. If all participants sign a declaration of consent, a
study center will always be able to prove the righteous use of
all personal data. The center only has to show that each record
contained in the record database can be grouped with a consent
declaration using the quasi-anonymous grouping mechanism
introduced above (Figure 5).

Using a similar process, a participant can withdraw consent and
trigger the deletion of his or her data. The system offers all
participants the ability to sign and enter a delete statement. The
delete statement is first treated like a usual record and grouped
with all records related to the participant (including the consent
declaration). Statements associated with a delete statement are
flagged for deletion. A garbage collecting mechanism can then
clean the record database. Additionally, for any group containing
a delete statement and at least one record, the associated public
key is also marked for deletion and then removed from the
public key store. With these 2 steps, data of participants who

withdraw consent are completely removed from the database
(Figure 6).

All operations for record grouping and consent management
can be implemented as a MapReduce problem and can be
addressed using big data technology such as Apache Spark or
Hadoop.

Please note again that neither passwords nor private keys are
transmitted or stored in clear text to the server at any point in
time. Thus, records are grouped and consent is managed
quasi-anonymously. In addition, no trusted third party is required
for consent management (especially for handling revoked
consent).

System Performance Evaluation
To evaluate the system regarding its computational performance
and robustness, we performed several tests. The most expensive
operation during user creation is the generation of asymmetric
key pairs. Record generation and grouping speed is mostly
dependent on the signing time of the record hash. Thus, we
calculated runtimes for (1) user registration, (3) record storing,
and (4) record grouping using different asymmetric encryption
algorithms. In addition, we investigated and calculated possible
collisions during calculation of hashes and public-private key
pairs. Finally, we analyzed the potential threat of data exposure
in various attacker scenarios.
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Figure 6. Process for data management after withdrawal of consent.

Results

Runtime Considerations
We performed all tests using the Bouncy Castle application
programming interfaces of the cryptographic algorithms [5].
We focus the report on the main runtime limitation of the
asymmetric signing of documents. However, we tested different
algorithms for hashing and symmetric encryption but do not
report them separately. For the cryptographic hash function, we
tested secure hash algorithm (SHA) -1 [6] and SHA-2 [7] with
hash lengths of 256 and 512 bits. Since the performance impact
on both record generation and the critical grouping operation
was negligible, we chose SHA-256 as the hashing function.

We symmetrically encrypted users’ private keys using the
Advanced Encryption Standard (AES) [8]. We tested the
standards AES-128 and AES-256 with the same result as for
hash functions. The performance impact of the used block size
did not affect the performance at all. We encrypted the users’
private keys in the following simulations using AES-256.

We tested the following algorithms for the cryptographic
signatures: ECGOST3410 (pure elliptic curve), elliptic curve
version of the digital signature algorithm (DSA) (ECDSA) [9],
SHA-256 DSA [10] (large integer factorization), and SHA-256
Rivest, Shamir, Adleman (RSA) [11] (large integer
factorization). We tested all algorithms in a scenario with N=100
users and a mean of 1000 records with a size of 4096 bytes. We
repeated each test 5 times and report the average result (Table
1).

Table 1. Average timings of common signature schemes for single operations using record length l=4096 bytes.

Runtime (ms)Signature scheme

Record groupingRecord storingUser registration

0.1980.3420.350ECGOST3410

0.0670.0830.145SHA-256a DSAb 1024 bit

0.0110.0890.057SHA-256 ECDSAc

0.0110.60642.320SHA-256 RSAd 2048 bit

0.0050.1544.088SHA-256 RSA 1024 bit

aSHA-256: secure hash algorithm with 256-bit hash length.
bDSA: digital signature algorithm.
cECDSA: elliptic curve digital signature algorithm.
dRSA: Rivest, Shamir, Adleman.

Cryptographic Algorithm Collision Considerations
Two potential problems of the presented approach are (1) the
chance of collision during signing and (2) the chance of collision
during hashing. A collision in signing would yield an incorrect

grouping of records. A collision in hashing would allow the
injection of false data into the record database.

Given an existing record and its salted signature, a collision
during hashing would enable an attacker to find a combination
of different salt and record leading to the same hash. The
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attacker could then assign the preexisting signature to the new
pair of salt and record and, thus, induce false but seemingly
valid data. Since SHA-256 is used for hash computation, the
hash length is 256 bits. The probability of a collision (Pcol) can
be approximated by applying the birthday problem [12] in the

equation Pcol(m, o) = 1 – e [– m (m –1)/2o+1], where m denotes
the number of already computed hashes (record count m) and
o is the output size of the hash function in bits. For the practical
simulation, one therefore gets a collision probability of
Pcol(105,256) ≈ 0. Actually, the probability of observing at least

a single collision reaches 50% for m ≈ 4 × 1038 hash operations.
Thus, introducing false (and, more importantly, specific) data
into the record database or having 2 records by the same person
with the same hash is near impossible.

In the first case (signing), a collision can occur if 2 public keys
are able to decrypt the same signature. Since the signing process
is bijective, this means the 2 public keys have to be identical.
However, the key length is even larger for the public keys than
for the hashing algorithms; thus, the probability is even lower
and poses no likely threat.

In contrast, the signing mechanism can almost guarantee the
validity of the data, making forging (except for deletions) almost
impossible.

Threat Analysis
Due to the layout of the system, the data are highly scattered
between several (physically separate) database systems. We
assume a retrospective attack after data have been entered for
the following cases.

In the case where 1 database is compromised, that is an attacker
gains access to any single database, it will not be possible to
link a single participant to any of their study data, as none of
the databases contains any connection between identifying data
and records or between study and identifying data at the same
time.

In the case where 2 databases are compromised, if the attacker
gains access to the user and public key databases, they would
not have access to study data. If the attacker gains access to the
user and record databases, they would have no means of linking
data from the 2 databases or even within the record database.
If the attacker gains access to the record and public key
databases, they would potentially be able to group records of
the same user but would not have access to identifying
information.

In the case where all 3 databases are compromised, the attacker
would still only be able to group the records together if they
know the cryptographic methods that were used. In this case,
they would still have no connection between study data and
identifying data, but they might be able to identify study
participants based on behaviors or answers in the records.

In the worst case, to completely decrypt and link every single
person with their study data (matching user name or email
address with records), an attacker would have to gain access to
each individual participant’s computer and record the private
key or password during the user log-in procedure, as well as

gaining access to the records database and possibly the user
database. This is not possible retrospectively, as the study is
finished and no log-ins are made anymore.

Discussion

Principal Results
We present a cryptographic scheme for decentralized
pseudonymization, participant information, and
participant-managed consent declaration and withdrawal. The
technical evaluation of runtime and collisions indicated not only
that such a system is feasible, but also that runtimes are short
enough to be integrated without notification or impairment of
user experience. Especially when the focus is on small
computational expenses on the user’s end, the SHA-256 ECDSA
is a good choice for signature generation, as it provides high
security with a short runtime. SHA-256 ECDSA is also used in
other cryptographic online tools such as Bitcoin. The chosen
approach of signing each patient record individually also
eliminates the risk of accidental or willful data tampering (except
for record deletion).

This approach can be classified as decentralized
pseudonymization, with the private key being part of the
pseudonymization function. However, since the study personnel
have no access to parts of the pseudonymization procedure and
cannot interfere with it, the approach may potentially even be
classified as de facto anonymization. If participants withdraw
their consent, no depseudonymization is necessary. Records are
marked for deletion and removed by a garbage collection
mechanism without disclosing a participant’s identity.
Obviously, cooccurrence analysis of user interaction and
deletion operations could leak identifying information. This
risk can be minimized by (1) strictly separating the systems for
user and record management, (2) cumulating record deletion
requests for 2 or more users, and (3) avoiding a detailed log of
user interactions.

The threat analysis showed that major effort would be needed
to link identifying information with study data. Theoretically,
gathering identifying personal information is only possible
during the study and not after a study has been completed. A
closed study might therefore be automatically anonymized.
However, de facto security is highly dependent on
implementation details, and—as history has taught us—even
standard software libraries are prone to errors.

Limitations
The main limitation of the proposed method is that the user’s
private key becomes unrecoverable if the user forgets his or her
encryption password. Without decrypting the private key, a user
is not able to insert new records into the database to be grouped
with older records. There are multiple possibilities available to
reduce the risk of losing a key. One option would be to hand
out the users’ private keys in the form of smartcards. Losing a
physical object is much less likely than forgetting a password.
Another approach would be to store a copy of the private key
encrypted with a secret obtained from the answers to a set of
user-selected questions. Both approaches would decrease the
risk of losing a private key but not totally eliminate it. In
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addition, these approaches might not be feasible in all settings
or for all participants, which creates the risk of losing a study
participant’s data.

Similarly, since the trial is theoretically anonymized once the
last participant has finished data entry, there is only an indirect
way of communicating with study participants: through broad
messaging to all participants. This might also not be feasible or
successful in all cases. This limitation should be communicated
to participants beforehand. A potential solution to this problem
could be the addition of a trusted third party for those
participants who value a direct follow-up more than
anonymization of their data. Alternatively, an accompanying
mobile phone app could hold the private key and could filter
incoming messages and alert the user in case of information
relevant to them.

Another limitation is possible collusion during cryptographic
hashing. Our analysis showed that this is only a theoretical
problem, but it may not be prevented completely.

Access control in general, and specifically the limitations of
this approach, might discourage study participants from
participating in a trial. However, accompanying mobile phone
or tablet apps could reduce this burden by offering more
convenient ways for password and key management (eg, face
or fingerprint identifiers). However, this could in turn reduce
security if private keys are stored nonencrypted on the device
over longer periods of time.

Comparison With Prior Work
Prior work proposed the assignment of identical pseudonyms
to records linked to the same participant or patient in order to
enable record grouping or patient-specific data joins [4,13].
Pseudonymization is often combined with encryption to ensure
both deidentification and confidentiality of the data [13].
Pseudonyms establish linked records within the database during
the whole lifecycle of the database. Joining records by
pseudonyms yields rich datasets per individual participant,
which are, therefore, exposed to a greater risk of

information-driven reidentification. In contrast, our approach
avoids identical pseudonyms. Record groups are established on
demand by the public key store. Thus, based on our approach,
the public key store could be kept by a different organizational
unit. Record grouping is then postponed to the time of data
analysis, which reduces the reidentification risk during the data
acquisition phase (especially the high risk due to low data
diversity at the beginning of data acquisition; see
Machanavajjhala et al [2]).

A main advantage of our approach is that no trusted third party
is required for consent management. With respect to this point,
our approach differs from an approach proposed by Aamot et
al, which also adopted asymmetric encryption [14]: our approach
completely avoids depseudonymization, but nonetheless enables
withdrawal of consent and patient information.

Noumeir et al made the distinction between reversible and 1-way
pseudonymization [15]. They argued that 1-way
pseudonymization cannot support any notification of participants
about incidental findings. They, therefore, proposed a symmetric
encryption of data enabling reidentification by a trusted third
party. Our approach is 1-way in the sense that a feedback on
incidental findings cannot be propagated back to a distinct
participant directly. However, through encryption and broad
communication, a similar effect can be achieved. The only
drawback is that it requires more activity by the user (ie, actively
logging in to the system), which is not necessary in other cases.

Conclusions
We have proposed a novel cryptographic approach to
pseudonymization that decentralizes the pseudonymization
function and consent management in part to the study
participants. Closed trials are thereby automatically anonymized,
and a potential de facto anonymization at the study site during
ongoing trials might be achieved. However, this claim requires
further investigation and might be dependent on local privacy
regulations. A prototypical implementation of the key
cryptographic mechanisms of the trial software with grouping
based on Apache Spark is available online [16].
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