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Abstract

Background: Wearable sleep monitors are of high interest to consumers and researchers because of their ability to provide
estimation of sleep patterns in free-living conditions in a cost-efficient way.

Objective: We conducted a systematic review of publications reporting on the performance of wristband Fitbit models in
assessing sleep parameters and stages.

Methods: In adherence with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement,
we comprehensively searched the Cumulative Index to Nursing and Allied Health Literature (CINAHL), Cochrane, Embase,
MEDLINE, PubMed, PsycINFO, and Web of Science databases using the keyword Fitbit to identify relevant publications meeting
predefined inclusion and exclusion criteria.

Results: The search yielded 3085 candidate articles. After eliminating duplicates and in compliance with inclusion and exclusion
criteria, 22 articles qualified for systematic review, with 8 providing quantitative data for meta-analysis. In reference to
polysomnography (PSG), nonsleep-staging Fitbit models tended to overestimate total sleep time (TST; range from approximately

7 to 67 mins; effect size=-0.51, P<.001; heterogenicity: I2=8.8%, P=.36) and sleep efficiency (SE; range from approximately 2%

to 15%; effect size=-0.74, P<.001; heterogenicity: I2=24.0%, P=.25), and underestimate wake after sleep onset (WASO; range

from approximately 6 to 44 mins; effect size=0.60, P<.001; heterogenicity: I2=0%, P=.92) and there was no significant difference

in sleep onset latency (SOL; P=.37; heterogenicity: I2=0%, P=.92). In reference to PSG, nonsleep-staging Fitbit models correctly
identified sleep epochs with accuracy values between 0.81 and 0.91, sensitivity values between 0.87 and 0.99, and specificity
values between 0.10 and 0.52. Recent-generation Fitbit models that collectively utilize heart rate variability and body movement
to assess sleep stages performed better than early-generation nonsleep-staging ones that utilize only body movement. Sleep-staging
Fitbit models, in comparison to PSG, showed no significant difference in measured values of WASO (P=.25; heterogenicity:

I2=0%, P=.92), TST (P=.29; heterogenicity: I2=0%, P=.98), and SE (P=.19) but they underestimated SOL (P=.03; heterogenicity:

I2=0%, P=.66). Sleep-staging Fitbit models showed higher sensitivity (0.95-0.96) and specificity (0.58-0.69) values in detecting
sleep epochs than nonsleep-staging models and those reported in the literature for regular wrist actigraphy.

Conclusions: Sleep-staging Fitbit models showed promising performance, especially in differentiating wake from sleep.
However, although these models are a convenient and economical means for consumers to obtain gross estimates of sleep
parameters and time spent in sleep stages, they are of limited specificity and are not a substitute for PSG.
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Introduction

Polysomnography (PSG) consists of simultaneous
electroencephalographic (EEG), electromyographic,
electrooculographic, electrocardiographic, and other
assessments. PSG is regarded as the gold standard for diagnosis
of sleep disorders and conduct of sleep research. However, the
environment and instrumentation of conventional PSG can be
uncomfortable, anxiety producing, and even sleep disturbing.
Additionally, PSG requires a special facility plus oversight by
skilled technicians, making it expensive and precluding, under
most circumstances, investigation of between-night variation
of sleep quality. Thus, it is not surprising less than 50% of sleep
studies nowadays are conducted in formal sleep facilities [1].

Sleep diary methods are simple and economical ways of tracking
and appraising sleep by consumers but because they entail
subjective self-ratings, they are often inaccurate and incomplete;
furthermore, they do not assess sleep architecture and stages.
EEG wearables enable at-home evaluation of sleep architecture
and staging but they are expensive and somewhat
technologically complicated. Wrist actigraphy, which senses
accelerated motion, was introduced some 35 years ago by
Ambulatory Monitoring Inc and is now used in conjunction
with proprietary interpretative algorithms to conduct outpatient
sleep screenings through estimation of key sleep parameters.
Nonetheless, these devices, which rely entirely on
movement-based algorithms [2], lack sleep-stage assessment
capability; additionally, they tend to overestimate sleep duration
[3]. Approximately 10 years ago, Fitbit (Fitbit, Inc) introduced
its first wearable model [4] for use by health-conscious
consumers. Early-generation Fitbit models only determined
sleep parameters. However, subsequent modifications and
refinements, including a scoring algorithm based collectively
on body movement and heart rate variability (HRV), enable
recent-generation Fitbit models—Fitbit Charge 2, Fitbit Charge
3, Fitbit Alta HR, Fitbit Versa, Fitbit Versa 2, Fitbit Blaze, Fitbit
Inspire HR, and Fitbit Ionic—to estimate not only sleep
parameters and stages [5], but wake- and sleep-time heart rate
[6]. A 2019 survey found wearable technology to be the number
one fitness trend worldwide [7]. Fitbit wearables, in particular,
are very popular among consumers, with more than 25 million
active users in more than 80 countries [8]. Additionally, they
are the most-used wearables for conducting biomedical research
[9]. In this regard, this year the United States National Institutes
of Health announced its decision to incorporate Fitbit technology
into its All of Us Research Program [10,11]. Nonetheless, the
accuracy of Fitbit technology remains a major concern, not only
of medical professionals but the lay public [12]. In recognition
of the growing interest and use of personal wristband devices
to routinely self-assess biomarkers of sleep quality, the National
Sleep Foundation, the Consumer Technology Association, and
the American National Standards Institute developed

recommended terminology and definitions to describe sleep
features derived by such products [13]. Given the growing
popularity with consumers and medical organizations of the
Fitbit wristband devices, the objective of this paper is to
appraise, in compliance with these recommendations, the
performance of both early- and recent-generation Fitbit models
in determining sleep parameters and sleep stages through a
systematic review of findings of relevant publications and a
meta-analysis of reported data.

Methods

This prospective systematic review, which was not registered
beforehand, was conducted in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) statement [14].

Search Strategy
An online comprehensive search of the following databases was
performed: the Cumulative Index to Nursing and Allied Health
Literature (CINAHL), the Cochrane Database, Embase,
MEDLINE, PsycINFO, PubMed, and Web of Science. The
search was initially performed during July 2018 and again during
July and October 2019 using the keyword Fitbit without
language, publication date, or other filters.

Eligibility Criteria
Retrieved publications qualified for the systematic review if
they (1) involved validity of sleep data of any marketed Fitbit
model and (2) incorporated PSG, actigraphy, home EEG, sleep
diary, or survey method as reference. Exclusion criteria included
the following: (1) sample size of less than 5 participants, (2)
review paper, (3) absent or inappropriate statistical analysis,
and (4) duplicate publication of the same data and findings.

Study Selection
Citations were imported into the reference manager software
Mendeley. After elimination of duplicate reports, one author
(SH) screened titles and abstracts first to remove unrelated
publications; thereafter, two authors (SH and SK) independently
screened remaining publications for eligibility according to
inclusion and exclusion criteria. Disagreements were resolved
by discussion.

Data Extraction and Items
The following items were extracted in a systematic manner by
one author (SH) and checked for accuracy by another author
(SK): first author; year of publication; type of sleep tracker and
comparator; number, sex, type, and age of participants; study
site; number of nights of sleep assessment; bedtime; Fitbit mode
setting; anatomical placement of tracker; and study outcomes
relative to the denoted reference standard—the precision of
measuring the parameters of total sleep time (TST), sleep onset
latency (SOL), wake after sleep onset (WASO), and sleep
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efficiency (SE), as well as the sensitivity, specificity, and
accuracy of detecting both sleep epochs and sleep stages.

Bias Assessment
A checklist, adapted from Downs and Black [15], was applied
to evaluate each publication for quality and risk of bias of
research methods, internal validity, reported outcomes, and
generalizability.

Statistical Analysis
For studies that compared Fitbit with PSG and provided
quantitative data, raw Hedges g effect sizes of SOL, WASO,
TST, and SE were calculated as the mean differences between
average values provided by Fitbit and PSG divided by the
standard deviation of PSG values multiplied by the Hedges
correction factor [16]. A positive effect size infers lower values
derived by Fitbit relative to those derived by PSG. Overall effect
size and 95% prediction interval for each parameter per
nonsleep-staging and sleep-staging Fitbit models were calculated
using a random-effects model [17,18]. Forest plots were created
by Microsoft Excel for Mac, version 16.25 (Microsoft
Corporation). A threshold probability of 5% (P=.05) was
selected as the basis for rejecting the null hypothesis, effect size
equals zero. Effect size values of 0.2, 0.5, and 0.8 are considered
small, medium, and large effects, respectively [19]. The null
hypothesis stating that studies share a common effect size per
sleep parameter was tested by calculating the Q statistic [17].

τ2 represents the overall variation of true effect size, and I2

represents the proportion of observed variance indicative of

actual variation among studies [17]. I2 values in the order of
25%, 50%, and 75% are considered small, medium, and large
heterogenicity, respectively [20]. Comparisons between
nonsleep-staging and sleep-staging Fitbit models were
accomplished by random-effect subgroup analyses. As
recommended, the threshold probability of 10% (P=.10) was
the basis for testing the significance of heterogenicity and also
for determining statistical significance of subgroup comparisons
[20,21].

Results

Search Results
Figure 1 presents a visual summary of the selection and
qualification of articles for review. A total of 3074 publications
were retrieved though a search of databases performed in July
2018 and again in July and October 2019. An additional 11
publications were identified through other sources, primarily
through the reference list of identified articles. After eliminating
duplicate publications found in the multiple databases, 1426
articles remained for screening. Examination of individual titles
and abstracts yielded 72 publications for full-text appraisal;
however, after scrutinizing each of them according to the a priori
inclusion and exclusion criteria, only 22 qualified for systematic
review [22-43], with 8 of these reporting raw data to enable
quantitative synthesis and meta-analyses.
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Figure 1. Flow diagram adapted from Moher et al [14] describing the search strategy of databases to retrieve and qualify publications of relevance for
review.

Overview of Included Studies
Tables 1 and 2 present the extracted details of each qualifying
study involving nonsleep-staging and sleep-staging Fitbit
models. Participants were diverse: normal sleepers as well as
persons diagnosed with periodic limb movement in sleep
(PLMS) [28], obstructive sleep apnea, sleep-disordered
breathing [30], central disorders of hypersomnolence [26],
insomnia [31], and depression [25], and Huntington disease

gene carriers [38]. Sample size varied substantially between
investigations, from 7 to 63 (median 30) participants, with
approximately 77% of them involving more than 20 individuals.
Average age was less than 20 years in 6 of the 22 studies (27%)
and over 50 years in 1 study (5%). Out of 22 studies, 10 (45%)
were conducted in a sleep laboratory, 11 (50%) in the home
environment, and 1 (5%) either at home or in a hotel, based on
the participant’s preference.
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Table 1. Detailed summary of qualifying publications involving both early-generation, nonsleep-staging and newer-generation, sleep-staging Fitbit
models.

Investigative detailsParticipantsReferenceModelAuthor (year)

BedtimeTracker placement

(tracker mode)

Duration

(study site)

TypeAge (years),
mean (SD);
and/or range

Total number

(% female)

22:00hBoth left and right
wrists

(N/Ac)

1 night
(home or

hotel)

Normal sleepers34 (10)60 (40.0)Type III home

PSGb
SurgeBeattie et al

(2017) [22]a

HabitualeNondominant wrist

(N/Rd)

2 nights

(home)

Healthy7.2 (2.1)30 (37.0)Sleep log &
actigraphy

Charge HRBrazendale et
al (2019) [23]

HabitualeLeft wrist

(N/R)

1 night

(home)

Healthy28.5 (9.9);

19-60

95 (64.2):

22 Flex;

14 Charge HR

Sleep logFlex &
Charge HR

Brooke et al
(2017) [24]

HabitualNondominant wrist

(both sensitive and
normal)

1 night

(sleep lab)

Major depressive
disorder

26.5 (4.6)21 (81.0)PSG &

actigraphy

FlexCook et al
(2017) [25]

Participant
preference

Nondominant wrist

(N/A)

1 night

(sleep lab)
Suspected CDHf30.3 (9.8)49 (93.9)PSGAlta HRCook et al

(2019) [26]a

Participant
preference

Nondominant wrist

(normal)

1 night

(sleep lab)

Healthy

adolescents

17.3 (2.5);

12-21

32 (46.9)PSGCharge HRde Zambotti et
al (2016) [27]

Participant
preference

Nondominant wrist

(N/A)

1 night

(sleep lab)

Healthy adults, 9

with PLMSg
19-6144 (59.1)PSGCharge 2de Zambotti et

al (2018) [28]a

HabitualeN/R

(normal)

4 nights

(home)

Young adults26.1 (8.0)38 (60.5)ActigraphyCharge HRDickinson et
al (2016) [29]

N/RN/R

(N/R)

1 night

(sleep lab)
OSAh or SDBi9 (3);

3-18

22 (59.1)PSGCharge HRHakim et al
(2018) [30]

N/RNondominant wrist

(both sensitive and
normal)

1 night

(home)

Insomniacs and
good sleepers

Insomniacs:

38.4 (11.2);

good

sleepers:
32.1 (7.4)

Insomniacs:

33 (57.6);

good sleepers:

17 (64.7)

Unattended
PSG

FlexKang et al
(2017) [31]

HabitualeNondominant wrist

(normal)

7 nights:

Fitbit was

worn for

only 1 night

(home)

Healthy adults24.8 (4.1);

18-60

Good sleepers:

20 (60);

poor sleepers

10 (30)

ActigraphyAltaKubala et al
(2019) [32]

HabitualeNondominant hand

(normal)

13 nights

(home)

Healthy young
adults

22.8 (2.8);

18-26

16 (62.5)ActigraphyCharge HRLee et al
(2017) [33]

HabitualeCounter-balanced
across participants

(N/R)

3 nights

(home)

Healthy28.6 (N/R);

19-66

38 (50)Sleep logCharge HRLee et al
(2018) [34]

HabitualeNondominant hand

(normal)

3 nights:

only 1 night

in data

analysis
(home)

Healthy24.8 (4.4)25 (40.0)Sleep Scope

(EEGj based)

Charge 2Liang and
Chapa Martell
(2018) [35]

HabitualeLeft wrist

(N/A)

7 nights

(home)

Noninsomniac
Asian students

21.8 (N/R);

20-24

10 (50.0)Sleep logAlta HRLiu et al

(2019) [36]a
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Investigative detailsParticipantsReferenceModelAuthor (year)

BedtimeTracker placement

(tracker mode)

Duration

(study site)

TypeAge (years),
mean (SD);
and/or range

Total number

(% female)

N/RCounter-balanced
across participants

(N/R)

1 night

(home)

Healthy young
adults

22.4 (4.9);

18-30

40 (47.5)PSG

(ambulatory

system)

FlexMantua et al
(2016) [37]

HabitualNondominant wrist

(default)

1 night

(sleep lab)

Huntington

disease gene

carriers

54.1 (6.4)7 (85.7)PSGOneMaskevich et
al (2017) [38]

HabitualNondominant wrist

(both sensitive and
normal)

1 night

(sleep lab)

Children and
adolescents

9.7 (4.6);

3-17

63 (50.8)PSG &

actigraphy (2

different ones)

UltraMeltzer et al
(2015) [39]

N/RNondominant wrist

(N/R)

1 night

(sleep lab)

Healthy adults26.1 (N/R);

19-41

24 (40)PSG &

actigraphy

ClassicMontgomery-
Downs et al
(2012) [40]

N/RNondominant wrist

(N/R)

1 night

(sleep lab)

Children6.5 (2.9);

3-11

14 (64.3)PSGFlexOsterbauer et
al (2016) [41]

22:00-
07:00h);

23:00-
07:00h);

00:00-
07:00h);

14:00-
16:00h);

15:00-
16:00h

Nondominant wrist

(normal)

5 sleep

periods

during 3
days and
nights

(sleep lab)

Soccer players
without sleep

disorders

18.3 (1.0)12 (N/R)PSGCharge HRSargent et al
(2018) [42]

HabitualeNondominant wrist

(normal)

14 nights:

only 7 nights

in data

analysis
(home)

Healthy Japanese
adults

25-6720 (50)Sleep Scope
(EEG based)

VersaSvensson et al

(2019) [43]a

aPublication consisting of newer-generation, sleep-staging Fitbit models.
bPSG: polysomnography.
cN/A: not applicable.
dN/R: not reported.
eExact bedtime not reported, but investigative protocol infers habitual bedtime.
fCDH: central disorders of hypersomnolence.
gPLMS: periodic limb movement in sleep.
hOSA: obstructive sleep apnea.
iSDB: sleep-disordered breathing.
jEEG: electroencephalographic.
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Table 2. Results from qualifying publications involving both early-generation, nonsleep-staging and newer-generation, sleep-staging Fitbit models.

ResultsaReferenceModelAuthor (year)

Type III

home PSGc
SurgeBeattie et al

(2017) [22]b
• Normal mode vs PSG. Overestimated TSTd,e (46 min) and SEe,g (8.1%); underestimated WASOe,h

(44 min) and SOLi (2 min, NSj); accuracy, 0.88 (SD 0.05); sensitivity, 0.98 (SD 0.02); specificity,
0.35 (SD 0.13)

• Normal mode vs actigraphy. Overestimated SOLe (12 min), SEf (1.1%), and TST (5 min, NS);

underestimated WASOe (17 min)
• Sensitive mode vs PSG. Underestimated TSTe (86 min) and SEe (16.0%); overestimated SOLf

(12 min) and WASOe (75 min); accuracy, 0.78 (SD 0.08); sensitivity, 0.78 (SD 0.09); specificity,
0.80 (SD 0.17)

• Sensitive mode vs actigraphy. Underestimated TSTe (127 min) and SEe (22.9%); overestimated

SOLe (25 min) and WASOe (102 min)

Sleep log &
actigraphy

Charge HRBrazendale et
al (2019) [23]

• Fitbit correlated with both actigraphy (r=.48)f and sleep log (r=.71)f for measuring TST

Sleep logFlex &
Charge HR

Brooke et al
(2017) [24]

• Both Fitbit Flex (r=.68, MAPEk=8.80%) and Fitbit Charge HR (r=.58, MAPE=11.5%) correlated

with sleep log in measuring TSTe

PSG &

actigraphy

FlexCook et al
(2017) [25]

• Normal mode vs PSG. Overestimated TSTe (46 min) and SEe (8.1%); underestimated WASOe

(44 min) and SOL (2 min, NS); accuracy, 0.88 (SD 0.05); sensitivity, 0.98 (SD 0.02); specificity,
0.35 (SD 0.13)

• Normal mode vs actigraphy. Overestimated SOLe (12 min), SEf (1.1%), and TST (5 min, NS);

underestimated WASOe (17 min)
• Sensitive mode vs PSG. Underestimated TSTe (86 min) and SEe (16.0%); overestimated SOLf

(12 min) and WASOe (75 min); accuracy, 0.78 (SD 0.08); sensitivity, 0.78 (SD 0.09); specificity,
0.80 (SD 0.17)

• Sensitive mode vs actigraphy. Underestimated TSTe (127 min) and SEe (22.9%); overestimated

SOLe (25 min) and WASOe (102 min)

PSGAlta HRCook et al

(2019) [26]b
• Overestimated TSTf (12 min), SEf (2.0%), and deep sleepe (18 min); underestimated SOL (4 min,

NS), WASO (8 min, NS), and light sleep (11 min, NS); accuracy, 0.90 (SD 0.04); sensitivity, 0.96
(SD 0.02); specificity, 0.58 (SD 0.16); accuracy in detecting light sleep, 0.73; deep sleep, 0.89;

REMl sleep, 0.89

PSGCharge HRde Zambotti et
al (2016) [27]

• Overestimated TSTf (8 min) and SEe (1.8%); underestimated WASOf (6 min) and SOL (3 min,
NS); accuracy, 0.91 (SD 0.05); sensitivity, 0.97 (SD 0.02); specificity, 0.42 (SD 0.16); predictive
value for sleep, 0.93 (SD 0.05); predictive value for wake, 0.65 (SD 0.18)

PSGCharge 2de Zambotti et
al (2018)

[28]b

• Normal sleeper cohort. Overestimated TSTf (9 min) and light sleepe (34 min); underestimated

SOLf (4 min), deep sleepe (24 min), WASO (5 min, NS), and REM sleep (1 min, NS); sensitivity,
0.96; specificity, 0.61; accuracy in detecting light sleep, 0.81; deep sleep, 0.49; REM sleep, 0.74

• PLMSj cohort. Underestimated deep sleepf (28 min), SOL (7 min, NS), and WASO (1 min, NS);
overestimated TST (8 min, NS), light sleep (36 min, NS), and REM sleep (0 min, NS); specificity,
0.62; accuracy detecting light sleep, 0.78; deep sleep, 0.36; REM sleep, 0.62

ActigraphyCharge HRDickinson et
al (2016) [29]

• No systematic difference across days between Fitbit and actigraphy in measuring TST and SE

PSGCharge HRHakim et al
(2018) [30]

• Overestimated TSTf (30 min); underestimated total wake timef (23 min)

Unattended
PSG

FlexKang et al
(2017) [31]

• Good sleepers—normal mode. Overestimated TSTf (7 min), SE (1.8%, NS), and SOL (1 min,
NS); underestimated WASO (7 min, NS); accuracy, 0.93; sensitivity, 0.97; specificity, 0.36

• Insomniacs—normal mode. Overestimated TSTe (33 min) and SEe (7.9%); underestimated WASOe

(31 min) and SOL (2.4%, NS); accuracy, 0.87; sensitivity, 0.97; specificity, 0.36
• Good sleepers—sensitive mode. Accuracy, 0.66; sensitivity, 0.65; specificity, 0.82
• Insomniacs—sensitive mode. Accuracy, 0.68; sensitivity, 0.64; specificity, 0.89

ActigraphyAltaKubala et al
(2019) [32]

• Good sleepers. Overestimated TSTe (74 min); underestimated WASOf (16 min)
• Poor sleepers. Overestimated TST (20 min, NS); underestimated WASO (13 min, NS)
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ResultsaReferenceModelAuthor (year)

• Overestimated TSTe (22 min); correlation between Fitbit and actigraphy: sleep start timese (r=.87)

and TSTe (r=.92)

ActigraphyCharge HRLee et al
(2017) [33]

• Correlation between Fitbit and sleep log: TSTe (r=.55, MAPE 14.2%) and TIBe,n (r=.48, MAPE
12.7%); SE and WASO not correlated

Sleep logCharge HRLee et al
(2018) [34]

• Overestimated WASOe (25 min) and deep sleepe (40 min); underestimated TSTf (12 min), SOLe

(11 min), REMe sleep (12 min), light sleepe (42 min), and SE (1.5%, NS)

Sleep Scope

(EEGo

based)

Charge 2Liang and
Chapa Martell
(2018) [35]

• Overestimated WASOf (13 min); underestimated TSTf (6 min), SOLf (5 min), and SEf (1.4%)Sleep logAlta HRLiu et al

(2019) [36]b

• No significant difference in measuring TST and SE; TST correlatede (r=.97); SE not correlated
(r=.21, NS); average percentage error: TST, 2.97%; SE, 11.57%

PSG

(ambulatory

system)

FlexMantua et al
(2016) [37]

• Overestimated TSTe (88 min) and SEe (17.4%); underestimated WASOf (39 min) and SOL (17
min, NS); accuracy, 0.81 (0.68-0.93); sensitivity, 0.99 (0.97-1.00); specificity, 0.27 (0.12-0.55);
predictive value for sleep, 0.99, and wake, 0.27

PSGOneMaskevich et
al (2017) [38]

• Fitbit—normal mode vs PSG. Underestimated WASOe (32 min); overestimated TSTe (41 min)

and SEe (8%); accuracy, 0.84; sensitivity, 0.87; specificity, 0.52
• Fitbit—sensitive mode vs PSG. Underestimated TSTe (105 min) and SEe (21%); overestimated

WASOe (106 min); accuracy, 0.71; sensitivity, 0.70; specificity, 0.79

PSG &

actigraphy (2

different
ones)

UltraMeltzer et al
(2015) [39]

• Fitbit vs PSG. Overestimated SEe (14.5%) and TSTe (67 min); sensitivity, 0.98 (0.92-1.00);
specificity, 0.20 (0.02-0.78)

• Fitbit vs actigraphy. Overestimated SEe (5.2%) and TSTe (24 min)

PSG &

actigraphy

ClassicMontgomery-
Downs et al
(2012) [40]

• TST by Fitbit and PSG correlatedf (rhop=.99); WASO, SE, and awake minutes not correlated;
sensitivity, 0.99; specificity, 0.10

PSGFlexOsterbauer et
al (2016) [41]

• TST by Fitbit vs PSG: NS; Fitbit automatically identified 60% of sleep periods, with a success
rate of 80% when sleep was 9h, 90% when sleep was 8h, 70% when sleep was 7h, 50% when
sleep was 2h, and 10% when sleep was 1h

PSGCharge HRSargent et al
(2018) [42]

• Overestimated TIB (9 min, NS), TST (7 min, NS), WASOe (14 min), and deep sleepe (36 min);

underestimated SE (0.1%, NS), SOLe (14 min), REMe sleep (6 min), and light sleepe (20 min);
accuracy, 0.89 (0.88-0.89); sensitivity, 0.92 (0.919-0.923); specificity, 0.54 (0.53-0.55)

Sleep Scope
(EEG based)

VersaSvensson et al

(2019) [43]b

aAccuracy, sensitivity, and specificity in detecting sleep epochs are reported unless otherwise specified.
bPublication consisting of newer-generation, sleep-staging Fitbit models.
cPSG: polysomnography.
dTST: total sleep time.
eP<.01.
fP<.05.
gSE: sleep efficiency.
hWASO: wake after sleep onset.
iSOL: sleep onset latency.
jNS: not significant.
kMAPE: mean absolute percent error.
lREM: rapid eye movement.
mPLMS: periodic limb movement in sleep.
nTIB: time in bed.
oEEG: electroencephalographic.
pSpearman correlation coefficient.
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Bias Assessment
Table S1 in Multimedia Appendix 1 summarizes the risk for
bias of research methods, internal validity, reported outcomes,
and generalizability of each qualifying study. Only 5
investigations out of 22 (23%) attempted to blind the sleep
laboratory technicians from outcome measures [22,25,26,28,40].
A total of 13 of the qualifying 22 studies (59%) relied on PSG
as reference to evaluate Fitbit performance
[22,25-28,30,31,37-42]; the other 9 (41%) relied on a sleep log,
actigraphy, or home EEG as reference. Since PSG is the gold
standard for measurement of sleep stages and parameters, use
of other methods of reference constitutes an additional potential
source of bias. Half of the investigations (11/22, 50%) were
performed in the participant’s home. Clock hour of bedtime
was unspecified in 5 of the 22 studies (23%), and the dictated
bedtime differed from the habitual one of participants in 2
laboratory studies (9%). Disparity between habitual versus
mandated bedtime might have resulted in a greater- or
lesser-than-usual amount of wake time while in bed and this is
likely to have led to bias. Moreover, use of somewhat bulky
sleep trackers as reference for studies conducted in one’s
residence might be problematic because of improper donning
of instrumentation and oversight by technicians. Most studies
(16/22, 73%) followed the manufacturer’s recommendation that
the Fitbit model be worn on the nondominant hand. However,
2 out of the 22 studies (9%) utilized a counterbalance
experimental design for placement of the Fitbit device, with
half of the participants wearing it on the right hand and the other
half wearing it on the left hand. Finally, in 2 out of the 22 studies
(9%), the Fitbit was worn on the left wrist; in 2 other studies
(9%), the hand upon which the Fitbit was worn was unreported.
Out of the 22 studies, 1 (5%) [28] did not report the SE for Fitbit
but did report it for PSG; this may constitute selective reporting
bias. We contacted the corresponding author of this investigation
for the missing information, but we did not obtain a response.

Comparison of Sleep Parameters Assessed by Fitbit
Versus Polysomnography

Nonsleep-Staging Fitbit Models
Out of the 22 studies, 10 (45%) assessed early-generation
nonsleep-staging Fitbit models in comparison with PSG in
estimating sleep parameters [25,27,30,31,37-42]; 1 of these
studies involved performance of Fitbit models when applied to
individuals of two different cohorts (ie, good sleepers and
insomniacs), thereby increasing the number of possible
comparisons to 11. Eight (N=203) of the 10 potential
comparisons reported significant overestimation of TST by
Fitbit versus PSG of between 6.5 and 88.1 minutes, while the
two others (N=52) found nonsignificant overestimation. Five
(N=142) of the six potential comparisons reported significant

underestimation of WASO by Fitbit versus PSG of between 5.6
and 44 minutes, while one other (N=17) reported nonsignificant
underestimation. Six (N=166) of the eight potential comparisons
observed significant overestimation of SE by Fitbit versus PSG
of between 1.8% and 17.4%, while two others (N=57) reported
nonsignificant overestimation. A total of 5 comparisons (N=110)
evaluated SOL, finding no significant difference between the
two methods of appraisal.

Figures 2-5 present the forest plots of effect size plus the overall
pooled estimated effect size of the SOL, WASO, TST, and SE
variables derived by nonsleep-staging Fitbit models. The pooled
estimate of effect size reveals the following by nonsleep-staging
Fitbit models relative to PSG: nonsignificant difference in
estimation of SOL (N=4 comparisons; effect size=0.12, 95%
CI -0.14 to 0.39; P=.37); significant underestimation of WASO
(N=5 comparisons; effect size=0.60, 95% CI 0.38 to 0.83;
P<.001); significant overestimation of TST (N=7 comparisons;
effect size=-0.51, 95% CI -0.71 to -0.30; P<.001); and
significant overestimation of SE (N=6 comparisons; effect
size=-0.74, 95% CI -0.97 to -0.48; P<.001). Heterogeneity was
not detected in any sleep parameter.

Sleep-Staging Fitbit Models
Only 3 publications out of 22 (14%) pertained to
recent-generation sleep-staging Fitbit models in comparison
with PSG as reference [22,26,28]; 1 of these 3 publications
studied the performance of Fitbit on two different
cohorts—normal and PLMS sleepers—thereby increasing the
number of possible comparisons to four.

Two (N=84) of the three potential comparisons reported
significant overestimation of TST by Fitbit versus PSG in the
amount of 9-11.6 minutes, while one other (N=9) reported
nonsignificant overestimation. The only study (N=49) that
assessed SE reported 1.98% significant overestimation by Fitbit
relative to PSG. A total of 3 trials (N=93) reported no significant
difference in WASO between the two methods; 1 of these
(N=35) found significant 4-minute underestimation of SOL by
Fitbit versus PSG, while the 2 others (N=58) detected
nonsignificant underestimation of SOL by Fitbit.

The pooled estimate of effect size (see Figures 2-5) revealed a
significant underestimation of SOL (N=3 comparisons; effect
size=0.32, 95% CI 0.04 to 0.60; P=.03) and a nonsignificant
difference in estimation of WASO (N=3 comparisons; effect
size=0.16, 95% CI -0.12 to 0.44; P=.25), TST (N=3
comparisons; effect size=-0.15, 95% CI -0.43 to 0.13; P=.29),
and SE (N=1 comparison; effect size=-0.27, 95% CI -0.65 to
0.13; P=.19) by sleep-staging Fitbit models versus PSG.
Heterogeneity was not detected in any sleep parameter. Since
only 1 study evaluated SE, testing for heterogeneity was not
relevant.
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Figure 2. Forest plot of the standardized mean difference (Hedges g) between Fitbit and polysomnography for the variable of sleep onset latency (SOL).
Results are shown as effect size (ES) and 95% CI. The difference in symbol size indicates the difference in weight of the respective studies. The diamond
symbol shows the 95% CI of the overall effect and the tails show the 95% prediction interval of the overall effect. PLMS: periodic limb movement in
sleep.

Figure 3. Forest plot of the standardized mean difference (Hedges g) between Fitbit and polysomnography for the variable of wake after sleep onset
(WASO). Results are shown as effect size (ES) and 95% CI. The difference in symbol size indicates the difference in the weight of the respective studies.
The diamond symbol shows the 95% CI of the overall effect and the tails show the 95% prediction interval of the overall effect. PLMS: periodic limb
movement in sleep.
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Figure 4. Forest plot of the standardized mean difference (Hedges g) between Fitbit and polysomnography for the variable of total sleep time (TST).
Results are shown as effect size (ES) and 95% CI. The difference in symbol size indicates the difference in weight of the respective studies. The diamond
symbol shows the 95% CI of the overall effect and the tails show the 95% prediction interval of the overall effect. PLMS: periodic limb movement in
sleep.

Figure 5. Forest plot of the standardized mean difference (Hedges g) between Fitbit and polysomnography for the variable of sleep efficiency (SE).
Results are shown as effect size (ES) and 95% CI. The difference in symbol size indicates the difference in weight of the respective studies. The diamond
symbol shows the 95% CI of the overall effect and the tails show the 95% prediction interval of the overall effect.
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Comparison of Nonsleep-Staging Versus Sleep-Staging
Fitbit Models
Subgroup analyses revealed no significant difference between
nonsleep-staging and sleep-staging models in estimating SOL

(χ2
1=1.0, P=.32). However, sleep-staging models performed

better than nonsleep-staging models in estimating WASO

(χ2
1=5.7, P=.02), TST (χ2

1=4.0, P=.045), and SE (χ2
1=3.8,

P=.051, ie, below the cutoff of P=.10 recommended for
statistical significance of subgroup comparisons).

Accuracy, Sensitivity, and Specificity in Detecting Sleep
Epochs by Fitbit Versus Polysomnography

Nonsleep-Staging Fitbit Models
A total of 7 studies (N=197) involved epoch-by-epoch (EBE)
investigation of nonsleep-staging Fitbit models with reference
to PSG in differentiating between sleep and wake state
[25,27,31,38-41]. Out of these 7 studies, 1 consisted of two
different samples, thereby increasing the total number of
evaluations to 8. Across these trials, Fitbit versus PSG analyses
identified sleep epochs with accuracy values between 0.81 and
0.93, sensitivity values between 0.87 and 0.99, and specificity
values between 0.10 and 0.52.

Sleep-Staging Fitbit Models

Sleep Epoch Identification

A total of 3 studies (N=153) evaluated the performance of
sleep-staging Fitbit models with PSG as reference in identifying
sleep epochs through EBE analyses [22,26,28]. A total of 1
study included two different samples, thereby increasing the
number of possible comparisons to four. Relative to PSG,
detection of sleep epochs in three possible comparisons (N=144)
revealed sensitivity values between 0.95 and 0.96; detection of
sleep epochs in four comparisons (N=153) revealed specificity
values between 0.58 and 0.69; and detection of sleep epochs,
assessed in only a single study (N=49), revealed an accuracy
of 0.90.

Sleep-Stage Identification

A total of 3 studies (N=153) appraised performance of
sleep-staging Fitbit models in identifying sleep stages by means
of EBE analysis [22,26,28]. Relative to PSG, accuracy varied
between 0.69 and 0.81 in detecting light sleep (non-rapid eye
movement [REM] 1 [N1] + non-REM 2 [N2]), between 0.36
and 0.89 in detecting deep sleep (non-REM 3 [N3]), and
between 0.62 and 0.89 in detecting REM sleep.

Evaluation of Sleep Parameters Estimated by Fitbit
Models Versus Actigraphy
No published study assessed performance of sleep-staging Fitbit
models relative to actigraphy in estimating sleep parameters.
In contrast, 7 studies investigated the accuracy of
nonsleep-staging Fitbit models relative to actigraphy
[23,25,29,32,33,39,40]; 1 of them involved two different
actigraph devices [39], and another 1 included two different
samples: good sleepers and poor sleepers [32]. Among the total
of seven potential comparisons, Fitbit significantly
overestimated TST in five of them (N=84) by 24.1-74 minutes,

while in two comparisons (N=31), it was nonsignificantly
overestimated. In a total of four comparisons (N=69), Fitbit
significantly overestimated SE by 1.1%-7.0%. Among a total
of five comparisons, Fitbit significantly underestimated WASO
in four of them (N=65) by 16-32 minutes, while in one (N=10),
it was nonsignificantly underestimated. Only 1 study (N=21)
evaluated SOL, finding an 11.5-minute significant
overestimation by Fitbit.

Two studies [25,38] simultaneously compared in the same cohort
a nonsleep-staging Fitbit model plus actigraph against laboratory
PSG. Relative to PSG, both the actigraph and Fitbit
overestimated TST: Fitbit in one study by 88 minutes and in
the other by 46 minutes; actigraph in one study by 74 minutes
and in the other by 40.6 minutes. They also overestimated SE:
Fitbit in one study by 17.4% and in the other by 8.1%; actigraph
in one study by 14.8% and in the other by 7%. However, they
underestimated WASO: Fitbit in one study by 39 minutes and
in the other by 44 minutes; actigraph in one study by 20 minutes
and in the other by 27 minutes. Actigraphy showed less bias
than Fitbit. On the other hand, in the same two studies, Fitbit
performed better than actigraphy in measuring SOL relative to
PSG as reference: Fitbit bias in one study of 17 minutes and 2
minutes in the other; actigraph bias in one study of 23 minutes
and 14 minutes in the other. One of these studies also performed
EBE analysis [25], finding approximately 1% higher sensitivity
and accuracy in detecting sleep by Fitbit than by actigraphy
relative to PSG.

Correlation Between Sleep Parameters Assessed by
Fitbit Versus Sleep Diary
A total of 3 studies investigated the extent of correlation between
sleep parameters derived by a nonsleep-staging Fitbit model
and a self-rated sleep diary [23,34]; 1 of them involved two
different Fitbit models [24]. In the total of four potential
comparisons (N=104), significant correlation, ranging between
r=.55 and r=.71, was reported between TST measured by Fitbit
versus sleep diary. A total of 1 study (N=38) found significant
correlation between the two methods of sleep assessment for
time in bed (TIB; r=.48) but poor correlation for WASO (r=.09)
and SE (r=-.03). A total of 1 study (N=10) [36] investigated the
extent of agreement between the sleep diary and sleep-staging
Fitbit methods. It reported significant overestimation of WASO
(13 minutes) and underestimation of SOL (5 minutes), TST (6
minutes), and SE (1.4%) by Fitbit in comparison to the sleep
diary.

Dominant Versus Nondominant Hand Comparison of
Fitbit Sleep-Stage Classification Accuracy
Only 1 study (N=60) [22] explored differences in accuracy of
sleep-stage classification when new-generation Fitbit models
were simultaneously worn on the dominant and nondominant
hand. No between-hand difference was found in estimating
sleep stages.

Effect of Selected Sensitivity Mode Setting on
Estimation of Sleep Parameters
Early-generation nonsleep-staging, but not later-generation
sleep-staging, Fitbit models allow the user to select either normal
or sensitive mode to sense body movement to derive sleep
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parameters. A total of 3 studies evaluated, relative to PSG,
performance of these Fitbit models when set to the sensitive
mode [25,31,39]. In 2 of them, the sensitive mode significantly
underestimated TST by 86.3 minutes (N=21) and 105 minutes
(N=63), respectively, and underestimated SE by 16.0% (N=21)
and 21% (N=63), respectively. The only study (N=21) that
evaluated SOL found that the sensitive mode significantly
overestimated it by 11.5 minutes. Across the 3 studies (N=134),
differentiation of sleep from wake epochs by early-generation
nonsleep-staging Fitbit models when set to the sensitive mode
relative to PSG ranged from 0.66 to 0.78 in accuracy, from 0.64
to 0.78 in sensitivity, and from 0.79 to 0.89 in specificity.

Interdevice Reliability
A total of 3 studies evaluated interdevice reliability of
nonsleep-staging Fitbit models. In 1 of them, 3 participants
wore two Fitbit Classic bands on the same wrist, finding through
EBE comparisons high interdevice reliability (96.5%-99.1%)
[40]. Another study with 7 participants who wore two Fitbit
Ultra devices on the same wrist also substantiated essentially
equivalent between-device performance in estimating TST and
SE; findings for other sleep parameters were not reported [39].
Finally, the remaining study involving 10 participants who
simultaneously wore two Fitbit Alta devices on the wrist of
their nondominant arm found no significant difference between
the two devices in measuring WASO, but slight, yet statistically
significant, difference (approximately 6 minutes) between them
in measuring TST [32].

Discussion

Principal Findings
The quality and uses of personal monitoring technology are
rapidly advancing, offering the promise of extensive
improvement in medical literacy and health. An area of high
interest today to consumers and health professionals is sleep
quality because of its recognized importance to daytime
cognitive and physical performance. A number of wrist-worn
devices enable tracking of sleep parameters and stages. Some
of the most popular ones are marketed by Fitbit, Inc;
performance of several of its nonsleep-staging and sleep-staging
models have been evaluated against laboratory PSG, home sleep
trackers, or other methods. The objective of this systematic
review was to comprehensively evaluate the worthiness of these
consumer wristband devices in assessing sleep.

PSG is regarded as the gold standard for assessment of sleep
parameters and stages; in comparison to PSG, nonsleep-staging
Fitbit models overestimate TST and SE, underestimate WASO,
but determine SOL equally well. Moreover, the amount of bias
in estimating TST, SE, and WASO by such wristband models
is not negligible. EBE analyses demonstrate, in comparison to
laboratory PSG, the high accuracy and sensitivity of this type
of Fitbit model in detecting sleep; however, the analyses
demonstrate only modest specificity.

In 2007, the American Academy of Sleep Medicine certified
wrist actigraphy for at-home evaluation of sleep patterns of both
healthy adults and patients with certain suspected sleep disorders
[44]. However, several studies have found actigraphy used in

conjunction with any one of the four popular interpretative
algorithms [2] overestimates sleep duration; although its
sensitivity in detecting sleep is high (ie, between 0.87 and 0.99),
its specificity is low (ie, between 0.28 and 0.67) [3]. This is the
case because actigraphy and its interpretative algorithms tend
to score epochs of quiet wakefulness as sleep [45]. Studies that
compared nonsleep-staging Fitbit models with actigraphy
[23,25,29,32,33,39,40] revealed that Fitbit overestimates both
TST and SE and underestimates WASO. Only a single study
[25] assessed SOL relative to actigraphy; it found that Fitbit
significantly overestimated this sleep parameter, on average,
by 12 minutes. The single study [25] that performed EBE
analyses on the same participants who were simultaneously
outfitted with nonsleep-staging Fitbit and actigraph devices
reported only a minor (ie, approximately 1% higher) difference
in sensitivity and accuracy by Fitbit. In this regard,
nonsleep-staging Fitbit models enable user selection of either
normal or sensitive mode to measure body movement to derive
sleep parameters. The recommended normal mode only scores
significant body movements while in bed as awake time. In
contrast, the sensitive mode interprets nearly all such movements
as awake or restless sleep time [46]. Studies that evaluated Fitbit
devices relative to PSG when the devices were set to the
sensitive and normal modes reported that the sensitive mode,
compared to the normal mode, gave rise to notably higher bias
in estimating SOL, SE, WASO, and TST; the sensitive mode
also gave rise to lower accuracy and sensitivity but higher
specificity. These findings confirm the company’s
recommendation that the normal mode setting be used in most
instances.

Fitbit introduced its sleep-staging feature in 2017, which is now
incorporated into the Fitbit Charge 2, Fitbit Charge 3, Fitbit
Alta HR, Fitbit Versa, Fitbit Versa 2, Fitbit Blaze, and Fitbit
Ionic models. This feature relies on a combined body movement
and HRV algorithm to identify and estimate time spent in
individual sleep stages [5]. The Fitbit interpretative proprietary
sleep-staging algorithm was derived using machine learning
methods (ie, linear discriminant classifier) applied to three types
of parameters—motion, HRV, and respiratory rate, with the last
two calculated from heartbeat data sensed by
photoplethysmography—measured during a sleep study of 60
normal sleepers, 18-60 years of age (mean 34, SD 10). These
three groups of parameters led to an initial set of 180 features,
which, through the method of recursive feature elimination, was
reduced to 54 features. Subsequently, heartbeat-derived features
were compared to movement-derived features and found to be
of approximately equal importance in the overall classification
and discrimination of sleep versus wake epochs [22]. Based
on discussion with Fitbit, Inc, the same core hardware
technology and software algorithm have been incorporated into
all sleep-staging Fitbit models since their introduction in 2017,
thereby making feasible valid performance comparisons across
the published studies.

Thus far, only 3 qualifying studies investigated the performance
of the newer-generation Fitbit hardware- and software-coupled
technology relative to PSG [22,26,28]. Of these, 1 evaluated
the performance of Fitbit for two different—normal sleeper and
PLMS—cohorts, thereby increasing the number of possible
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comparisons to four, depending on the specific sleep parameters
evaluated in individual trials. Although these comparisons
showed that recent-generation Fitbit models display only
moderate accuracy in detecting sleep stages, they were much
better at estimating TST, SE, and WASO than were
early-generation, nonsleep-staging Fitbit models. Overall, the
amount of bias in estimating the majority of these sleep
parameters by new-generation Fitbit models in reference to PSG
was clinically negligible: less than 12 minutes in the three
comparisons in which TST was determined, 1.98% in the single
comparison in which SE was assessed [26], and less than 7
minutes in the three comparisons in which SOL was measured.
Meta-analysis of the published data also substantiated the lack
of a statistically significant difference between sleep-staging
Fitbit models and PSG in measuring WASO, TST, and SE, and
with effect sizes of differences in the range of small, even for
SOL. EBE analyses conducted on the data from the same four
comparisons also revealed high sensitivity (ie, between 0.95
and 0.96) and specificity (ie, between 0.58 and 0.69) in detecting
sleep. These four comparison trials involving sleep-staging
Fitbit models disclosed much higher specificity in detecting
sleep than all of the nonsleep-staging Fitbit model comparison
trials that reported specificity in the range of 0.10-0.52.
Moreover, three of these four comparisons found no significant
difference in WASO between methods of assessment. In
contrast, five comparisons consisting of nonsleep-staging Fitbit
models reported significant underestimation of WASO by 5.6-44
minutes. Collectively, these findings imply the body movement
and HRV sensor and software algorithm technology of
recent-generation sleep-staging Fitbit models, in comparison
to the early-generation ones, more accurately detects wake
epochs during intended sleep. These are very promising results,
since the major drawback of body activity and movement-based
trackers, such as actigraphs, is overestimation of sleep time and
poor sensitivity of detecting WASO (ie, poor differentiation of
wake from sleep epochs during spans of quiet bedtime activity)
[45,47].

A concern about commercially available personal monitors is
intra- and interdevice reliability. A total of 3 investigations
[32,39,40] addressed this matter and they all reported acceptable
consistency. The sole longitudinal (ie, 4 consecutive nights)
investigation [29] found no systematic internight difference in
TST and SE between Fitbit and actigraphy used as reference.
The authors of this study concluded that Fitbit can be a useful
device to assess trends in sleep quality, even though absolute
values of some sleep parameters might be biased [29]. Of these
studies, 1 reported a statistically significant, but nonetheless
clinically nonsignificant, interdevice difference (approximately
6 minutes) in measuring TST [32].

Subjective self-report survey and diary methods, even though
popular means of assessing sleep due to their ease of use and
low cost, are of limited value. Self-report survey approaches
depend on recall, which can be biased, especially when not
restricted to recent, single point-in-time experiences. Sleep diary
methods depend less on memory, but reported information may

not be sufficiently accurate because of poor awareness of certain
events, such as number or frequency of nighttime awakenings
and precise time of falling asleep [48]. Studies that compared
Fitbit models with sleep diary methods found a significant
correlation between the two approaches for TIB and TST.
Because of their simplicity and affordability, sleep survey and
diary approaches are generally favored over actigraphy;
however, the relatively inexpensive objective method of Fitbit
models, along with their ease of use and better estimation of
most sleep variables, may render them more appealing.

The findings of this systematic review pertaining to both
nonsleep-staging and sleep-staging Fitbit models are based on
our recent comprehensive search of databases for relevant
published articles, which was repeated three different times
during a 15-month span. The included research studies have
certain limitations (eg, more than half of them were performed
in a laboratory rather than a home setting, and participants were
mostly young or middle-aged normal sleepers). Moreover,
nonsignificant findings of studies with small sample sizes might
be the consequence of insufficient statistical power.
Furthermore, only 5 of the 22 qualifying published investigations
involved Fitbit sleep-staging models. An additional limitation
is a lack of published information as to the extent that advances
in Fitbit hardware and/or software technology explain the
described disparity in performance between the company’s
different generations of models in deriving sleep parameters
and stages. Based on our dialogue with company representatives,
this disparity is due collectively to advances in sensor
technology; improved fidelity of data acquisition; and
incorporation of heart rate, HRV, and body movement into its
sleep-study-validated proprietary interpretative algorithm. In
spite of these limitations, findings of this review indicate that
the advanced body movement and HRV method of
recent-generation Fitbit wristband models seems appropriate to
derive suitable estimates of sleep parameters and time spent in
sleep. The findings further suggest that such Fitbit models may
be useful for conduct of population-based sleep research, which,
in the past, typically relied heavily or entirely upon subjective
methods.

Conclusions
Fitbit models are marketed to the lay public to allow users to
self-derive knowledge about their sleep quality, rather than as
a substitute for standard clinical polysomnography. They appear
useful for the study of the 24-hour sleep-wake pattern and for
the determination of the duration, pattern, and quality of sleep,
longitudinally, over many consecutive nights under normal
living conditions. In this regard, individuals can benefit from
information obtained by wristband trackers to improve sleep
hygiene and sleep, itself. In certain cases, primary care and sleep
specialists can at least gain superficial perspective on the sleep
of patients. In spite of the fact that there has yet to be sufficient
evaluation of recent-generation sleep-staging Fitbit models,
findings of the few, thus far, published studies imply that their
performance in differentiating wake from sleep epochs is better
than that reported in the literature for actigraphy.
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