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Abstract

Decades of technological developments have populated the field of brain-machine interfaces and neuroprosthetics with several
replacement strategies, neural modulation treatments, and rehabilitation techniques to improve the quality of life for patients
affected by sensory and motor disabilities. This field is now quickly expanding thanks to advances in neural interfaces, machine
learning techniques, and robotics. Despite many clinical successes, and multiple innovations in animal models, brain-machine
interfaces remain mainly confined to sophisticated laboratory environments indicating a necessary step forward in the used
technology. Interestingly, Elon Musk and Neuralink have recently presented a new brain-machine interface platform with thousands
of channels, fast implantation, and advanced signal processing. Here, how their work takes part in the context of the restoration
of sensory-motor functions through neuroprostheses is commented.
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Significant research in biology, medicine and engineering has
sought to obtain effective solutions to improve quality of life
of human subjects affected by sensory-motor disorders.
Neuroprosthetics are implantable devices designed to replace
or improve the function of a disabled part of the nervous system
[1]. This technology is relatively recent, as the first
neuroprosthetic device successfully implanted was a cochlear
implant in 1957 [2]. Since then, such an approach has been
expanded to many different applications, which include motor
prosthetics [3-6], sensorimotor prosthetics [7-9], visual
prosthetics [10,11], and cognitive prosthetics [12].

Up till now, patients who used brain-machine interfaces have
had a quite poor perception of the instantaneous behavior,
position, or motion of the robotic device, which has prevented
them from operating in fully closed-loop and natural control.
The restoration of sensory feedback and voluntary control, along
with the development and successful integration of these sensor

modalities, is a mandatory step towards the realization of future
bidirectional neuroprostheses [13].

The challenges described above can be addressed by creating
a brain-machine interface that utilizes the processing power of
the human brain to control the robotic device. Directly
connecting to the human nervous system means closing the gap
between user intent and the expected behavior of the apparatus.
Furthermore, generating a shorter loop between user intent and
device behavior or motion (by eliminating part of the low-level
sensor-based control) will allow for easier control, a reduced
learning investment, and a reduced cognitive burden of operating
the device.

Neural interfaces play a pivotal role in the efficacy of a
neuroprosthetic. Due to their ability to read out electrical activity
from the nervous system, it is possible to decode signals into
cognitive, sensory, or motor information through the use of
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computational methods. This information can then be used to
control a prosthetic device, robot, or computer. It also induces
better understanding of brain behavior through the recording of
neural activity, providing information about sensory areas
responsible for hearing or sight (sensory prosthetics), or helping
to regulate malfunctioning motor functions (motor prosthetics).
On the other hand, pacemaker or bladder control
neuroprosthetics also use similar physical principles, targeting
the autonomic nervous system and helping patients with
paraplegia due to spinal cord damage [14].

In a recent article, Elon Musk and his company Neuralink
presented a new platform to target the brain for neuroprosthetic
applications [15]. They used arrays of small and flexible
electrodes (called threads), with 3072 electrodes per array,
distributed across 96 threads. They also developed a
neurosurgical robot able to insert six threads (192 electrodes)
per minute. Each thread can be individually inserted into the
brain with high precision, avoiding surface vasculature and
targeting specific brain zones. The electrode array is packaged
into a small implantable device that contains custom chips for
low power, onboard amplification, and digitization. Moreover,
since neural spikes in a brain-machine interface must be detected
in real time to maximize decoding efficacy, Neuralink has
developed a custom online spike-detection software that has
achieved a spiking yield of up to 70% in chronically implanted
electrodes. Musk’s long-term idea consists of enabling humans
to connect their brains to machines, and Neuralink’s approach
to a brain-machine interface has shown unprecedented packaging
density, extensibility, and scalability in a clinically relevant
package. The main properties of the neural electrodes are related
to their biocompatibility, long-term stability, and
recording/stimulating selectivity when interfacing with both
peripheral and central nervous systems [16,17]. Therefore, more

tests should be performed for a complete validation of this new
platform. This step is not trivial, as it is crucial to show the
possible translation of this approach to humans. Further, it is
necessary to demonstrate the effective benefits of using this
new technology in comparison to other techniques that have
been widely tested in the previous decades. The hypothetical
complete brain-machine connection has become a closer
possibility, but it is not ready just yet.

In this field, many devices and smart materials have been
presented as effective solutions to interfacing with nervous
tissues, enabling an intimate connection between the brain and
machines in animals and even in humans [18]. Understanding
how to interact with the brain using advanced algorithms has
become of great clinical interest now, both to decode neural
information [19] and to encode natural sensations by exploiting
biomimetic neurostimulation strategies [20]. Moreover,
advanced data processing methods have to be developed to bring
these technologies to real life application. In this direction, new
tools like machine learning and quantum computing will help
to bring this concept to reality.

In the near future, neurotechnologies will continue to grow.
More accurate and advanced computer simulations (eg,
computational modelling) will allow researchers to test and
validate these technologies even quicker. Implantable
neurotechnologies will literally become part of us. Direct
bidirectional communication between the brain and external
devices, the transformation that this connection brings about,
and the blurring of the boundaries between humans and
machines, are issues that raise several ethical, social, and cultural
concerns. Personal identity, physical integrity, and the human
dignity [21] of people using the next generation of
brain-machine interfaces will surely require further attention.
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