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Abstract

Background: Over the past several decades, naturally occurring and man-made mass casualty incidents (MCIs) have increased
in frequency and number worldwide. To test the impact of such events on medical resources, simulations can provide a safe,
controlled setting while replicating the chaotic environment typical of an actual disaster. A standardized method to collect and
analyze data from mass casualty exercises is needed to assess preparedness and performance of the health care staff involved.

Objective: In this study, we aimed to assess the feasibility of using wearable proximity sensors to measure proximity events
during an MCI simulation. In the first instance, our objective was to demonstrate how proximity sensors can collect spatial and
temporal information about the interactions between medical staff and patients during an MCI exercise in a quasi-autonomous
way. In addition, we assessed how the deployment of this technology could help improve future simulations by analyzing the
flow of patients in the hospital.

Methods: Data were obtained and collected through the deployment of wearable proximity sensors during an MCI functional
exercise. The scenario included 2 areas: the accident site and the Advanced Medical Post, and the exercise lasted 3 hours. A total
of 238 participants were involved in the exercise and classified in categories according to their role: 14 medical doctors, 16 nurses,
134 victims, 47 Emergency Medical Services staff members, and 27 health care assistants and other hospital support staff. Each
victim was assigned a score related to the severity of his/her injury. Each participant wore a proximity sensor, and in addition,
30 fixed devices were placed in the field hospital.

Results: The contact networks show a heterogeneous distribution of the cumulative time spent in proximity by the participants.
We obtained contact matrices based on the cumulative time spent in proximity between the victims and rescuers. Our results
showed that the time spent in proximity by the health care teams with the victims is related to the severity of the patient’s injury.
The analysis of patients’ flow showed that the presence of patients in the rooms of the hospital is consistent with the triage code
and diagnosis, and no obvious bottlenecks were found.

Conclusions: Our study shows the feasibility of the use of wearable sensors for tracking close contacts among individuals during
an MCI simulation. It represents, to our knowledge, the first example of unsupervised data collection—ie, without the need for
the involvement of observers, which could compromise the realism of the exercise—of face-to-face contacts during an MCI
exercise. Moreover, by permitting detailed data collection about the simulation, such as data related to the flow of patients in the
hospital, such deployment provides highly relevant input for the improvement of MCI resource allocation and management.
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Introduction

Background
A mass casualty incident (MCI) is defined as a situation in
which, at a certain time, the available care resources are unable
to meet the demand for medical care of the incident [1]. Each
year, MCIs occur worldwide and are caused by conventional
causes such as weapons, explosions, vehicular and airplane
accidents, and deliberate or spontaneous chemical mass
intoxications. These incidents require emergency health care
teams to treat large numbers of injured victims [2], and this
might compromise the normal functioning of hospitals.
Simulation applied to health care is rapidly gaining acceptance
in medical and academic communities, and it can be a valuable
tool for better training for management of MCIs. It provides a
safe, controlled environment in which it is possible to test plans
and procedures and improve them, as well as to evaluate policies
and guidelines [3]. Traditionally, actors are used in disaster
exercises, and they are coached to mimic and exhibit realistic
manifestations of several medical and traumatic pathologic
states that may be present in a real MCI [2-4]. Although the use
of simulation in medical education has increased over the last
2 decades, collecting and analyzing data of a mass casualty
functional exercise still occurs in an unsystematic manner,
without a standardized method. Common methods to assess
performances during MCI simulations are direct observations
of functional exercise performance and video analysis of
participants’ behaviors [5]. However, these methods present
some limitations: the focus of the observers’ attention can
subjectively vary, and the need of several observers, both for
direct observations and for videos, could affect the realism of
the event and decrease the level of emotional engagement of
the participants [3]. An objective and reproducible method that
identifies the strengths and weaknesses of simulations is required
to lead the improvement in the response system [6]. In mass
casualty simulations, wireless medical sensor networks and
Radio-Frequency IDentification (RFID) technology have been
used to track information about the status of the casualties, thus
providing timely situational awareness during exercises [3,7,8],
and the use of RFID was compared with manual data collection,
demonstrating the reliability and applicability of the system [3].
Wearable proximity devices could provide not only patient
information and tracking capability to locate people and
equipment but also information on interactions among
individuals. Wearable sensors have been successfully used to
measure face-to-face proximity relations in various hospital
settings that include the pediatric ward [9] and acute care
geriatric unit [10,11].

Objectives
The use of proximity sensors in the field of MCI simulation
could provide a continuous and fully distributed collection
system of high-resolution data on the interactions among patients

and medical staff to investigate the dynamics of interactions
with regard to the different roles and severity of the patient’s
injuries. In this study, we have illustrated the feasibility of
contact measures through wearable proximity sensors in a live
MCI simulation aimed at providing data-driven knowledge to
perform debriefing and identify room for improvement. The
main objectives of our study were (1) to investigate the
interactions between medical staff and patients with regard to
their roles and severity of the victim’s condition and (2) to
estimate the presence of victims in different spaces of the field
hospital to study the patients’ flow.

Methods

Study Setting
A building collapse following a flood was simulated during an
MCI functional exercise organized in Novara, Italy, on May
19, 2016, from 7 pm to 10:30 pm. The MCI exercise was
organized in the framework of the residential course of the
European Master in Disaster Medicine (EMDM). The EMDM
is an international 12-month–long blended learning master’s
degree program for health care providers involved in medical
preparedness and response to disasters [12]. The exercise
included both a prehospital and an in-hospital disaster response
phase. The scenario comprised 2 locations: the building collapse
site (prehospital response) and the field hospital (in-hospital
response). The hospital was located approximately 2 kilometers
from the incident site.

Overall, exercise participants were distinguished into the
following classes for the purpose of this study and based on
their role in the simulation: Medical Doctors (MD), Nurses
(Nurse), Emergency Medical Service (EMS) personnel, and
Health Care Assistants (HCA) and simulated victims (Victim).
Victims were portrayed by medical students. They attended an
introductory course on disaster medicine (8-hour live lectures)
and specific training on how to simulate clinical conditions
provided in an individual victim storyboard, when to change
the dynamic casualty cards (DCCs) reporting their vitals
according to the treatment applied, and how to properly collect
data (2-hour live lectures). Details about the casualty evolution
method, general structure of the simulation and DCCs were
described in a series of previous papers [3,6,13,14]. The EMDM
students acted as doctors and nurses and were distributed as
follows: 8 physicians and 5 nurses staffed the ambulances
provided by local EMS agencies as prehospital response,
whereas 6 physicians and 11 nurses were in the field hospital
that had been previously deployed by the Italian Army. EMS
personnel and HCAs were played by local ambulance volunteers
(basic emergency medical technician level) and first aid–trained
soldiers, respectively. None of the participants had been
previously informed about the scenario.
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Expected Triage and Injury Severity Score
According to their predetermined storyboard, each victim had
an expected initial triage category according to the Simple
Triage and Rapid Treatment protocol [15]: 6 victims were Black,
15 were Red, 27 were Yellow, and 86 were Green. Responders
had to assign a triage score to each victim during the exercise,
both at the accident site (on-scene triage) and at the hospital
(hospital triage). In Section 2 of the Multimedia Appendix 1,
we report the final triage accuracy of the exercise.

Victims (Black group excluded) were also classified based on
their injuries using the Injury Severity Score (ISS) [16]. The
ISS is an established medical score to assess trauma severity
with a range from 1 to 75, grouped by 5 categories: Minor (1-3),
Moderate (4-8), Serious (9-15), Severe (16-24), and Critical
(25-75). In addition, the category Nontraumatic that indicates
victims without physical trauma (such as anxiety crises) was
added. In total, 21 victims were assigned to the Nontraumatic
group, 36 to Minor group, 47 to Moderate group, 9 to Serious
group, 4 to Severe group, and 11 to Critical group.

Data Collection
Data collection was performed as described below. Each
participant wore a wearable proximity sensor: the sensor was
inserted into a transparent envelope and fixed with adhesive
tape at the center of the chest (on the sternum area) to detect
person-to-person interactions. At the beginning of the

simulation, victims were both at the accident site and at the
hospital as regular in-hospital patients. During the exercise,
victims could take 1 of 3 possible pathways: (1) transferred
from the accident sites to the hospital by ambulances and
minibuses; (2) transferred to another virtual hospital; and (3)
discharged from the simulation. The exact times of the transfers
as well as the ending time of the simulation for each victim
were marked by external observers. In addition, proximity
sensors were placed on the ceiling of the rooms (tents) of the
hospital area (Figure 1; category Location) as fixed tags. Table
1 reports a summary of the total number of sensors for each
category in the Prehospital and Hospital area.

The sensor setup was designed by the SocioPatterns
collaboration consortium [17]. This system is based on wearable
proximity sensors (tags) that exchange ultra–low power radio
packets in a peer-to-peer fashion [9,18-20]. Sensors in close
proximity exchange with one another a maximum of about 1
power packet per second, and the exchange of low-power radio
packets is used as a proxy for the spatial proximity between
tags [9,18]. In particular, close proximity is measured by the
attenuation, defined as the difference between the received and
transmitted power. Each device has a unique identification
number that was used to link the information on the individual
carrying the device with his/her profile or, in the case of fixed
tags, with the location where the sensors are placed. More details
on the functioning of the tags and on the data collection pipeline
are given in Section 1 of the Multimedia Appendix 1.

Figure 1. A map of the field hospital.
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Table 1. Number of proximity sensors in the Prehospital and Hospital area by category.

TotalHospitalPrehospitalCategory

1468Medical Doctor

16115Nurse

13422112Victim

47—a47Emergency Medical Service

2727—Health Care Assistant

3030—Location

26896172Total

aNot applicable.

Contacts Among Participants
We analyzed the contacts among participants belonging to
categories Victim, MD, Nurse, and EMS for the Prehospital area
and the contacts between participants belonging to categories
Victim, MD, Nurse, and HCA for the Hospital area. We
considered the contacts between individuals across categories,
both in the Prehospital and Hospital area. We defined that a
contact occurs between 2 individuals during a time slice duration
of 20 seconds if the proximity devices worn by the participants
exchanged at least 1 radio packet during that interval and the
median attenuation of received packets exceeds an attenuation
threshold of 70 dBm. After a contact is established, it is
considered ongoing as long as the devices continue to exchange
at least 1 such packet for every subsequent 20-second interval
[18]. The system was set to detect proximity events between
devices situated within 1 to 1.5 m of one another. This setting
ensures that when individuals wear the devices on their chest,
exchange of radio packets between devices is only possible
when they are facing each other, as the human body acts as a
radio-frequency shield at the carrier frequency used for
communication. This system allows us to monitor the number
of contacts and their duration. Data were extracted and cleaned
separately for each sensor, and those collected before 7 pm and
after 10:30 pm were discarded to keep track of only meaningful
proximity events. Moreover, for each victim, we discarded the
data collected after the exact time of simulation end (death,
discharge, or end-of-simulation time). We analyzed the data
separately for the Prehospital and Hospital area. With regard to
the victims transferred from the accident site to Hospital during
the simulation, we considered the data collected before the exact
time of transfer belonging to Prehospital data and data collected
after this time belonging to Hospital data.

We generated aggregated networks of contacts between
participants on the full exercise duration, both in the Prehospital
and Hospital area, to study the close range interactions during
the exercise as well as to confront the results with those obtained
in different real-world settings. We call ki the degree of a node
i, ie, the number of distinct individuals with whom individual
i has been in contact, and wij, the weight of an edge between
nodes i and j, ie, the cumulative duration of the contact events
recorded between 2 individuals, i and j.

Then, we generated contact matrices based on the median
cumulative time spent in proximity between victims with

different triage and ISSs and the caregivers (medical doctors,
nurses, emergency medical services, and health care assistants).
Time spent in proximity with victims for each caregivers’
category was compared using the Kruskal-Wallis test. We
respectively considered the on-scene triage scores and the
hospital triage scores to build the Prehospital and Hospital
matrix (ie, the triage scores assigned by the medical doctors).

Presence of Victims in the Field Hospital
We estimated the presence of the patients in different rooms of
the field hospital by analyzing the power packets exchanged
between sensors worn by individuals belonging to the category
Victim and the fixed sensors belonging to category Location in
the Hospital area. To assess the location of a patient in a given
room at a given time, we set up 2 thresholds on the count of
power packets exchanged between the devices respectively to
evaluate the presence of the participant in the exercise and the
presence of the participant in a given room. For each time slot
of 5 min, we assumed that a participant is still present in the
exercise site if the total count of the power packets exchanged
between all the fixed tags and the participant’s tag is greater
than 15. We assumed that a participant is present in a given
room if the total number of power packets exchanged between
his/her tag and the fixed tag of the room considered is higher
than 5 for each time slot.

This allows describing the patients’ flow through the rooms of
the field hospital. The field hospital consisted of 27 rooms
organized as follows: 3 general wards, 2 laboratories, 5
passageways (hallways), 3 examination rooms, 1 pediatric ward,
1 waiting room, 1 obstetric ward, 1 operating theatre with 2
beds, 1 surgical preparation room, 1 orthopedic ward, 1
radiology waiting room, 1 radiology, 1 intensive care with 3
beds, 1 emergency department resuscitation (resus) area, 2
ambulance triage rooms (patients brought in by ambulance),
and 2 walk-in triage rooms. In this analysis, we grouped the
patients’ wards, the laboratories, the passageways, the
examination rooms, the ambulance triage rooms, and walk-in
triage rooms in the same space.

Presence Patterns of Victims in the Hospital
To study the link between the presence patterns of victims and
the conditions of the victims, we used the t-Stochastic Neighbor
Embedding (t-SNE) technique that converts a high-dimensional
data set into a matrix of pair-wise similarities and allows to
visualize the resulting similarity data [21]. In this study, we
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used, as an input dataset, a set of vectors where each vector
described the spatial features of each victim. More exactly, each
victim is initially represented as a vector where elements are
time spent by that patient in a given room of the field hospital
(normalized on total presence duration).

Results

Network Analysis and Contact Among Victims and
Rescuers
A total of 238 individuals participated in the exercise. They
were categorized as follows: 14 MD, 16 Nurses, 134 Victims,
47 EMS, and 27 HCA. The contacts within the same category
were not included in this analysis. Figure 2 shows the degree
and weight distribution in the Prehospital and Hospital area.
The aggregated contact network in the Prehospital area is formed
by 172 nodes and 2035 edges, and the average degree is k=23.66
(range 1-94), and in the Hospital area, the network is formed
by 124 nodes and 1335 edges, and the average degree is k=21.53
(range 1-58). The weight distribution is heterogeneous in both
areas, with heavy-tailed distributions: most contacts are short,
and there are few long-lasting contacts.

Contact matrices reveal different amounts of time spent in
proximity depending on the severity of the patient and the role
of the caregiver (Figures 3 and 4). At the scene of the accident,
there was a significant difference between the time spent in
proximity between EMS and victims both with regard to the

triage (X2
3=19.479; P<.001) and to the ISS (X2

5=36.106;

P<.001). The higher time in contact was with Green victims
and with victims classified as Moderate. Regarding the triage,
there were no significant differences between the time spent in
proximity with the victims for both MD and nurses. On the
contrary, regarding the ISS, there were significant differences

for MD (X2
5=13.576; P=.02) and nurses (X2

5=12.798; P=.02).
Both categories spent higher time in contact with victims
classified as Moderate and Critical. At the field hospital, there
was a significant difference between the time spent in proximity
between HCA and victims both with regard to the triage

(X2
3=31.271; P<.001) and to the ISS (X2

5=46.989; P<.001).
The higher time in contact was with Green victims and with
victims classified as Minor and Moderate. There were no
significant differences between the time spent in proximity
between MD and victims (with regard to the triage and ISS)
and nurses and victims (with regard to the triage). However,
there was a significant difference between the time spent in
proximity between nurses and victims with regard to the ISS

(X2
5=14.965; P=.01), nurses spent the higher time in contact

with victims classified as Moderate and Serious.

Figure 5 shows the cumulative time in contact (normalized on
total number of participants belonging to each caregiver
category) between caregivers and victims with different triage
at the Prehospital area (panel A) and Hospital area (panel B).
The rescuers who spent more cumulative time in contact with
victims were nurses at the scene of the accident and HCA at the
field hospital.
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Figure 2. Degree and weight distributions. Degree distribution P(k) of the aggregated contact networks, in the Prehospital area (panel A) and in the
Hospital area (panel C). Distribution of the weights of the aggregated contact networks in the Prehospital area (panel B) and in the Hospital area (panel
D).

Figure 3. Prehospital contact matrices. Median of cumulative time spent (in minutes) between patients with different triage score and rescuers (left
panel); Median of cumulative time spent (in minutes) between patients with different Injury Severity Scores (Nontraumatic, Minor, Moderate, Serious,
Severe, and Critical) and rescuers (right panel). 95% CIs are indicated in brackets. EMS: Emergency Medical Services; MD: Medical Doctors; NT:
nontraumatic; G: Green; Y: Yellow; R: Red; B: Black.
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Figure 4. Hospital contact matrices. Median of cumulative time spent (in minutes) between patients with different triage score and rescuers (left panel);
Median of cumulative time spent (in minutes) between patients with different Injury Severity Scores (Nontraumatic, Minor, Moderate, Serious, Severe,
and Critical) and rescuers (right panel). 95% CIs are indicated in brackets. HCA: Health Care Assistants; MD: Medical Doctors; NT: nontraumatic; G:
Green; Y: Yellow; R: Red.

Figure 5. Cumulative time in contact (normalized on the total number of participants belonging to each caregiver category) between caregivers and
victims with different triage at the Prehospital area (panel A) and Hospital area (panel B). EMS: Emergency Medical Services; HCA: Health Care
Assistants; MD: Medical Doctors.

Casualty Flows in the Hospital
We studied the flow of 80 patients: 22 victims were already in
the field hospital at the start of simulation as regular in-hospital
patients and 58 victims were transferred from the accident site
(the first transfer occurred at 8:15 pm). Figure 6, panel A, shows
the victims flow through the field hospital of 56 patients with
Green triage, 14 patients with Yellow, and 10 patients with Red
triage. Each bar represents a patient, the color of the bar’s
segments refers to the room of the field hospital, and the length
of the segments represents time passed by the victim in each

room. The presence of patients in the different rooms of the
hospital is consistent with triage code and diagnosis. Green
victims passed most of their time in the Ward, Examination
room, Walk-in triage room, and Waiting room. A total of 11
Yellow patients out of 14 spent time in the Ambulance triage,
6 Red victims out of 10 spent time in resus, and 3 Red victims
spent time in the Intensive care. Figure 6, panel B, shows the
number of victims in the Ward, Ambulance triage, Examination
room, Waiting room, and Walk-in triage room over the
simulation period. Each line corresponds to the presence of a
victim; the color corresponds to the triage code.
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Figure 6. Panel A: Victims flow through the field hospital. Each bar represents a patient (code is indicated on the right of the bar), the color of the
bar’s segments refers to the room of the field hospital, and the length of the segments represents time spent by the victim in each room. Numbers on
the right part of the figures are the identification number for each victim. Panel B: Number of victims in the Ward, Ambulance triage, Examination
room, Waiting room, and Walk-in triage over the simulation period. Each line corresponds to the presence of a victim; the color corresponds to the
triage code. Numbers on the right part of the figure indicate the number of people in the room.

By analyzing the flow, we aimed at detecting the potential
presence of bottlenecks in the field hospital. To do this, we
focused on the analysis of the presence of the victims in the
rooms in which they were not receiving any medical treatments.
We defined bottlenecks as situations where the time of victims
spent in the rooms where they did not receive any treatment is

increased compared with the average time normally observed
(for instance, when the number of victims in the hospital is low).
Such rooms in the present settings are as follows: Ambulance
triage, Examination room, Waiting room, and Walk-in triage
room. We compared the numbers of victims present at the same
time at the same room in relation with the waiting time in
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Ambulance triage, Examination room, Waiting room, and
Walk-in triage room; the Pearson correlation test was used. The
mean waiting time in the Ambulance triage was 40 min (SD 9),
in the Examination room was 40 min (SD 9), in the Waiting
room was 39 min (SD 10), and in the Walk-in triage room was
31 min (SD 23). There were no significant correlations between
the number of victims present in the same time at the same room
and the waiting time; this result indicated that as the time passed
in a room by a patient is not affected by the arrival of many
victims in the hospital, in other terms, there was no obvious
presence of bottlenecks.

We studied the presence patterns of individual victims in
hospital rooms. For each patient we built a feature vector
containing the time spent by that patient in each of the 15
hospital rooms normalized by total presence duration. The
resulting set of 15-dimensional vectors (one per patient) was
visualized using a dimensionality reduction technique known
as t-SNE that maps each 15-dimensional patient vector to a
2-dimensional feature space (X1 and X2 axes; Figure 7). Clusters

of patients with similar presence patterns are visible. We
observed that the bottom-right cluster contains the more serious
cases (yellow and red codes) and the top-right cluster contains
the less serious cases (green codes), with the exception for the
victim coded 172. The ideal triage code of the victim 172 was
Yellow, and this victim passed the entire time of the simulation
in the Examination room. On color coding by start location, the
bottom-left cluster contains the majority of victims that started
the simulation in the field hospital.

Moreover, we studied the presence times of individual victims
in 3 hospital rooms characterized by longer presence times of
the victims (Figure 8). We observed that the bottom-left group
of patients on the t-SNE plot are characterized by long presence
times in the Ward and they correspond to the victims that started
the simulation in the field hospital; the group of victims on the
top of the plot are characterized by long presence times in the
Examination room, and they correspond to the victims coded
green, and the patients that spent more time in the Ambulance
triage room are the more serious cases, coded yellow and red.

Figure 7. Presence patterns of individual victims in hospital rooms visualized using t-Distributed Stochastic Neighbor Embedding (t-SNE) to map
high-dimensional patient vectors to a 2-dimensional feature space (X1 and X2 axes). Each point corresponds to a patient. Victims with similar presence
vectors are mapped to neighboring points in the plane. Victims are color coded by triage code (left panel) and by the start location of the simulation
(red: accident site; blue: field hospital).

Figure 8. Presence patterns of individual victims in hospital rooms visualized using t-Distributed Stochastic Neighbor Embedding (t-SNE) to map
high-dimensional patient vectors to a 2-dimensional feature space X1 and X2 axes). Each point corresponds to a patient. Victims with similar presence
vectors are mapped to neighboring points in the plane. Points (patients) are color coded according to the time spent in minutes in the Ward (left panel),
Examination room (middle panel), and Ambulance triage room (right panel).
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Discussion

Principal Findings
With this study, we report the first quantitative assessment of
social contact patterns in live MCI simulation, based on
wearable proximity sensors. Our study showed the feasibility
of the use of wearable proximity sensors to measure contact
patterns during an MCI functional exercise. We obtained simple
charts and contact matrices which allow for direct visualization
of potentially missed opportunities for improvement of the MCI
response.

In this study, we used proximity sensors to evaluate the contacts
between individuals and the flow of the victims during an MCI
simulation. The system provides information about the
simulation which is coherent with the severity of the diagnosis
both from the point of view of the relations between caregivers
and victims as well as of the flow of victims. Our results showed
that there were no differences between the median time passed
by medical doctors and nurses with victims with different triage,
both in the Prehospital and Hospital area. At the scene of the
accident, this result is consistent with the chaotic environment
typical of a disaster, where the medical staff task allocation is
challenging and the medical interventions are equally distributed
between patients with different severity injuries. However,
significant differences between time in proximity by medical
doctors and nurses with victims with different ISSs were
observed at the Prehospital area. Both caregiver categories spent
more time in contact with patients with the most severe injuries
(classified as Critical) and, in particular, with patients classified
as Moderate in terms of the ISS. When presented and discussed
critically at the debriefing, it turned out that the majority of
Moderate victims suffered bone fractures, and owing to this,
the immobilization and stabilization procedures required a lot
of time before being mobilized and transferred to the field
hospital. At the Hospital area, nurses spent higher time in contact
with Moderate and Serious patients in terms of the ISS.

Although there are no significant differences between the time
passed by medical doctors and nurses with victims with different
triage, proximity sensors revealed that medical doctors and
nurses spent relevant time with patients with Red and Yellow
triage, both in the Prehospital and Hospital area. Minor wounded
(green codes) were predominantly managed by the EMS staff
on scene and HCA in the hospital, allowing medical doctors
and nurses to spend more time with the patients in most need.
The quantitative measurement of contact patterns provided the
opportunity to debate about it during the debriefing and
identifying further strategies and counter actions. In disaster
and MCI environments, coordination for task allocation is
challenging. The analysis of temporal features of contact links
between caregivers and casualties revealed proportional resource
utilization of different health care skills for different victim
severity triages and ISS codes.

Contact Data and Network Analysis
We obtained aggregated contact networks of the participants
involved in the simulation, and we calculated the mean degree
of the networks (ie, the mean number of connections between
participants) for the whole duration of the simulation. Our results

showed that the average degree was similar both for the
in-Hospital and Prehospital area. The mean number of
connections is lower for medical doctors and nurses than that
of the EMS and HCA personnel. In other words, the medical
staff interacted with a low number of patients by focusing
treatment on a limited number of cases (see Section 3 of
Multimedia Appendix 1). Moreover, the contact networks
showed a high heterogeneity of the cumulative time spent in
proximity (ie, weight of the edges) between participants, despite
the short duration of the simulation. Our results show a highly
heterogeneous distribution of contact durations characterized
by a heavy tail; this outcome confirms the presence of a
universal feature of contact patterns with most contacts of short
duration and few long-lasting contacts. A similar general
distribution of contact durations has been observed in other
settings, including schools [20], hospitals [9], and households
[22]. Moreover, the density of the networks (ie, fraction of all
possible edges that are present in the network) was calculated
to study the topology of networks built for each caregiver’s
categories and victims. The networks are sparse in both
scenarios, in particular for EMS and HCA. However, we found
that the density varied through the severity of injuries of the
victims for the medical doctors and nurses, which showed a
higher number of potential connections with victims with more
serious conditions (see Section 4 in the Multimedia Appendix
1).

The analysis of temporal evolution of the number of contacts
between participants revealed a high concentration of contacts
during the middle part of the simulation at the Prehospital area,
from 8 pm to 9:30 pm, even after the transfer of a part of the
victims to the field hospital. The peak at the end of simulation
is most likely due to an artefact: the meeting of participants
shortly before the collections of sensors. In the Hospital area,
the number of contacts was stationary until the transfer of
patients from the Prehospital to Hospital area, then the number
gradually increased as expected (see Section 5 in the Multimedia
Appendix 1).

Flow and Presence Patterns of Victims in the Hospital
The deployment of sensors inside the hospital allowed to study
the casualty flow. This analysis enabled to evaluate whether the
patients were correctly headed by the health care personnel,
consistently to the severity of the diagnosis and the expected
location for such a diagnosis, in other words if patients with
high acuity pathology were correctly occupying high acuity
areas of the hospital and vice-versa, if low acuity patients were
managed without wasting precious resources. Our results
showed that the presence of patients in the hospital rooms were
consistent with the triage code and diagnosis. Green victims
spent most of their time in the examination room, Walk-in triage
room, and Waiting room. A total of 6 Red victims out of 10
spent time in the Resus (ie, resuscitation area). A total of 3 Red
patients spent most of their time in Intensive care (ie, Intensive
Care Unit), and their diagnosis included head and chest trauma
and septic shock. A total of 11 Yellow patients with minor
injuries and stable trauma out of 14 spent time in the Ambulance
triage. We studied the potential presence of bottlenecks for the
rooms where victims were examined by medical staff, and they
were waiting to receive treatments (Ambulance triage,
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Examination room, Waiting room, and Walk-in triage room)
and evident presence of bottlenecks was not found. However,
in our study, the number of victims in the field hospital is
limited, and further evaluations of bottlenecks in simulations
with a greater number of victims are necessary.

Similar presence patterns of victims coded with the same triage
were observed in the rooms of the field hospital. In particular,
the more serious cases (yellow and red codes) spent more time
in the Ambulance triage room and the victims coded green spent
more time in the Examination room. Our results showed a
correspondence between the triage of the victims and the
treatment given to the patients from the point of view of the
permanence times in the rooms of the field hospital and the
interactions with the caregivers (see Section 6 in the Multimedia
Appendix 1). In other words, victims with comparable severity
injuries were managed in a similar way in the field hospital.
The red victim 172 was an exception in this trend: the ideal
triage code of the victim 172 was yellow. This result is
consistent with the high degree of overtriage of yellow casualties
as red occurred in this simulation. It is well known that
overtriage may cause fatigue of staff, depletion of resources,
and impairment of efficient flow of critically injured patients
through the system to definitive care [23]. The use of physical
space plays a key role in managing a sudden influx of injured
people or patients [24]. The evaluation of casualty flow and
hospital space usage during exercises is a necessary first step
in disaster preparedness and readiness by hospital authorities.

Limitations
It is important to highlight some limitations of this study. The
exercise was organized as realistically as possible. Despite this,
it is still a simulation, and the patients could portray only a
limited number of changes in the clinical condition. Another
potential issue concerns the possibility that participants changed
their behavior because they were wearing sensors and knew
they were participating in a scientific measure.

However, the methods presented in this paper can be useful to
detect contact patterns in the very specific context of MCIs,
thus allowing the implementation of tailored prevention
strategies accordingly.

The measurement approach we used here also has limitations.
Contacts were defined as face-to-face proximity, but no

information on the possible occurrence of a physical contact
between the 2 individuals is available [10], and consequently,
no information on the interactions of caregiver-casualty is
provided. Moreover, the short period of time of data collection
(3 hours) also limits the ability to draw conclusions on what
happens at longer time scales. However, through the use of the
proximity-sensing platform, long-time studies are allowed.

Conclusions
In conclusion, our study showed that using wearable sensors
based on proximity-sensor technology is feasible for obtaining
a precise measurement of the pattern of close contacts among
individuals during an MCI simulation. Although after-exercise
debriefing sessions, during which participants discuss
deficiencies warranting improvement, are routinely conducted,
there is no commonly used and validated method for evaluating
health performance during MCI exercises. Thus, our work
constitutes a first step toward a standardized approach to the
evaluation of an MCI exercise performance, as this monitoring
system provides detailed temporal and spatial information about
the medical staff and their interactions with the victims with
limited human intervention. It represents, to our knowledge,
the first example of unsupervised data collection of face-to-face
contacts during an MCI exercise by means of wearable
proximity sensors.

The unsupervised measurement of contact patterns with
proximity sensors provides a unique opportunity to monitor the
interactions between participants without the involvement of
direct observers, which could impair the exercise’s realism.
Moreover, the analysis of contact patterns may help to identify
specific interactions between health staff-patient to evaluate the
decisions taken and the performance as the task allocation. In
this study, the use of the sensors as fixed devices allowed to
analyze the casualty flow in the field hospital to assess the use
of physical space and resources allocation. The versatility of
the system makes it possible to repeat similar studies in different
environments, such as multiple vehicular accident settings or
training for terrorist attacks, including smaller settings, and to
compare results across contexts. Future studies could include
a comparison of contact patterns on different settings of mass
casualty simulations to improve the medical process, resource
utilization, and decision making.
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