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Abstract

Background: Clinical sequencing data should be shared in order to achieve the sufficient scale and diversity required to provide
strong evidence for improving patient care. A distributed research network allows researchers to share this evidence rather than
the patient-level data across centers, thereby avoiding privacy issues. The Observational Medical Outcomes Partnership (OMOP)
common data model (CDM) used in distributed research networks has low coverage of sequencing data and does not reflect the
latest trends of precision medicine.

Objective: The aim of this study was to develop and evaluate the feasibility of a genomic CDM (G-CDM), as an extension of
the OMOP-CDM, for application of genomic data in clinical practice.

Methods: Existing genomic data models and sequencing reports were reviewed to extend the OMOP-CDM to cover genomic
data. The Human Genome Organisation Gene Nomenclature Committee and Human Genome Variation Society nomenclature
were adopted to standardize the terminology in the model. Sequencing data of 114 and 1060 patients with lung cancer were
obtained from the Ajou University School of Medicine database of Ajou University Hospital and The Cancer Genome Atlas,
respectively, which were transformed to a format appropriate for the G-CDM. The data were compared with respect to gene
name, variant type, and actionable mutations.

Results: The G-CDM was extended into four tables linked to tables of the OMOP-CDM. Upon comparison with The Cancer
Genome Atlas data, a clinically actionable mutation, p.Leu858Arg, in the EGFR gene was 6.64 times more frequent in the Ajou
University School of Medicine database, while the p.Gly12Xaa mutation in the KRAS gene was 2.02 times more frequent in The
Cancer Genome Atlas dataset. The data-exploring tool GeneProfiler was further developed to conduct descriptive analyses
automatically using the G-CDM, which provides the proportions of genes, variant types, and actionable mutations. GeneProfiler
also allows for querying the specific gene name and Human Genome Variation Society nomenclature to calculate the proportion
of patients with a given mutation.
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Conclusions: We developed the G-CDM for effective integration of genomic data with standardized clinical data, allowing for
data sharing across institutes. The feasibility of the G-CDM was validated by assessing the differences in data characteristics
between two different genomic databases through the proposed data-exploring tool GeneProfiler. The G-CDM may facilitate
analyses of interoperating clinical and genomic datasets across multiple institutions, minimizing privacy issues and enabling
researchers to better understand the characteristics of patients and promote personalized medicine in clinical practice.

(J Med Internet Res 2019;21(3):e13249) doi: 10.2196/13249
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Introduction

Background
Recognition of the importance of clinical next-generation
sequencing (NGS) in precision medicine has had a profound
impact on improving medical care [1-3]. Patients’ sequencing
data are currently generated through relatively large-scale
projects aimed at exploring the role of clinical NGS in precision
medicine conducted by organizations such as the American
Association for Cancer Research Project GENIE [4] and the
China Precision Medicine Initiative [5]. However, genomic data
are considered to be privacy sensitive and potentially
reidentifiable, which raises concerns about transmitting and
sharing patient-level data outside of host institutions for
collaborative research [6]. In addition, genomic sequencing data
of subjects in a predefined cohort cannot reflect the full diversity
of the entire population at the point of care, which limits the
practical application of the data for research purposes [7].

There has been a recent widespread effort to collect genomic
information on patients in clinical practice through routine
laboratory tests by the UK Biobank [8] and Geisinger Health
System [9]. Since March 2017, the South Korea government
has provided conditional insurance for an NGS technology-based
cancer gene panel [10], which is expected to lead to rapid
accumulation of clinical sequencing data in each hospital.
However, the vocabulary and structure of these datasets are not
standardized, which makes it difficult to conduct appropriate
multicenter or comparative analyses for clinical decision making
[11]. This lack of standardization can be overcome by using the
common data model (CDM), which applies the same data
structure to run an identical analysis code for each data holder
[12]. For example, the Informatics for Integrating Biology and
the Bedside is a clinical data warehouse platform comprising
genetic data that adopts the CDM to support the distributed
research network [13,14], an infrastructure for novel
internet-based strategies that allows researchers to use
retrospective multicenter data in a CDM (in contrast to
single-center or cloud-based research) without exporting the
protected personal health information. Researchers can combine
the results of an analysis code run over the network to generate
a refined clinical hypothesis [12,15]. To date, the distributed
research network has been adopted by global research
collaboration groups, including the Observational Health Data
Sciences and Informatics (OHDSI) consortium [16]. The
Observational Medical Outcomes Partnership (OMOP) CDM,
now in version 6.0, was developed by the OHDSI consortium

and includes clinical data from over 20 countries, with
information of 1.5 billion patients transformed to date.

Prior Work
Due to the nature and extraordinary complexity of sequencing
data, it is challenging to effectively describe and interpret the
status of sequence alterations [17]. Furthermore, sequencing
data were applied in the clinical domain of NGS relatively later
than other types of genomic tests; hence, the analytical process
has not been standardized [18]. To improve the efficiency of
data processing, sequencing data should be managed using
standardized structures and semantics. Although several standard
models for genomic data have been introduced to date, they
have limited applicability. For example, the standard for
non-NGS–specific data models, including the minimum
information about a microarray experiment [19] for DNA
microarray analysis, the tissue microarray object model [20]
for tissue microarray analysis, and the proteomics experiment
data repository [21] for proteomics, cannot be properly adopted
for sequencing data. Although the minimum information about
a high-throughput nucleotide sequencing experiment was
developed as a data model specific for sequencing data, it
requires experimental processing data and detailed analytical
protocols to enable researchers to reproduce the analysis [22].

Aim
Given the limitations outlined above, the objective of this study
was to create a genomic data CDM (G-CDM) for use in the
distributed research network. To address patient privacy issues
and support the diversity of genomic data such as ethnicity, the
OMOP-CDM used in the OHDSI consortium was chosen for
this study for expansion. Furthermore, we validated the
feasibility of the model by exploring the difference in genomic
data retrieved from public databases and clinical practice.

Methods

Construction of the Genomic Data Common Data
Model
The proposed G-CDM was developed by extending the
OMOP-CDM to achieve the seamless management of clinical
sequencing data through a structured database model. Clinical
information such as basic patient background (eg, sex and age),
clinical diagnosis, procedures, or specimen type was stored in
existing tables of the OMOP-CDM. We further reviewed other
genomic data models and clinical sequencing reports to design
additional tables for describing and interpreting sequence
alterations occurring in target genes. There are various types
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(>50) of public cancer databases describing variants, including
comprehensive cancer projects, resources, and cancer
type-specific databases [23]. According to our inclusion and
exclusion criteria (Multimedia Appendix 1), we selected datasets
from The Cancer Genome Atlas (TCGA), Catalogue of Somatic
Mutations in Cancer, and International Cancer Genome
Consortium for review and reference, to define the method of
sequence alteration description. The data quality of these
representative databases has been validated through many
studies and papers. The database TCGA provides large-scale
datasets of genomic alterations, including insertions/deletions
(INDELs) or single nucleotide polymorphisms (SNPs),
discovered in over 30 human tumor types to generate
comprehensive profiles of cancer genomics [24]. The database
Catalogue of Somatic Mutations in Cancer provides somatic
mutations across 1,391,372 tumor samples encompassing
5,977,977 coding mutations as of August 2018 [25], while the
database International Cancer Genome Consortium provides
the datasets of oncogenic mutations of 50 different cancer types
to support large-scale studies [26,27]. We excluded the databases
built based on non-NGS techniques or cancer type–specific
databases from referencing. The ISO20428 document, which
is a standard format for reporting sequencing results, was
reviewed to design columns for variant annotation (Multimedia
Appendix 2). To guarantee interoperability of the data, standard
terminologies were adopted in the G-CDM [28,29]. The name
of a human gene, a key factor in sequencing data, was fixed
according to the nomenclature of the Human Genome
Organisation Gene Nomenclature Committee, which currently
contains and maintains approximately 41,000 unique gene

symbols. In addition, the Human Genome Variation Society
nomenclature was adopted to standardize the manner of
describing sequence alterations in each gene at both the DNA
and protein level. Although either one- or three-letter
abbreviations are permitted in the Human Genome Variation
Society nomenclature, we propose expressing the amino acid
by its three-letter code only to permit seamless data analysis
for widespread research (Multimedia Appendix 2).

Data Structure of the Genomic Data Common Data
Model
To link clinical data in the OMOP-CDM, the following
information on each patient with NGS data was stored in a
separate corresponding table: Person, Condition_Occurrence
(diagnosis), Procedure_Occurrence, Specimen, and Care_Site
(Figure 1). The Person table included personal patient
information such as individual identification, sex, age, and race.
The Condition_Occurrence table contained information on the
patient’s condition or diagnosis, including the disease such as
“lung cancer” or condition type such as “primary condition.”
The Procedure_Occurrence table included information on how
the specimen used for NGS was obtained and the name of the
genomic test conducted for a patient. The Specimen table
included information on the specimen used for the genomic test,
such as “target” (tumor tissue) and “reference” (normal tissue),
along with specimen type, including paraffin-embedded slide,
the date the specimen was obtained, and the anatomical site of
the specimen. The Care_Site table included information on the
site at which the genomic test was conducted.

Figure 1. Schematic diagram of the relationship between tables composing the genomic common data model. Tables in red (“Genomic_Test,”
“Target_Gene,” “Variant_Occurrence,” and “Variant_Annotation”) are those storing genomic sequencing data and processes, whereas tables in blue
(“Person,” “Condition_Occurrence,” “Procedure_Occurrence,” “Specimen,” and “Care_Site”) are those already existing in the Observational Medical
Outcomes Partnership-common data model and store clinical data directly linked to the “Variant_Occurrence” and “Genomic_Test” tables. ID:
identification; HGVS: Human Genome Variation Society; HGNC: Human Genome Organisation Gene Nomenclature Committee.
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In addition to these five tables, we expanded the model to be
linked to four other tables containing information related to the
sequencing data: (1) the Genomic_Test table included the test
name, version, sequencing device, analytical tools, and reference
databases, with a care site identification column; (2) the
Target_Gene table contained a list of genes targeted by the
genomic test following Human Genome Organisation Gene
Nomenclature Committee nomenclature for standardized gene
symbols; (3) the Variant_Occurrence table included descriptive
information about the variants of target genes; and (4) the
Variant_Annotation table included information on each variant
and the clinical interpretation thereof, such as annotation
database name, variant origin such as somatic or germline,
pathogenicity of the variant, allele frequency, and medication.

Procedure identification for conducting sequencing, specimen
identification of both the target and reference specimens, and
target gene identification were included as foreign keys to link
the information in the Procedure, Specimen, and Target_Gene
tables. Data on reference sequence, reference SNP identification,
Human Genome Variation Society nomenclature at both the
DNA and protein levels, read depth, exon number, and variant
type of both structural DNA and functional proteins were stored
as variant description parameters. Detailed schemes and
descriptions of each column and table used in the genomic

extension model are provided in Multimedia Appendices 3 and
4.

Data Description
The Ajou University School of Medicine (AUSOM) database
consists of electronic medical record data of patients who
underwent NGS-based cancer panel screening of the tumor
tissue between June 2017 and August 2018 at Ajou University
Hospital, including 92 patients with lung adenocarcinoma and
22 patients with lung squamous cell carcinoma. Public sequence
alteration data of the lung cancer cohort Pan-Lung Cancer study
of TCGA [30] were obtained from the Memorial Sloan-Kettering
Cancer Center cBioPortal [31].

The overall processes of NGS conducted at Ajou University
Hospital and the TCGA database are detailed in Multimedia
Appendix 5. Two representative differences between the
sequencing pipelines of the two databases are the number of
genes and the composition of variant types targeted in the test.
For example, in the cancer panel of AUSOM, 49 cancer-related
genes were targeted for sequencing, while the TCGA data were
harvested using whole-exome sequencing with 16,896 genes.
Thus, for development and testing of the proposed G-CDM, we
selected 1060 patients from TCGA with available variant data
of the 49 target genes selected in the AUSOM panel (Table 1).

Table 1. Description of data used to build the genomic common data model and to validate the data model.

TCGAb (N=1060), n (%)AUSOMa (N=114), n (%)Variable

Age (years)

44 (4.2)7 (6.1)≤49

163 (15.4)26 (22.8)50-59

310 (29.2)41 (36.0)60-69

317 (29.9)35 (30.7)70-79

56 (5.2)5 (4.4)≥80

170 (16.0)0 (0.0)Unknown

Gender

628 (59.0)64 (56.1)Male

429 (41.0)50 (43.9)Female

3 (0.2)0 (0.0)Unknown

Pathology

603 (56.9)92 (80.7)Lung adenocarcinoma

457 (43.1)22 (19.3)Lung squamous carcinoma

Cancer stage

526 (49.6)78 (68.4)Stage I

286 (27.0)16 (14.0)Stage II

184 (17.4)18 (15.8)Stage III

36 (3.4)0 (0.0)Stage IV

28 (2.6)2 (1.8)Unknown

aAUSOM: Ajou University School of Medicine.
bTCGA: The Cancer Genome Atlas.
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The variant types, including SNPs, INDELs, multinucleotide
polymorphisms (MNPs), copy number variants (CNVs), and
translocations, were explored in the AUSOM database, whereas
only SNPs and INDELs were identified in the TCGA database.
Information on clinical characteristics such as age, sex, and
disease status and genomic alterations such as variant type,
DNA and protein level changes, and functional impact were
used to compare the AUSOM and TCGA databases.

Study Design
Sequencing data of the TCGA database, which was licensed by
Yonsei University for use, and of the AUSOM database were
transformed into the G-CDM at Yonsei University and Ajou
University, respectively. To execute the transformation process,
the Structured Query Language (SQL) script in Microsoft SQL
Server 2017 was used as the relational database backend for
storage and querying the sequencing data. The G-CDM database
was built using the Intel Xeon CPU E5-2596 v4 2.20 GHz, Java
v.1.8.0, R v.3.5.1, and DBMS SQL Server 2017 at Ajou
University, while the Intel Xeon Gold 6132 CPU 2.60 GHz,
Java v.1.8.0, R v.3.4.4, and DBMS SQL Server 2017 were used
at Yonsei University.

After extracting parameters of interest for a cohort of patients
by using a Condition_Occurrence table, the genetic information
of the patients was summarized in each of the two institutions.
Owing to the restrictions on exporting the original clinical
sequencing data in the AUSOM database outside the hospital,
the two institutions gathered and compared only the descriptive
statistical analysis results to compare the two sequencing
databases in further research.

The data visualization tool “GeneProfiler” was developed to
run based on the G-CDM as a demonstration that the
standardized structure and vocabulary system can serve as a
usable medium for performing distributed research by allowing
genomic analysis with an identical code. To validate the
feasibility of the G-CDM as a storage system and analysis
medium, the differences in sequencing data between the
AUSOM and TCGA databases were explored. The background
profile of variants was described based on several aspects such
as gene names, variant types, and disease subtypes.
Representative actionable mutations for patients with non-small
cell lung cancer (NSCLC) tend to occur in the EGFR, KRAS,

PIK3CA, BRAF, and NRAS genes according to National
Comprehensive Cancer Network guidelines [32,33]. Therefore,
the proportions of actionable mutations in these five genes were
compared between the two databases and between the subtypes
of lung cancer.

Data Visualization Tool
We developed a new data visualizing tool called “GeneProfiler”
using the R Shiny package to facilitate the utility and
accessibility of the G-CDM. After converting genomic data into
the G-CDM, the data can be visualized by simply connecting
the database with the graphic user interface (Figure 2). As users
link their database into “GeneProfiler,” this tool automatically
provides the descriptive statistics as several plots and tables.
“GeneProfiler” includes action buttons to generate plots of
overall variant profiles, proportion of certain mutation types,
and proportion of genes with actionable mutations. Users can
also freely explore the proportion of patients with mutations in
specific genes or specific variants and can download the results
as a plot or table to conduct distributed research. After
downloading result tables of several databases from
GeneProfiler, users can generate graphs comparing these
databases by uploading the merged tables (Multimedia Appendix
6). The R Shiny code of “GeneProfiler” was uploaded and is
open to the public in GitHub [34].

Statistical Analysis
Descriptive analysis was performed using frequencies for
categorical variables. Genomic characteristics were compared
between the two databases using a chi-squared test, and values
of P<.05 were considered statistically significant. The R
program version 3.5.1 was used for data preprocessing and
statistical analysis. A mutation waterfall plot was created using
“GenVisR,” an R package available via Bioconductor [35],
which also provided the proportions of genes, variant types,
and specific variants using the R Shiny tool developed in this
study.

Ethics Statement
This study was approved by the institutional review board at
Ajou University Hospital of Korea (IRB approval number:
AJIRB-MED-MDB-18-390).
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Figure 2. Data visualization tool for clinical sequencing data holders who converted their genomic data into genomic CDM. Users can (a) connect
their genomic CDM database; (b) get analysis plots such as an overall profile, (c) mutation type, and (d) pathogeny of variants; and (e) search the
proportion of patients with gene name and variant information. CDM: common data model.

Results

Data Comparison for Model Validation
To confirm the differences between the AUSOM and TCGA
databases, the summary results of the sequencing data such as
the gene, variant type, and disease subtypes were gathered and
compared. We characterized the biological background of total
variants in both databases for variant types, with DNA-level
structural variants classified as “sequence alteration” and protein
functional types classified as “variant feature.” Among the
SNPs, insertions, and deletions, the most frequent structural
variant type was SNPs, accounting for >80% of total variants
in both databases (Multimedia Appendix 7). However, the
functional types of the variants, including missense, nonsense,
frameshift, inframe, and splice variants, showed different
frequencies between the databases (all P<.001), with intron and
synonymous variants being most frequent in the AUSOM
database (combined frequency of 83%) and missense variants
being the most frequent in the TCGA database (73%;
Multimedia Appendix 7).

A waterfall plot was created in both the AUSOM and TCGA
databases, which focused only on protein-altering variants such

as missense, nonsense, frameshift, inframe, and splicing variants
to obtain a variant profile (Figure 3; Multimedia Appendix 8).
The 15 genes as a union of the top 10 genes in each database
were selected as targets for overall profiling. In the AUSOM
database, the top 10 genes had a variant frequency > 75% among
patients with lung cancer, whereas only one gene, TP53, had a
variant frequency > 25% in the TCGA database. In particular,
EGFR variants showed very different frequencies in the
AUSOM and TCGA databases (89.5% and 11.5%, respectively).
All 15 genes had different proportions of variants in the two
databases (all P<.001). Although the ranking of genes with high
frequencies of variants differed between databases; the most
frequent variant type was a missense variant in both databases
(Figure 3).

In contrast, comparison of the waterfall plot of all 49 genes
targeted in the cancer panel of the AUSOM database to that of
the same gene set of the TCGA database showed a higher
frequency of frameshift and nonsense type variants than splice
type variants in the TCGA data, although the ranking of genes
with more variants still differed between the two databases
(Multimedia Appendix 8). Exploration of the CNVs in AUSOM
showed that RET was the gene with the most frequent CNVs,
specifically due to amplification (Multimedia Appendix 8).
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Figure 3. Waterfall plot describing the variant profile of the top 10 genes in (a) Ajou University School of Medicine and (b) The Cancer Genome Atlas
databases. Each row represents gene symbols ordered by their frequency of variants with different colors indicating different variant types. Columns
represent each patient with only one sample per patient. The bar graph on the left corresponds to the frequency of variants in each gene. Clinical groups
such as age, sex, and condition are shown in the bottom box. LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma.

Comparison of Actionable Mutations for Model
Validation
An actionable mutation is a specific genomic event that
potentially affects a patient’s response to a targeted therapy
[36]. Of the five representative actionable mutations for NSCLC
examined (EGFR, KRAS, PIK3CA, BRAF, and NRAS), EGFR
showed the greatest frequency of variants in the AUSOM
database (21.9%), while KRAS showed the greatest frequency
of variants in the TCGA database (20.2%; Figure 4a). In

particular, the point mutation p.Leu858Arg in EGFR was found
in 17.5% of the patients, followed by p.Thr790Met (1.8%) in
the AUSOM database (Figure 4b). Point mutations in the KRAS
gene, such as p.Gly12Xaa and p.Gly13Xaa, were more frequent
in the TCGA database (20.2%) than in the AUSOM database
(9.7%; Figure 4a,c). In addition, patients with lung
adenocarcinoma (Figure 4e-h) tended to have more actionable
mutations than those with lung squamous cell carcinoma (Figure
4i-l).
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Figure 4. Frequencies of actionable mutations detected in the sequencing process between the AUSOM and TCGA databases. Frequency is shown
according to the (a, e, i) level of five selected genes and (b, f, j) actionable mutations in EGFR, (c, g, k) KRAS, and (d, h, l) others such as PIK3CA,
BRAF, and NRAS. Frequency is also shown according to patient groups: (a-d) total, (e-h) lung adenocarcinoma, and (k-l) lung squamous cell carcinoma.
AUSOM: Ajou University School of Medicine; TCGA: The Cancer Genome Atlas; LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma.

Discussion

Overview
We developed a new data model for clinical sequencing data,
which was applied using sequencing data of patients with lung
cancer from two different databases, AUSOM and TCGA, which
were transformed into an identical format for the G-CDM. To
evaluate the feasibility of the G-CDM, the composition of the
datasets was compared with regard to the frequency of a gene
name and variant types in which a sequence alteration occurred
and to the prevalence of actionable mutations. Moreover, we
developed novel user-friendly software—GeneProfiler—for
visualization of clinical sequencing data.

Interpretation of the Principal Results
The first result obtained by comparison of the databases
transformed in a standardized form for the G-CDM was the
clear difference in the composition of the sequencing data

between TCGA, a controlled research-oriented database, and
AUSOM, an actual clinical practice database. This difference
suggested a difference in variant frequencies and types between
the two databases. Indeed, the total number of variants per
patient was much higher for the AUSOM database than for the
TCGA database, whereas the frequency of variants differed
according to the variant type considered. Comparison of
actionable mutations in five genes of NSCLC showed a much
higher mutation frequency of EGFR in the AUSOM database
(a cohort of Asian patients) than in the TCGA database (a cohort
of American patients). This finding is in line with previous
knowledge that Asian patients with NSCLC have a higher
prevalence of EGFR mutations than Americans [32,37]. In
contrast, actionable mutations in the KRAS gene were less
prevalent in patients in the AUSOM database than in those in
the TCGA database, which is also consistent with previous
knowledge that Asian populations have a much lower rate of
mutations in KRAS than non-Asian populations with NSCLC
[32,37].
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The second key result of this study is conduct of a multicenter
research through internet-based sharing of analysis codes with
CDM-based conversion of databases from different institutions.
This is meaningful because the distributed research was
conducted with genomic data that had not been previously
verified. Such distributed research would be a useful strategy
to address the problem of limited data integration due to privacy
issues of clinical sequencing data.

Moreover, because data from the TCGA database were
generated relatively earlier than those in the AUSOM database,
the sequencing equipment or bioinformatics method may have
caused the observed differences. These differences between the
databases further emphasize the importance of analyzing data
obtained from multiple clinical sites together with
research-driven public data to obtain a higher level of
representative evidence from diverse populations. Both genomic
data models and intermediate results should be shared as widely
as possible to promote clinical advances by overcoming the
current challenges of unstructured and siloed data environments
that lead to a lack of interoperability [38]. Our proposed
OMOP-CDM extension model was developed by referencing
the OHDSI distributed research network, because existing
models such as the HL7 reference information model are not
suitable for internet-based research and have limited practical
use [39,40].

In the process of modeling the structure of the G-CDM, two
specimen identifications were allocated in the
Variant_Occurrence table, because recent methods of NGS
testing in cancer patients tend to be based on a comparison of
normal and tumor tissues simultaneously from the same
individual. In cases of patients with a congenital disease, there
is an option to fill out this field with only single-specimen
identification. The contents of annotation to a variant can also
differ according to the type or version of the annotation
databases used in the annotation process. For this reason, the
Variant_Annotation table was separated from the
Variant_Occurrence table to allow for subsequent updating of
diverse or new interpretations.

Limitations
Genomic data are generated using highly complicated
sequencing pipelines and analytical processes; consequently,
NGS data have inherent limitations in terms of data quality and
reliability. Although we compared the sequencing pipelines and
analytical processes used to generate the sequencing data of
both the AUSOM and TCGA databases, we were unable to
confirm the detailed parameters and options used in each
process. Thus, the differences between the two databases found
in this study should be interpreted considering the possibility
that the data may have been generated by dissimilar methods
and criteria.

Moreover, the clinical NGS data used in this study were
generated in the clinical practice of Ajou University Hospital
within the last 2 years. Given the recent time frame, mortality
was rare among these patients; thus, we were not able to perform
survival analysis by leveraging both genomic data and clinical
data.

The G-CDM, as a common data structure and vocabulary
system, minimizes privacy issues when conducting multicenter
studies by integrating statistical results of the same analysis
code rather than sharing the clinical sequencing data directly.
However, when the G-CDM is used for repeated queries with
a malicious purpose, there is concern for compromising the
privacy of the individual, even if the queries target only the
aggregated statistics. The G-CDM can be complemented by
inhibiting reidentification attacks, as proposed in previous
studies related to the mitigation of privacy risks, through limiting
response to a query targeting a unique individual or through
introduction of noise into the original data [41,42].

Conclusions
We propose the distributed research network–based G-CDM
as a starting point for a broad community discussion on genomic
data–based precision medicine. Based on the G-CDM developed
in this study, the data validation process identified differences
between the clinical NGS data derived from a clinical practice
and those derived from prospective research. We believe that
the construction and adoption of this standard data model will
facilitate the usefulness of clinical NGS data.
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