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Abstract

Background: Virtually, all organisms on Earth have their own circadian rhythm, and humans are no exception. Circadian
rhythms are associated with various human states, especially mood disorders, and disturbance of the circadian rhythm is known
to be very closely related. Attempts have also been made to derive clinical implications associated with mood disorders using
the vast amounts of digital log that is acquired by digital technologies develop and using computational analysis techniques.

Objective: This study was conducted to evaluate the mood state or episode, activity, sleep, light exposure, and heart rate during
a period of about 2 years by acquiring various digital log data through wearable devices and smartphone apps as well as conventional
clinical assessments. We investigated a mood prediction algorithm developed with machine learning using passive data phenotypes
based on circadian rhythms.

Methods: We performed a prospective observational cohort study on 55 patients with mood disorders (major depressive disorder
[MDD] and bipolar disorder type 1 [BD I] and 2 [BD II]) for 2 years. A smartphone app for self-recording daily mood scores
and detecting light exposure (using the installed sensor) were provided. From daily worn activity trackers, digital log data of
activity, sleep, and heart rate were collected. Passive digital phenotypes were processed into 130 features based on circadian
rhythms, and a mood prediction algorithm was developed by random forest.

Results: The mood state prediction accuracies for the next 3 days in all patients, MDD patients, BD I patients, and BD II patients
were 65%, 65%, 64%, and 65% with 0.7, 0.69, 0.67, and 0.67 area under the curve (AUC) values, respectively. The accuracies
of all patients for no episode (NE), depressive episode (DE), manic episode (ME), and hypomanic episode (HME) were 85.3%,
87%, 94%, and 91.2% with 0.87, 0.87, 0.958, and 0.912 AUC values, respectively. The prediction accuracy in BD II patients
was distinctively balanced as high showing 82.6%, 74.4%, and 87.5% of accuracy (with generally good sensitivity and specificity)
with 0.919, 0.868, and 0.949 AUC values for NE, DE, and HME, respectively.

Conclusions: On the basis of the theoretical basis of chronobiology, this study proposed a good model for future research by
developing a mood prediction algorithm using machine learning by processing and reclassifying digital log data. In addition to
academic value, it is expected that this study will be of practical help to improve the prognosis of patients with mood disorders
by making it possible to apply actual clinical application owing to the rapid expansion of digital technology.
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Introduction

Background
Mood disorders, such as major depressive disorder (MDD) and
bipolar disorder (BD), are common, with recurrent mood
episodes and substantial chronicity. Patients with mood disorders
suffer from a high disease burden, disrupted functional levels,
and increased suicide risk [1,2]. It is crucial to use a coordinated
approach to enhance prognosis by proactively managing
symptoms and preventing recurrences. For successful prognosis
enhancement, a new therapeutic approach is needed to assess,
analyze, and manage the patient’s daily condition, in addition
to conventional pharmacotherapeutic and psychotherapeutic
approaches.

The circadian rhythm mechanism has been identified as an
important factor in the onset and aggravation of mood disorders
[3-5]. It has been reported that disturbances in circadian rhythms
could be a unique clinical manifestation of mood disorders, and
phase shift of circadian rhythms can serve as a marker for mood
disorders [6,7]. Digital technology and machine learning have
recently shown remarkable progress, bringing substantial
changes into the lives of individuals [8]. In medicine, the use
of digital phenotypes obtained with wearable technology or
mobile devices has been reported [8-10]. Within psychiatry,
research based on digital technology and machine learning has
recently been introduced. This new research methodology is
expected to overcome many limitations of existing psychiatric
research through the precise analysis of clinical information
obtained from various digital phenotypes. Digital phenotyping
allows us to more closely and continuously measure information
on a variety of biometrics, such as mood, activity, heart rate,
and sleep, in the patient’s daily life and to connect these with
clinical symptoms.

Objectives
Using chronobiological concepts of mood disorders, in this
prospective study, we collected long-term clinical mood logs
and passively collected data on activity, sleep, light exposure,
and heart rate in patients with mood disorders. Data were
collected continuously through wearable devices and mobile
technologies. We then analyzed the data to determine whether
mood states or episodes could be predicted using only the
automatically recorded data, without any knowledge on mood
information, by machine learning.

Methods

Recruitment and Study Design
From March 2015 to December 2017, 55 patients (27 females
and 28 males) diagnosed with a major mood disorder (MDD=18
subjects, BD I=18, and BD II=19) according to the Diagnostic
and Statistical Manual of Mental Disorders, Fifth Edition
(DSM-5), [11] were recruited from the Korea University Anam

Hospital as part of the Mood Disorder Cohort Research
Consortium (MDCRC) study (ClinicalTrials.gov:
NCT03088657). Each patient had different days of participation
period during the entire study period. The MDCRC study is a
multicenter prospective observational cohort study investigating
early-onset mood disorders in Korea, and its design and protocol
have been reported previously [12]. The average age (SD) of
the patients, age at first onset of mood disorder, and age at first
psychiatric treatment was 25.92 (SD 4.78), 17.87 (SD 4.80),
and 20.69 (SD 4.13) years, respectively (Multimedia Appendix
1). The study was approved by the Institutional Review Board
of Korea University Anam Hospital and conducted in
accordance with the Declaration of Helsinki. All participants
provided informed written consent before enrollment after
receiving a full explanation of the study.

Assessment
In addition to standard clinical assessments conducted at regular
intervals, including demographic and clinical data from
investigators and patients, we provided an eMoodchart
smartphone app developed on our own and a wearable activity
tracker (Fitbit Charge HR or 2, Fitbit Inc). The smartphone app
had an alert set for 9:00 o’clock every night, when patients
recorded a simple, intuitive assessment of their daily mood state
(−3 to +3) on the eMoodchart app. At every clinical assessment,
a clinician reviewed the eMoodchart and determined the mood
episodes that had occurred since the previous clinic visit. The
between-visit mood episode evaluation was based on the
eMoodchart and the patient interview according to DSM-5 [12].
For the comparison of basic features according to mood states,
daily mood scores (−3 to +3) were converted to the absolute
mood score (AMS; 0 to 3). When using the original recorded
mood score as it is for analysis, it was difficult to reflect all
kinds of mood states such as elated, depressed, or mixed, and
it could add complexity to the overall trends. For the overall
trend analysis, we decided to simply rearrange the mood to be
stable or unstable in 2 directions. In other words, the higher the
AMS, the mood can be regarded as worse and unstable (more
depressed or more manic), and the lower the AMS, the mood
can be regarded as more stable. For smartphones using the
Android operating system (40 patients), the app could also detect
light exposure, using a built-in sensor. The activity trackers,
worn continuously, collected passive data related to activity,
sleep, and heart rate, which were then obtained by the
researchers from the Fitbit cloud server. The practicality and
validity of using the Fitbit series for clinical research [13] and
clinical results have been reported elsewhere [14]. As the
smartphones are easily and frequently used in everyday life,
there have been previous studies using the built-in sensors in
smartphones [15-17].

Datasets
During data collection, missing data were occasionally
encountered for a variety of reasons (failure to complete the
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eMoodchart and removal of the activity tracker continuously
over 24 hours). During the data collection period, we could
originally collect 17,542 sample days from 55 patients, but the
total number of 2003 days remained after removing the days
with any single missing variable. In our analysis, we used only
the complete dataset of 2003 days. Our dataset for prediction
modeling has 130 variables (features) plus a class label of the
mood state. We excluded the entire row if the row had a column
with any missing value among the 131 columns. Among all the
missing value counts, 16.8% was about light-related features,
9.1% was about step-related features, 43.9% was about
sleep-related features, 29.6% was about heart rate–related
features, and 0.3% was about the mood score record; perhaps,
many people did not want to wear the Fitbit during sleep time.
Heart rate–related features need the past 48-hour sequential data
to be computed so that those features are not resistant against
some missing data.

It has been reported that mood state can be affected by the
disruption of circadian rhythms [6,7]; therefore, we focused on
identifying a set of features that would capture such disruptions.
To achieve this, we focused on basic features derived from the
4 main data collection categories: (1) light exposure, (2) steps,
(3) sleep, and (4) heart rate (Multimedia Appendix 2).

To calculate light exposure, we took the average value of light
exposure levels observed during 2 timeslots of interest: bedtime
and daytime. As the lengths of day and night change according
to the seasons, bedtime was defined as the period from 8 hours
before sunrise until sunrise the next day and daytime was defined
as the period from sunrise to sunset each day. It is not easy to
adequately reflect seasonal changes, but because light exposure
in the early morning is the most important time-giver (zeitgeber)
in the daily circadian rhythm, sunrise time is a key criterion for
defining daytime and bedtime. Therefore, according to the
seasonal changes, bedtime was set at a constant total sleep time
but variable at the time of sleep onset and wake up and daytime
was set at total times when a person could be exposed to
sunlight. To measure activity levels, we collected step data that
was calculated as total steps within the bedtime and daytime
timeslots. Sleep data such as sleep length and quality and sleep
onset and offset were also obtained from the Fitbit report. With
regard to heart rate, variations in heart rate follow a circadian
rhythm, with elevated rates during the daytime and lower rates
at night. A cosinor analysis (cosine curve fitting) was performed
on 48 consecutive hours of heart rate data, and 4 representative
parameters were generated: amplitude, acrophase (peak), mesor
(mean), and r-squared value (strength).

Finally, we extracted extended features from the 4 basic
categories, which integrated data across multiple days. In
constructing the prediction model, these features are used as
predictors for mood state or episode. To predict mood in the
near future, it can be helpful to look at snapshots of previous
days; perhaps, people could be affected by mood changes in
these preceding days. Therefore, we extended the daily snapshot
feature to simultaneously include the previous consecutive 3,
6, and 12 days. For example, if today’s date is d, then the mean
value of the past 3 days would be from d-2 to d. In this way,
the SD (stdev) and gradient coefficient (ie, a parameter gained
from linear regression, gradient) can be computed for the

extended features. The names of all features in the across-period
perspective had a suffix including one of the 4 element names.
The suffix terms also included the 3 elements describing the
statistical perspective for the given period: mean, stdev, and
gradient. Ultimately, we acquired 130 features (=13 basic
features for every day+[13 basic features×3 types of the past
periods×3 types of statistics for those periods]) for the data
collected each day.

Development and Verification of the Mood State and
Episode Prediction Algorithms
To train the mood prediction model, we used a supervised
learning algorithm, random forest [18], that operates by
constructing a multitude of decision trees at training time and
outputting a class that is the mode of the classes of the individual
trees. The random forest algorithm requires a training dataset
that consists of a feature vector set, X=x1, …, xn, with a
corresponding class set, Y=y1, …, yn, where n is the number of
training data samples (ie, n=2003 in our study). The feature
vector xi has the form f1, f2, …, fm, where m is 130 and fi has a
feature value of the circadian rhythm. The class variable yi has
one of 2 mood states: biased mood state or neutral mood state
for mood state prediction within the next 3 days and has one of
4 episodes: depressive episode (DE), manic episode (ME),
hypomanic episode (HME), or no episode (NE; same as
euthymic period) for mood episode prediction. The mood state
was defined as neutral mood state if the average AMS for the
following 3 days is within the bottom 50% (low AMS) of all
the observed AMS. Conversely, the mood state was defined as
biased mood state if the average AMS for the following 3 days
is within the top 50% (high AMS). The mood episode was
determined in the between-visit mood episode evaluation
conducted by the clinician [12]. Patients in the study experienced
57 DEs (major: 46, minor: 3, and brief: 8), 11 MEs, and 13
HMEs.

Performance of the trained prediction model was evaluated by
assessing the model’s accuracy, sensitivity, specificity, and the
area under the curve (AUC) [19]. In a machine learning
evaluation process, some portion of data is used for model
training and the other portion is used for the model test. Training
data should not include future measurements relative to the test
data. To take into account such a temporal nature of the data
and get a reliable evaluation statistic, we designed the model
evaluation process as follows: first, data were sorted over the
timeline. For an arbitrary time t on the timeline, a prediction
model was trained using data on days d[t-p, t] and tested using
data on days d[t+1, t+q], where p and q are the time period of
days for model training and for model test, respectively. It is
possible that the model performance can be changed depending
on a different size of p or q. Therefore, to find a proper setting,
we repeated and monitored experiments with changing p from
3 to 300 days and changing q from 3 to 30 days. Consequently,
P=18 and q=3 were found as the best combination in our
experiment setting (Multimedia Appendix 3), which implies
that a short period such as 3 days is the most reasonable and
effective setting in terms of predicting any distant future mood
in our experiment. Therefore, for the performance evaluation
of our proposed prediction model, we used the found parameter
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setting of p and q throughout the paper. Second, to get a reliable
evaluation result, we needed to repeat enough evaluation rounds
(ie, a round of model training and model test) so that we
repeatedly measured performance metrics by moving t from the
beginning to the end of the data over the timeline with the found
parameter setting. Thus, the reported figures of sensitivity,
specificity, accuracy, and AUC in the paper are average statistics
from the repeated evaluation rounds. Finally, for a comparison
between a general model and personalized model, a general
model was developed using other people of the whole data and
a personalized model was developed using only individual data.
For data processing and model evaluation, we used a Python
library tool, scikit-learn [20].

Results

Comparison of Main Basic Features According to
Mood State
To confirm the appropriateness of the variables processed from
a circadian rhythm perspective, we performed an exploratory
review of the basic features by comparing them according to
mood state. By sorting the collected data according to the AMS

(0~3), mood state categories were created according to the AMS
distribution and features belonging to them were compared.
High and low AMS (HAMS or LAMS, respectively) days were
grouped into the upper or lower 10%, 30%, and 50% thresholds
of the distribution Therefore, the sum of the upper 50% of
HAMS and the lower 50% of LAMS becomes the whole
distribution of the AMS for each day of data. As presented in
Figure 1, for each corresponding pair of threshold groups, we
compared basic digital phenotypic features.

Activity and light exposure during bedtime showed a higher
tendency in the HAMS groups than the LAMS groups.
Conversely, activity and light exposure during daytime showed
a higher tendency in LAMS (Figure 1). Interestingly, total sleep
time and sleep quality did not show meaningful differences
between the groups (Figure 1), although the regularity of sleep
onset and offset times were disrupted in the HAMS groups
(Figure 1), indicating that the regularity of the sleep-wake cycle
is closely related to mood state. When the heart rate circadian
rhythm was analyzed, it was found that the acrophase showed
a remarkable difference between the HAMS and LAMS groups
(Figure 1), suggesting that a misaligned or shifted heart rate
acrophase could be a useful feature for determining mood state.

Figure 1. Comparison of basic feature distributions between high and low absolute mood score (HAMS and LAMS) groups. HAMS and LAMS were
grouped into the upper or lower 10%, 30%, and 50% thresholds of the distribution. For each corresponding threshold group, we compared the main
basic features of activity, light exposure, sleep, and heart rate (HR) related to the circadian rhythm (CR). The number in the parentheses on the horizontal
axis means a cut-off threshold to distinguish HAMS and LAMS. (A) Steps_during_bedtime and (B) steps_during_daytime refer to activity levels of
subjects during bedtime or daytime in each threshold HAMS or LAMS group. (C) Light_exposure_during_bedtime and (D) light_exposure_during_daytime
refer to relative level of light exposure of subjects during bedtime or daytime. (E) Sleep_length and (F) sleep_efficiency refer to total sleep time (hours)
and sleep efficiency (%), and (G) sleep_onset_dev and (H) sleep_offset_dev refer to regularity of sleep onset and offset time. (I) HR_CR_amplitude,
(J) HR_CR_acrophase, and (K) HR_CR_mesor refer to the value of amplitude, acrophase, and mesor of cosine curve fitted HR, respectively. (L)
resting_heart rate refers to the lowest HR at resting state during each day in the samples.
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Performance Evaluation of the Mood State Prediction
Model (Neutral or Biased Mood State)
In model construction, we used 2-class labels for distinguishing
a mood state, which were determined by a 10%, 30%, and 50%
cut-off threshold (eg, 10% of the highest AMS is labeled as
biased mood state and the rest of the 90% AMS is labeled as
neutral mood state in the 10% cut-off case). We tested the model
performance in the 3 different conditions of thresholds. As seen
in Figure 2, we confirmed that the mood state prediction model
performed better than a random prediction model, as the AUC
values for the 3 patient groups, as well as for all groups
combined, were all higher than 0.5. In the case of mood state
labeling with a 50% cut-off (Figure 2), the prediction accuracy
for all patients and for patients with MDD, BD I, or BD II was
65%, 65%, 64%, and 65%, respectively. Sensitivity was 71%,
57%, 68%, and 85%, specificity was 57%, 68%, 58%, and 36%,
and AUC values were 0.7, 0.69, 0.67, and 0.67 for predicting
mood states in all patients and in MDD, BD I, and BD II
patients, respectively. Note that the ROC curves of Figure 2
presented in Multimedia Appendix 4 and additional information
about the variance of the model performance in each evaluation
round are reported in Multimedia Appendix 5. The number of
samples used in the model construction for each case is reported
in Multimedia Appendix 6.

To understand the quality of predictions using partially observed
covariates of features, we evaluated each performance of the
partial model construction with the whole patient data, supposing
that some missing features were removed. The AUC
performance of each partially constructed model was 0.684
without steps-related features, 0.687 without sleep-related

features, 0.683 without heart rate–related features, and 0.683
without light-related features (more details present in
Multimedia Appendix 8). In the impact analysis of missing
features, heart rate– and light-related features were of a highly
negative impact in terms of performance reduction.

To investigate the contribution of various features to the mood
state predictions, we sorted the importance of influential features
for prediction, depending on the patient group, as shown in
Figure 3. The higher value in importance, the more frequently
the feature is selected in a decision tree construction. To
compute the feature importance, we used a Python library,
scikit-learn [20], and referred to the code. In Figures 3 and 4,
the color coding means the direction of feature effect was
measured with Pearson correlation coefficients and the
color-magnitude means relative strength of the correlation. Red
color means a positive correlation with AMS (ie, the higher the
feature value, the mood state tends to be more unstable.).
Conversely, blue color means a negative correlation with AMS
(ie, the higher the feature value, the less unstable the mood.).
Gray color means the absolute coefficient values are less than
0.1, so it is hard to say any direction of the effect. Figures 3 and
4 have error variances of 1 SD with a solid black line at the end
of each bar.

In the whole subject group and BD I group, the average
circadian rhythm of heart rate (HR_CR_mesor) and deviation
of sleep onset time (sleep_onset_dev) were the top influential
features (Figure 3) and steps during bedtime were the most
influential in the MDD group (Figure 3). Heart rate amplitude
was the most influential in the BD II group (Figure 3).
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Figure 2. The performance evaluation of the mood state prediction model. The mood state prediction model outputs one of 2 mood states (ie, biased
mood state or neutral mood state) and whether the model outcomes that were correctly matched with the ground truth (ie, the known actual mood states)
was tested. The mood performance was evaluated in terms of the 4 performance evaluation metrics: sensitivity, specificity, accuracy, and area under
the curve with the 3 different ground truth labeling criterion: 10%, 30%, and 50% cut-offs in absolute mood score distribution. (A) The performance
evaluation result in the case of mood state labeling with 10% cut-off, (B) the performance evaluation result in the case of mood state labeling with 30%
cut-off, and (C) the performance evaluation result in the case of mood state labeling with 50% cut-off. MDD: major depressive disorder; BD I: bipolar
I disorder; BD II: bipolar II disorder; AUC: area under the curve.
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Figure 3. Representative influential features of the mood state prediction model. The mood state prediction model uses several categories of features
and different features have different contribution to prediction performance. Each of the feature categories was compared in terms of its importance
(contribution perspective). Each bar in the graph means relative importance of a feature category compared to the other bars. The black sold lines at the
end of each bar means one standard deviation error range, and the color coding of each bar means the direction of feature effect; therefore, sum of all
the bar lengths is one (100%). (A) The comparison analysis was conducted with data from all patients. (B) The analysis was conducted only with data
from major depressive disorder patients. (C) The analysis was conducted only with data from bipolar I disorder patients. (D) The analysis was conducted
only with data from bipolar II disorder patients. MDD: major depressive disorder; BD I: bipolar I disorder; BD II: bipolar II disorder; HR: heart rate;
CR: circadian rhythm.
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Figure 4. Representative influential features of the mood episode prediction model. The mood episode prediction model uses several categories of
features, and different features have different contributions to prediction performance. Each of the feature categories was compared in terms of its
importance (contribution perspective). Each bar in the graph means relative importance of a feature category compared with the other bars. The black
sold lines at the end of each bar means 1 SD error range, and the color coding of each bar means the direction of feature effect; therefore, the sum of
all the bar lengths is one (100%). (A) The comparison analysis was conducted with data from all patients with depressive episodes. (B) The analysis
was conducted only with data from patients with major depressive disorder with depressive episodes. (C) The analysis was conducted only with data
from patients with bipolar type I disorder with depressive episodes. (D) The analysis was conducted only with data from patients with bipolar type II
disorder with depressive episodes. (E) The analysis was conducted only with data from patients with bipolar type I disorder with manic episodes. (F)
The analysis was conducted only with data from patients with bipolar type II disorder with hypomanic episodes. MDD: major depressive disorder; BD
I: bipolar type I disorder; BD II: bipolar type II disorder; HR: heart rate; CR: circadian rhythm.

Performance Evaluation of the Mood Episode
Prediction Model
As seen in Table 1, the mood episode prediction model was
determined to perform better than a random prediction model
according to AUC values. Basically, AUC cannot be calculated
for multiclassification but for binary classification. Therefore,
we merged all the samples not in the target class but into the
remaining class for multiclasses of mood episodes. The average
accuracies in all patients and in those with MDD, BD I, and BD
II were 89.3%, 73.1%, 85.1%, and 78.5%, respectively. For all
patients, prediction accuracy for NE, DE, ME, and HME was
85.3%, 87%, 94%, and 91.2%, respectively. Sensitivity was
93%, 48%, 25.2%, and 30.6%, specificity was 59.9%, 95.6%,
99.6%, and 99.6%, and the AUC value was 0.87, 0.87, 0.958,
and 0.912 for predicting NE, DE, ME, and HME, respectively.

For patients with MDD, the prediction accuracy was 75.1% and
71.2%, sensitivity was 93.5% and 40.9%, specificity was 39.5%
and 87.8%, and the AUC value was 0.781 and 0.798 for NE
and DE, respectively. For patients with BD I, prediction
accuracy was 84%, 83.1%, and 88.3%, sensitivity was 95.4%,
24.6%, and 20.7%, specificity was 39.3%, 97%, and 99.2%,
and the AUC value was 0.84, 0.839, and 0.933 for NE, DE, and
ME, respectively. For patients with BD II, prediction accuracy
was 82.6%, 74.4%, and 87.5%, sensitivity was 84.5%, 64.1%,
and 66.9%, specificity was 76.2%, 72.2%, and 98.4%, and the
AUC value was 0.919, 0.868, and 0.949 for NE, DE, and HME,
respectively. The number of samples used in the model
construction for each case is reported in Multimedia Appendix
6. Figure 4 provides information on the important influential
features in prediction performance capability in the diagnostic
groups.
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Table 1. The performance evaluation of the mood episode prediction model.

Bipolar type II disorderBipolar type I disorderMajor depressive disorderAll patientsEpisodes and measures

No episodes (euthymic period)

66.98592.582Samples, %

0.8450.9540.9650.93Sensitivity

0.7620.3930.3950.599Specificity

0.8260.840.7510.853Accuracy

0.9190.840.7810.87AUCa

Depressive episodes

18.211.87.412.3Samples, %

0.6410.2460.4090.48Sensitivity

0.7220.970.8780.956Specificity

0.7440.8310.7120.87Accuracy

0.8680.8390.7980.87AUC

Manic episodes

—3—b1.1Samples, %

—0.207—0.252Sensitivity

—0.992—0.996Specificity

—0.883—0.94Accuracy

—0.933—0.958AUC

Hypomanic episodes

14.8——4.4Samples, %

0.669——0.306Sensitivity

0.984——0.996Specificity

0.875——0.912Accuracy

0.949——0.912AUC

0.7850.8510.7310.893Average accuracy

aAUC: area under the curve.
bNot applicable.

General Model Versus Personalized Model
When constructing a machine learning model, the model is
supposed to feed as much data as possible for the purpose of
general knowledge learning. If a prediction model is learned by
much data of the other people, it is called a general model in
this paper. Conversely, if a prediction model is learned by
personal data, it is called a personalized model. A general model
can have comprehensive knowledge, but it is not specialized to
an individual. A personalized model has specific knowledge
especially for an individual. It is specialized to one so it is not
applicable to the other one. It is a possible idea that a
personalized model can improve the prediction accuracy of
personal mood change. Therefore, as mood and related features
showed various manifestations for each subject, we compared
the performance of the personalized and general models in terms
of accuracy for 4 prediction scenarios: (1) mood state for the
next 3 days (future mood state), (2) DE, (3) ME, and (4) HME
(Multimedia Appendix 7). For the future mood state, the

personalized model outperformed the general model in 100%
of the comparisons. The average degree to which the
personalized model outperformed was 23.8%, meaning that all
the cases of the personalized model predictions were 23.8%
more accurate, on average, than those of the general model. In
the scenario cases of episode prediction, the personalized models
almost perfectly outperformed the general model as well.

Discussion

Principal Findings
In an exploratory review, we found several basic features from
the passively collected data that showed a clear difference
between the HAMS and LAMS groups. Light exposure is
important because light is a central modulator of sleep, mood,
and circadian rhythms [21]. Activity at appropriate times of the
day and appropriate amounts could be one kind of social
zeitgeber (time-giver) for the maintenance of circadian rhythms
and mood [22]. Activity and light exposure, which are basic
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and important in terms of human circadian rhythms, consistently
show clear and distinct differences according to the mood state.
This suggests that it would be useful for patients with mood
disorders to manage their activity levels and exposure to light
to coordinate with their circadian rhythm to maintain a stable
mood state. It is clinically significant that irregularities in the
sleep-wake cycle are common in abnormal mood states [23].
The group differences in the heart rate acrophase identified in
this study can be considered in the same context. Confirming
the findings in Figure 1, we demonstrated that basic features
related to circadian rhythms can meaningfully reflect the mood
state.

The overall prediction accuracy for the mood state was relatively
good. Interestingly, the sensitivity in BD II was markedly higher
and the specificity lower than in other groups. This result may
reflect characteristic features of BD II such as a close
relationship to circadian rhythm disturbances as well as very
common and sensitive mood changes in BD II. In the mood
episode prediction model, overall prediction accuracy was quite
good across all patient groups. The sensitivity to predict a DE
was low across all groups except BD II (ie, all patients, MDD
patients, and BD I patients). This may be because a DE is likely
to be influenced by diverse factors including disturbance of
circadian rhythms, socioeconomic stress, and interpersonal
problems [6,24]. The prediction performance was markedly
better in the BD II group for all episodes. In other words, the
HME and DE in patients with BD II showed clearly
distinguishable features compared with the euthymic period.
BD II has been proposed as a distinctive major mood disorder
from BD I or MDD, in terms of brain abnormalities, a number
of previous mood episodes, seasonal aggravations, the circadian
rhythm, depressive admixtures, and comorbidity [6,25-28]. The
results of this study also show that BD II exhibits more
discriminating characteristics than other major mood disorders.
In particular, the superiority of the mood prediction algorithm
based on the circadian rhythm suggests indirectly that BD II is
likely to be affected by the disturbance of the circadian rhythm
compared with mood episodes of other mood disorders. On the
contrary, it is also possible that better predictions for BD II
might be an artifact of the relatively well-balanced dataset for
BP II and the fact that standard splits in random forests are not
well-suited for the imbalanced classification. We will need
further research for this possibility in the future.

Circadian disturbances have been reported in MDD including
diurnal mood variation [29], core body temperature abnormality
[30], changes in secretion of melatonin and cortisol [31],
circadian rhythm alteration induced by antidepressants [32],
and sleep-wake cycle disruption [31,33]. BD has even more
robust results reported than MDD in relation to circadian
rhythms, from an association with circadian gene variants [34],
through sleep and circadian phenotypes [4,6,7], to the
therapeutic approaches focusing on circadian rhythms and sleep
[35]. Previous researchers have reported that seasonal variations
in mood, behavior, and diurnal preference, and irregular bed-rise
times, are closely related to BD, suggesting the importance of
circadian rhythms in BD [36]. In particular, studies showed a
closer association with seasonality in BD II than in BD I [37]
and a greater chronotherapeutic effect in BD II [38].

Although the diagnosis of a mood disorder may be the same,
clinical features vary from person to person. Automatically and
passively recorded data from a diverse range of routine lives
can directly or indirectly provide rich information reflecting
each person’s psychiatric characteristics. Clinical symptoms
are assessed primarily through interviews or psychiatric scales,
which are dependent on reports from the patient or caregiver
and are prone to recall errors and subjective bias. Continuously
collected digital log data can provide a personalized upgrade to
traditional clinical information. The mood prediction algorithm
from this study provides a timely opportunity for the practical
application of these data to treatment, especially for preventing
acute mood episodes and managing daily mood states. The rapid
development of information and communication technology
(ICT) will present new therapeutic paradigm shifts for both
clinicians and patients and help to fill the care gap in existing
conventional treatments.

Mood follows a flow, so if patients record their own mood state
every day, it can be a powerful predictor of future mood.
However, recording daily mood requires ongoing attention and
effort. As adherence is a key issue in mood disorder treatment,
compliance would be improved if a patient’s condition could
be managed and analyzed without any special effort or action.
Using a smartphone and wearable device is a simple and
convenient way to collect data to predict the mood state or
pathological mood episodes.

Many studies have been conducted so far to predict mood or
stress with data collection from smartphones such as the number
of phone calls and text messages communicating with other
people [16], entropy of subject’s location changes based on the
global positioning system (GPS) [39], behavioral movement
detection from accelerometer sensors [17,40], ambient light and
noise sounds [17], and the paralinguistic feature of speech from
smartphones [40]. LiKamWa et al used smartphone sensors to
predict mood change in their study for 32 subjects and 2 months
[16]. They analyzed the number and length of calls, short
message service (SMS) text messages, and email
communications; the usage number and pattern of apps; history
of Web browser connections; and change of location
information, reporting a prediction accuracy with 66%. After
using the personalized prediction model, they could improve
the accuracy up to 93%. Ma et al analyzed location information,
user action and movement detection, ambient light and sounds,
predicting the mood state with 50% accuracy in their study with
15 subjects and for 30 days [17]. One of the well-known projects
for mood prediction study using smartphone-based sensors is
the MONARCA project [41]. In the project, 12 actual BD were
studied for 12 weeks. The mood prediction accuracy was
achieved at 72% to 81% by using an accelerometer sensor and
GPS-based location information. The prediction accuracy could
be improved some more by including features of phone speech
analysis. Gravenhorst et al also found from an extra study that
higher use of social and entertainment apps was associated with
lower stress and irritability [41]. Palmius et al could distinguish
the mood depressive state from the nondepressive state with
85% accuracy by using features of GPS information including
the entropy and circadian rhythm [42]. Carr et al studied if
variability in phase and amplitude of the diurnal rhythm is
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related to variation of mood in bipolar and borderline personality
disorder [43]. They investigated mood and diurnal variation for
4 days in 20 outpatients with BD, 14 with borderline personality
disorder, and 20 healthy controls using a smartphone app,
portable electrocardiogram, and actigraphy, reporting that for
borderline personality disorder, there was a pattern of positive
correlations between mood variability and variation in activity,
sleep, and heart rate.

The previous studies were rather based on smartphone built-in
sensors than on wearable devices. Smartphone sensors would
be useful, but they have some limitations. First, smartphone is
portable but not wearable. Therefore, even though smartphone
is very easily applicable, it is not directly attached to the body
so it is hard to collect data continuously without missing points
over the timeline. Second, a privacy issue is serious. Many
studies are depending on collecting data such as phone calls,
SMS text messages, and GPS information, which are very
sensitive and hard to be collected for a long time. However, a
psychiatric study of mood prediction usually should need a
long-time follow-up. The existing related studies have reported
quite promising results in terms of mood prediction. However,
they are mostly not analyzing actual BD patients but studying
students or ordinary people without a mental disorder under the
laboratory experiment setting or under an artificially
instrumented environment. The number of analyzed people is
limited to a small size and the length of study is not more than
an annual period.

In contrast, our study was based on big data collection and
analysis for about 2 years from 55 actual major mood disorder
patients, which is reliably measured by a wearable device (a
popular commercial product). To our knowledge, the proposed
rhythm features (Multimedia Appendix 2) are unique and have
never been tried before in model construction of the existing
mood prediction studies. The accuracy of the proposed model
performance is also reasonable compared with the existing
related studies.

This study has several clinical strengths. First, we prospectively
collected a vast amount of data for about 2 years from study
subjects with mood disorders, accumulating 52,884 days of
samples. Second, automatically passively recorded digital data
from patients were collected using ICT, and the collected data
were categorized, processed, and analyzed according to our
hypotheses, regarding the influence of circadian rhythms, to
obtain 130 daily features. As a result, from 260,390 to 6,874,920
total features (in the case of a complete dataset=2003 sample
days×130 features and an incomplete dataset=52,884 sample
days×30 features) were available for machine learning training
and played an important role in improving predictability. Third,
clinically significant prediction performance for a mood state
or pathological mood episode was demonstrated using

automatically recorded passive digital log data, in the absence
of clinically derived mood information. Finally, the personalized
prediction algorithm showed the potential to apply precision
medicine principles to psychiatry.

Limitations
This study has some limitations. First, more intrinsic and
preemptive genetic and biological assessments related to
circadian rhythms were not included, as this would have required
a more complex study design and analysis methods. We are
planning to include these in future research. Second, the
prediction capabilities were not high in some cases. However,
the purpose of this study was not to diagnose mood disorders
but to predict the mood state or episodes in patients with a
diagnosed mood disorder, to improve the prognosis of patients
with mood disorders by self-monitoring and self-care of moods
and circadian rhythms in daily life through the mood prediction
system developed in this study. Third, when analyzing the mood
state, HAMS and LAMS were applied separately according to
the absolute score of mood. This might not be an accurate
reflection of the mood state, as we did not apply the high and
low mood scores correctly. However, it was not easy to verify
the accuracy of daily mood scores unlike the mood episodes,
because the subjective mood score recorded by an individual
may vary according to individual characteristics and tendencies.
Finally, we reported the model performance results for
individuals from our collected dataset only. Therefore, it is not
sure how well the results will generalize to a new population.
One way of addressing this properly would be by using
cross-validation for different unseen patients. Some individuals
would be selected for testing and others for training. The model
would be trained using the training individuals and evaluated
using the test individuals, and the procedure would be repeated
for multiple splits as in the usual cross-validation. Thus, it is
necessary for an additional future study to test and secure more
external validity.

Conclusions
To our knowledge, this is the first study to develop a prediction
system using only passive digital phenotypes from patients with
mood disorders for a prolonged period of time. We have
developed and verified mood state and pathological mood
episode prediction algorithms using only automatically recorded
passive data. On the basis of the results of this study, mood
prediction algorithms can be applied therapeutically to improve
clinical outcomes and the prognosis of patients with mood
disorders. This study is just the first step toward future digital
and precision medicine in the psychiatric field [44]. In future,
a revolutionary change in psychiatric treatment will occur
through the establishment of an integrated platform with genetic
information and biological therapy.
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