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Abstract

Background: Informed estimates claim that 80% to 99% of alarms set off in hospital units are false or clinically insignificant,
representing a cacophony of sounds that do not present a real danger to patients. These false alarms can lead to an alert overload
that causes a health care provider to miss important events that could be harmful or even life-threatening. As health care units
become more dependent on monitoring devices for patient care purposes, the alarm fatigue issue has to be addressed as a major
concern for the health care team as well as to enhance patient safety.

Objective: The main goal of this paper was to propose a feasible solution for the alarm fatigue problem by using an automatic
reasoning mechanism to decide how to notify members of the health care team. The aim was to reduce the number of notifications
sent by determining whether or not to group a set of alarms that occur over a short period of time to deliver them together, without
compromising patient safety.

Methods: This paper describes: (1) a model for supporting reasoning algorithms that decide how to notify caregivers to avoid
alarm fatigue; (2) an architecture for health systems that support patient monitoring and notification capabilities; and (3) a reasoning
algorithm that specifies how to notify caregivers by deciding whether to aggregate a group of alarms to avoid alarm fatigue.

Results: Experiments were used to demonstrate that providing a reasoning system can reduce the notifications received by the
caregivers by up to 99.3% (582/586) of the total alarms generated. Our experiments were evaluated through the use of a dataset
comprising patient monitoring data and vital signs recorded during 32 surgical cases where patients underwent anesthesia at the
Royal Adelaide Hospital. We present the results of our algorithm by using graphs we generated using the R language, where we
show whether the algorithm decided to deliver an alarm immediately or after a delay.

Conclusions: The experimental results strongly suggest that this reasoning algorithm is a useful strategy for avoiding alarm
fatigue. Although we evaluated our algorithm in an experimental environment, we tried to reproduce the context of a clinical
environment by using real-world patient data. Our future work is to reproduce the evaluation study based on more realistic clinical
conditions by increasing the number of patients, monitoring parameters, and types of alarm.
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Introduction

Alarm Fatigue
Information Technology (IT) has already provided significant
benefits to the health care sector, but there are still many areas
where the application of IT could offer further critical
improvements. For example, alarm fatigue, which has recently
been receiving attention from industry, the health care sector,
and the academic community, is a worldwide hospital problem.

Alarm fatigue involves a lack of response because of an
excessive number of noncritical alarms being received by health
care personnel, resulting in sensory overload and desensitization
[1-4]. To illustrate the severity of this problem that has been
treated as a major patient safety concern, scientific studies have
reported that there was an average of 700 physiologic monitor
alarms per patient per day [1]. Such a number indicates a severe
sensory overload for the health care staff, with serious
consequences for the well-being of the patients when an alarm
might be ignored.

In this paper, we present a new approach to coping with the
alarm fatigue problem, its most common causes, adverse
consequences, and strategies as compared with other solutions
published in the literature [5-9]. Our proposed solution for
addressing this issue uses an artificial intelligence (AI) approach
based on an automatic reasoning system that decides how to
notify caregivers about anomalies detected by a patient
monitoring system where a large volume of alarms could lead
to alarm fatigue. In other words, we are using IT to reduce the
number of notifications received by health care staff, so they
can be focused on the activities that truly need attention. Our
experiments were configured to alert nurses and were evaluated
through the use of a dataset comprising a wide range of patient
monitoring data and vital signs that were recorded during 32
surgical cases where patients underwent anesthesia at the Royal
Adelaide Hospital [10].

In this work, we aim at addressing 2 main research questions:
(1) How can an automatic reasoning system determine how to
notify caregivers about anomalies detected by a patient
monitoring system where a large volume of alarm leads to alarm
fatigue? (2) How to reason about avoiding alarm fatigue?

Our main goal with this case study is to find out whether to
group a set of alarms that happens within a short period of time
to deliver them together without compromising patient safety.
Our specific goal is to avoid that alarms of the same type for
the same patient can be alerted more than once within a short
period by using a notification delay strategy.

Theoretical Background

Related Work
A critical concern in hospitals that use monitoring devices to
track patients’ health is alarm fatigue. Tens of thousands of
alerts may go off throughout a hospital each day, and yet some
80% to 99% of these audible or visual alerts are false or nuisance

alarms, indicating conditions that do not require clinical
intervention [1-4]. Alarm fatigue represents a substantial issue
that can bring undesired consequences to health care
environments. For instance, the desensitization of a health care
team to alerts can lead to longer response times for handling
anomalies as well as possibly missing life-threatening events.
These examples illustrate the fact that sensory overload is very
likely to produce an unsafe environment for patients.

According to Sowan et al [6], the key issues causing alarm
fatigue and reducing trust in alarm systems are as follows: the
high incidence of nuisance alarms, the confusion in locating the
device sending out the alarm, unit layouts that hinder alarm
response, the inadequacy of alarm systems to alert nurses of
changes in patients’ conditions, and the complexity of new
monitoring systems, among others. The most important issues
interfering with alarm recognition and alarm response ranked
by the nurses in [6] were as follows: (1) frequent false alarms,
(2) difficulty in understanding alarm priorities, and (3) noise
competition from nonclinical devices.

Caring for patients and managing alarms simultaneously is a
very complex and demanding task, especially when health
providers are caring for multiple patients at the same time and
have been exposed to a high number of alarms generated by
physiological monitors. In addition to dealing with frequent
alarms, health care providers also perform other activities, such
as medication administration, patient assessments, and note
updates. Over time, they become fatigued and errors may occur
because of decreased attentiveness [5].

Considering the aforementioned scenario, a commonly
recommended solution to mitigate alarm fatigue is to adjust
alarm parameters on monitors to suit each patient’s conditions
rather than using default settings [5]. The works of Shanmugham
et al [5] and Sowan et al [6] are examples of studies that assess
the effect of modifying the default alarm settings provided by
the device manufacturers. According to their findings, the
nurses’ perceived workload was lower when the clinical alarm
threshold limits were modified according to patients’ clinical
conditions. They also concluded that the modification of alarm
settings affects the number of alarms accurately addressed, care
providers’ experience, and overall satisfaction.

Another strategy suggested to reduce the number of false alarms
and alarm fatigue is educating staff regarding alarm management
[6]. Sowan et al showed that their changes in default alarm
settings significantly reduced 24% of the total number of the
target alarms after their interventions, which included the
following: (1) re-education of intensive care unit (ICU) bedside
nurses on the appropriate use of the monitors, and (2) changing
default settings of some parameters on the cardiac monitors,
including the addition of an alarm delay by increasing the period
between the alarm detection and its triggering, among others.

However, despite the achievement of a significant reduction in
the alarm rate, they deem that the changing of default settings
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and better education regarding cardiac monitors are insufficient
to improve alarm system safety.

Scientific studies show that the quality of medical device alarms
is unsatisfactory, and it affects quality of care and patient safety.
One root cause is the poor quality of alarm-generating
algorithms. Therefore, from a clinical perspective, major
improvements in alarm algorithms are urgently needed [8].

To pursue this goal, different methods have been proposed and
investigated for use in the alarm systems of medical devices,
mostly from the fields of statistics and AI. Imhoff et al gave a
brief overview of different methods, including statistical
approaches (eg, improved data preprocessing, robust signal
extraction, segmentation, median filter, statistical process
control, and time series analysis for pattern detection, among
others) and AI methods, such as knowledge-based approaches,
knowledge discovery based on machine learning, neural
networks, random forests, fuzzy logic, and Bayesian networks
[8].

Regarding the methodological approaches to alarm management,
Imhoff et al present the 4 areas in which alarms can be
improved: (1) signal acquisition, that is, the interface between
patient and medical devices; (2) alarm generation, that is, the
algorithms that determine an alarm situation; (3) alarm
validation, that is, determining whether the alarm is actually
valid; (4) integration of multiple alarms, for example, from
different devices, into 1 or few alarms [8].

Successful quality improvement approaches included alteration
in default monitor presets, daily electrode change, alarm
customization, alarm management education, change in policy,
histogram-based pulse oximetry (SpO2), alarm tailoring,
improved displays to aid in nurse-patient assignment, and the
use of notification delays [10]. Notification delays are performed
with a middleware situated between the alarming medical device
and the clinicians’ receiver equipment such as a mobile phone.
Several studies found that introducing alarm delays prior to the
notification process could drop “false alarms” 25–67% [10].
Regarding the reduction of the total alarms, considering the
effects of these interventions, alarm quantities decreased
between 18.5% and as much as 89%, according to Winters et
al [9].

The major contribution of our work described in this paper is
mainly related to the integration/grouping of multiple alarms,
where we present the application of a new alarm algorithm to
reduce alarm fatigue. We evaluated our algorithm to reduce the
total number of alarms through the use of real patient data. Our
approach uses a notification delay approach to decide whether
to deliver a unique notification to caregivers instead of several
alarms for the same alarm situation. By using our system, we
reduced the notifications received by the caregivers by up to
99.3% (582/586) of the total alarms generated.

A Step Before Reasoning: The Anomaly Detection and
Alarm-Triggering Processes
Before presenting our reasoning mechanism, we outline
important concepts of the monitoring process developed in our
previous work related to coping with remote patient monitoring

[11,12]. In this section, we illustrate a more formal model for
the anomaly detection and the alarm-triggering processes that
are used in our system.

The default functioning of our notification system is to notify
a group of caregivers about anomalies detected in a patient’s
vital signs. The anomaly detection process works through
continuous monitoring of each patient’s vital signs. To verify
if an anomaly occurs, the readings are evaluated against anomaly
thresholds configured for each patient. If a reading for a patient
is more than a maximum or less than a minimum threshold
value, then the reading is considered to be anomalous and the
system triggers an alarm that is sent to the health care team.
The anomaly detection process and its related concepts such as
anomalies, alarms, and notifications are defined in the next
subsections.

Defining Thresholds and Anomalous Values
Anomaly thresholds for the sensors must be configured before
starting to monitor a patient. A threshold is a minimum and
maximum limit for a reading of a sensor S for a patient P, and
an anomaly is a value either below or above those limits. An
anomaly or anomalous value (AV) v∈AV(S,P) triggers an alarm
that is sent to the health care team. The threshold value for
sensor S connected to a patient P is designated threshold (S, P)
and the minimum and maximum values are v_min(S, P) and
v_max(S, P), respectively. We formally defined anomalies using
set theory as shown later.

Let AV(S,P) be the set of values that represent patient P’s AV
for the sensor S. Let us also consider that these values from S
belong to the set of real numbers. The AV(S,P) set is formally
defined as shown in Equation (1):

AVS,P={v| v∈R, v_min S,P>v>v_max S,P} (1)

Where:

1. The inequalities v<v_minS,P and v>v_maxS,P comprise
the thresholds for sensor S and patient P.

2. v_minS,P∈R, which represents the minimum limit, that is,
the value below which a sensor reading v is considered an
AV.

3. v_maxS,P∈R, representing the maximum limit, that is, the
value above which v is considered an anomaly.

We can define an anomaly detected by sensor as the function
An(v)=b that maps real numbers into Booleans (f: R→ Boolean)
where v∈R and is the value that represents a sensor reading,
and b={true, false} as shown below.

An(v)=true, if v∈AVS,P; false, otherwise. (2)

Defining Alarm, Anomaly Detection, and Notification
Events
In our system, we define the concepts of anomaly detection,
alarm triggering, and notification in terms of events, which are
represented as α, β, and μ, respectively.

The occurrence of an event α=“anomaly detected” means that
the function An(v) assumes the value “true” at a given time
defined as ANOMALY_DETECTION_TIME (Tα). The event
β=“alarm triggering,” in its turn, is defined as the action of
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triggering an alarm to indicate that an anomaly has been
detected. The time when an event β occurs is referred as
ALARM_TRIGGERING_TIME (Tβ). The third event we define
in this section is μ=“notification.” μ is the action of sending a
notification to a set of caregivers to inform them that an alarm
has been triggered. The time when an event μ occurs is referred
to as NOTIFICATION_TIME (Tμ).

Associated with the occurrence of these events, we have the
delays ALARM_TRIGGERING_DELAY (Dβ) and
NOTIFICATION_DELAY (Dμ), where Dβ represents the delay
between anomaly detection and its indication through an alarm
triggering and Dμ is the delay between an alarm triggering and
its notification to the caregivers. We show in Equations (3) and
(4) how the delays Dβ and Dμ are calculated according to the
time at which the events α, β, and μ occur.

Dβ=Tβ−Tα (3)

Dμ=Tμ−Tβ (4)

We can summarize the abovementioned explanation in a more
formal way through the event-trigger rules presented in
Equations (5) and (6):

φ1: α→β (5)

φ2: β→μ (6)

where α, β, and μ are the events; the symbol “→” represents
the action triggers; φ1 indicates that, when the event α occurs,
the event β is automatically triggered after the delay Dβ; and
φ2 indicates that event is automatically triggered Dμ time after
β occurs.

The parameterization of the events α, β, and μ is defined as
follows.

Α=<type, Tα > (7)

Β=<type, α, Tβ > (8)

Μ=<type, β, Tμ > (9)

where the parameter α for β event represents the event α; and
the parameter β for μ event represents the event “alarm
triggering” β.

Modeling Anomaly Detection, Alarm-Triggering, and
Notification
To illustrate the anomaly detection, alarm-triggering, and
notification processes, we present a state-transition diagram in
Figure 1. This figure presents a visual representation of the
following: (1) the possible states of the anomaly detection,
alarm-triggering, and notification processes; (2) the events such
as inputs that may result in transitions between states; and (3)
the transitions between states. We also show the conditions an
event requires to trigger a transition.

To formalize the concept of an anomaly, we present, through
the state-transition machine in Figure 2, the possible states for
an anomaly. Figure 2 presents the current anomaly detection
process, showing the 3 possible states of an anomaly: no
anomaly, anomaly alerted, and anomaly notified. The
interconnecting arrows represent the transitions between states,
and the labels on the arrows represent the events that make the
transitions occur.
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Figure 1. The state-transition machine showing the states involved in the anomaly detection, alarm-triggering, and notification processes.

Figure 2. The state-transition machine showing the possible states for an anomaly.

Now that the basic concepts anomaly, alarm, anomaly detection,
and notification needed for the reasoning process have been
defined, in the next sections we present our reasoning model,
system architecture, and algorithms.

Adding Reasoning to the System
In this section, we provide a brief description of how we apply
a reasoning engine to the alarms generated by the monitoring
devices being used to track a patient’s health status to minimize
alarm fatigue. The software system contains a component that
reads the vital signs (the reader) accompanied by a reasoning

engine that decides how to notify the health care team. The
reader can be set to ignore all the nonanomalous vital signs to
focus only on the AV that can require attention from the
caregivers’ team. An anomalous reading is then passed to the
reasoning engine that decides how to handle the reading. For
example, the reading could be used to cause an alarm to be
triggered immediately because the patient’s situation is deemed
critical; or readings could be accumulated as the situation is not
critical but can be attended to within a certain time period.
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The Alarm Fatigue-Aware Notification Model
Figure 3 presents our model designed to support reasoning
algorithms that decide on the best approach to notify caregivers
to avoid alarm fatigue. The reasoning algorithms, which are the

focus of this research, decide the following: (1) whether to
aggregate alarms, (2) whether to add a false alarm probability
(FAP) label to the notification, and (3) who to notify within the
group of caregivers.

Figure 3. An architecture designed for health care systems that support patient monitoring and notification capabilities. MPM: Multi-parametric Monitor;
API: Application Programming Interface.

System Architecture

Updating the Anomaly Detection, Alarm-Triggering,
and Notification Process Through the Addition of
Reasoning
Before presenting the reasoning algorithms, we show, in Figure
4, how the reasoning process interacts with the anomaly
detection, alarm-triggering, and notification processes.

Figure 5 is an update of Figure 2 including information related
to the reasoning activity.

To deal with the decision-making processes occurring during
reasoning, we developed the Reasoner entity that is an instance
of our reasoning algorithm. The Reasoner is responsible for
managing the entire notification process. A high-level
representation of the decision-making processes is shown in
Figure 6.
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Figure 4. Illustration of the inclusion of the state “Reasoning” (inside the hatched rectangle) that determines when an alarm trigger(s) causes a notification.
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Figure 5. Illustration of the inclusion of the new state “Anomaly alerted under reasoning” (inside the hatched rectangle) as another possible state for
an anomaly.
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Figure 6. A high-level representation of the decision-making processes used during reasoning. FAP: false alarm probability.

Reasoning About How to Notify to Avoid Alarm Fatigue
In this section, the reasoning algorithm that is used to mitigate
alarm fatigue is discussed. As has been mentioned, the default
behavior of our anomaly detection process is to trigger an alarm
every time an anomaly occurs, independent of circumstances.
For example, a notification would occur even though the alarm
was false, or a number of other alarms are happening. However,
even though an alarm has been triggered by our patient

monitoring system, the decision of how to notify the caregivers
is decided by the Reasoner, using the following rule R1, which
states:

• R1. Our system must limit to one of the number of
notifications (of the same type for the same patient) that
caregivers can receive within a defined period of time.
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MINIMUM_NOTIFICATION_INTERVAL
We define Minimum_Notification_Interval (MNI) as the
minimum interval of time between receiving 2 notifications by
the caregivers. The R1 rule is only applied when we are
considering notifications of the same type (TYPE_β) for the
same patient P.

Let μj and μj-1 be 2 notifications of the same type for a given
patient P. As shown in Equation (9), a notification can be
formally defined as μ=<TYPE_μ, Tμ, P>, and in this case we
can assume that TYPE_μj is equal to TYPE_μj-1 and also that
Pj is equal to Pj-1. The time Tμ, at which the notification occurs,
allows 2 notifications to be distinguished from each other. The
MNI can be formally defined in terms of the notifications μj

and μj-1 as shown below:

Tμj−Tμj−1>=MNI iff (TYPE_μj=TYPE_μj−1)∧(Pj=Pj−1)
(10)

The MNI value must be configured for each patient individually
based on patient’s context (both of the alarm sources, and
patient’s criticality).

The Inputs for Our Reasoning Algorithm Related to a
Notification
After explaining rule R1, we define the inputs (I) for our
algorithm as follows:

• I1—CURRENT_ALARM_TRIGGERING_TIME (Tβr).
Let βr be the current alarm that has been triggered and is
involved in the reasoning process, so the algorithm can
decide whether to add a delay to its delivery. The first input
for our algorithm is Tβr, that is, the time when the alarm
βr was triggered.

• I2—LAST_NOTIFICATION_TIME (Tμk). Let μk be the
last notification (of the same type as βr) received by the
caregivers. The second input for our reasoning algorithm
is the time when caregivers received μk, which we represent
as Tμk.

As we only consider here current alarms under reasoning and
last notifications of the same type and from the same patient,
we assume that the alarm types and patients are identical, that
is, TYPE_βr=TYPE_μk and Pβr=Pμk.

LAST_NOTIFICATION_PERIOD
Another definition is the Last_Notification_Period (LNP), which
is the period of time between the 2 inputs for our reasoning as
shown in Equation (11).

LNP=Tβr−Tμk (11)

The Outputs of Our Reasoning Algorithm Related to a
Notification
We next define the outputs (O) for our reasoning algorithm as
the 2 properties of notifications that can vary depending on the
circumstances under which they occur:

O1—NOTIFICATION_DELAY (Dμ). As discussed previously,
in Equation (4), Dμ is the period of time between the alarm

triggering event and the delivery of that notification to the
caregivers.

O2—NOTIFICATION_DATA (DATAμ). DATAμ refers to
the type of data a notification might contain, which depends on
the context of the alarm-triggering process, and it might range
from a single alarm βj to a set of alarms SET.

As much as possible, we try to keep the
NOTIFICATION_DELAY at a minimum so as not to prejudice
patient safety. However, to avoid alarm fatigue, the value for
this property can range over an acceptable range of time defined
as the BUFFERING_PERIOD, indicating that a
DELAY_PERIOD (ε) might be added to the delivery time of
the notification under specific conditions (defined in the next
section). The BUFFERING_PERIOD is the period of time one
or more alarms can be delayed (ie, be held in a buffer) before
being delivered to caregivers. See Equation (12).

0<BUFFERING_PERIOD<MNI (12)

From Equation (12), we show that an alarm might need to be
delayed up to a period equal to MNI. However, the
BUFFERING_PERIOD specified for an alarm or a set of alarms
should not surpass the value of MNI.

Defining the Grouping Criteria for Notification
Delivery—When We Shall Put an Alarm Into Our Buffer
As we said previously, the Reasoner decides the way of
delivering the alarm under reasoning (βr) by making choices
about whether to add a delay ε to its delivery and whether to
group βr with other alarms. To make these choices, the Reasoner
must take into consideration our defined inputs (Tβr and Tμk).
By analyzing these inputs, the Reasoner decides whether to
queue the current alarm βr, based on the following grouping
criteria:

• Criteria 1. A same-type alarm was already notified within
the MNI.

If caregivers were already notified in the LNP, then the current
alarm βr must be queued up into a buffer for the period
BUFFERING_PERIOD. After BUFFERING_PERIOD has
passed, βr is delivered along with other possible alarms in the
buffer as a unique notification.

Just to clarify, when the circumstances for the alarms do not
meet the abovementioned grouping criteria, a notification
containing an individual alarm is sent to the caregivers as soon
as an alarm has been triggered, that is, immediately after Tβr.

As important as it is to avoid alarm fatigue, the Reasoner must
handle the notification delivery process without compromising
patient safety. In this case, the delay added to the notification
delivery must not prejudice the requirements established
regarding patient safety.

The Pseudocode for Our Reasoning Algorithm About
How to Notify
The pseudocode for our reasoning algorithm about how to notify
is shown in Textbox 1.
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Textbox 1. The pseudocode for the reasoning about how to notify.

DEFINE LNP, Tβr, Tμk, MNI;

// Receive Input CURRENT_ALARM_TRIGGERING_TIME Tβr;

INPUT Tβr;

// Receive Input LAST_NOTIFICATION_TIME Tμk;

INPUT Tμk;

// Calculate LNP

LNP=Tβr−Tμk;

// If LNP is equals to Tβr (meaning that no notification μk occurred to the patient in the last MNI-period) or LNP is higher than or equal to MNI (which
means that a notification μk occurred more than MNI-period ago) then notify βr immediately. Otherwise, put βr into the buffer

If (LNP==Tβr ||LNP≥MNI) then

//There is no need for putting βr into the buffer. Notify it immediately

Notify(βr);

Else {

// We need to put βr into the buffer and deliver it after some delay

QueuedUp(βr)

// If βr is the first alarm been put into the buffer then {

Ìf (isAlarmTheFirstOneQueuedUp(βr)) then {

//Define buffer’s property STARTING_TIME as the time the alarm was triggered;

STARTING_TIME=Tβr;

//Create a new thread for handling the buffer in parallel. This thread needs to

//control the BUFFERING_PERIOD (BP) for notifying caregivers after BP has passed

Create a new thread;

Start BUFFERING_TIME;

If BUFFERING_PERIOD has passed then

//Release the content of buffer to caregivers by wrapping the set of alarms

//(alarmsSet) into a single notification and sending it

Notify(alarmsSet);

}

}

Methods

In this work, we present a new approach to cope with the alarm
fatigue problem. Our proposed solution focuses on an automatic
reasoner that is used to decide how to notify caregivers about
anomalies detected by a patient monitoring system through a
notification delay strategy.

To confirm the fulfillment of the main research goal, the
experiment described next was conducted and results are
tabulated in the Discussion section.

Hypotheses
We defined the following hypotheses for our case study:

1. The caregivers should not receive more than one notification
about the same type of anomaly for the same patient within
the MNI.

2. Patient safety will not be compromised by the use of the
reasoning algorithm about how to notify.

Methodology
To illustrate the operation of our reasoning algorithm, we
conducted 5 experiments to evaluate how the algorithm works
under different scenarios, considering mainly the number of
alarms generated in each experiment.

Applications Settings
As shown in Table 1, to run an experiment, we need to define
the following settings for our application scenarios:
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• The number of wards occupied by patients
(NUMBER_OF_WARDS).

• The number of patients being monitored
(NUMBER_OF_PATIENTS) by a caregiver team.

• The number of sensors used during monitoring
(NUMBER_OF_SENSORS).

• The interval in which the sensor readings are being
monitored (SENSORS_READING_INTERVAL).

• T h e  n u m b e r  o f  s e n s o r  r e a d i n g s
(NUMBER_OF_READINGS). This information, along
with the SENSORS_READING_INTERVAL, tells us how
long the patients in our experiment are being monitored.

We also need to define the thresholds for each sensor and the
MNI, considering each patient individually (Table 2). As has
been mentioned earlier, the MNI is defined by taking into
account both of the alarm sources, and the patient’s criticality
to respect patient safety constraints. In our simulated
environment, we defined the MNI value as 5 min for every
patient and we assume the delivery of the type of anomalies
triggered in our context (which are related to heart rate values)
can be delayed up to this period without representing any danger
for the patients.

All the inputs for our reasoning were provided through a vital
signs streaming app, we developed for streaming vital signs
retrieved from a dataset comprising real patient data recorded
from patients undergoing anesthesia at the Royal Adelaide
Hospital. The dataset provides clinical anesthesia monitoring

data from 32 entire surgical cases, including a wide range of
vital signs variables, such as electrocardiograph, pulse oximeter,
capnograph, noninvasive arterial blood pressure monitor, airway
flow, and pressure monitor, and in a few cases, a Y-piece
spirometer, an electroencephalogram monitor, and an arterial
blood pressure monitor [10]. The monitoring data were collected
using Philips IntelliVue MP70 and MP30 patient monitors and
Datex-Ohmeda Aestiva/5 anesthesia machines. In this dataset,
a single stream of raw monitoring data was recorded in a
comma-separated values (CSV) text file format at a sampling
resolution of 10 milliseconds [10].

We evaluated our algorithm by using data that we selected from
3 out of the 32 surgical cases in the dataset (cases 04, 07, and
14). Experiment 1 was conducted using data from case 4, while,
in experiment 2, we utilized data from case 14, and, finally,
experiments 3-5 were executed using data from case 7. In all
the experiments, we utilized the version of processed data
available in the CSV format for monitoring patients based on
their heart rate parameter at 1-second intervals (our algorithm
uses this frequency instead of the 10-millisecond sampling
resolution available at the dataset). However, the number and
type of vital signs used in every experiment could vary to
simulate other configurations for sensors and monitoring devices
in an ICU.

To define when a given heart rate reading represented an
anomalous value that should trigger an alarm, we defined the
thresholds in Table 2 for each patient.

Table 1. Defining the configuration for our 5 experiments.

Number of readingsSensors reading interval (ms)Number of sensorsNumber of patientsNumber of wards

60,0001000111

Table 2. Defining the anomaly thresholds of heart rate sensor for each patient.

Max_ heart rateMin_heart ratePatient_IDExperiment

1006011

1005522

1055033

1005044

1025055

Results

Application Details—Technologies Utilized
The application was developed in the Java language along with
the use of the RabbitMQ [13] message broker. RabbitMQ is an
open-source message broker that accepts, stores, and forwards
messages. The basic concepts behind this technology are Queue,
Producer, and Consumer (Figure 7). A Queue is essentially a
large message buffer that stores the messages, while a Producer
and a Consumer are both user applications. The former is a
program in charge of sending messages to the queue through
the exchanges, and the latter consists of a program that receives

messages from the queue. A program can be both a Producer
and a Consumer at the same time [13].

As can be seen from Figure 7, a broker receives messages from
publishers (producers) and routes them to the consumers. The
information flow involved in this process occurs in 2 steps,
described as follows:

• Step 1. The producers send messages to exchanges that act
by distributing messages to queues using rules called
bindings.

• Step 2. The broker either delivers messages to consumers
subscribed to queues or consumes pull messages from
queues on demand.
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Figure 7. Basic concepts and information flow in RabbitMQ.

In this application, we used the Advanced Message Queuing
Protocol 0-9-1 Java client provided by RabbitMQ, which is an
open and general-purpose protocol for messaging.

Owing to the high volume of notifications we are dealing with
in our application, we decided to utilize a solution that could
take care of the nonfunctional requirements of our system. By
using a solution to handle problems related to scalability and
safety, we could focus on the functional requirements of our
application. Therefore, we decided to use the RabbitMQ to meet
the high availability, throughput, and scale requirements of our
application domain. This message broker solution offers features
related to data safety such as reliable delivery, which means it
can ensure that messages are always delivered, even
encountering failures such as network failures and consumer
application failures [13].

Explaining How Our Application Works
In a high abstraction level, the main idea of this app is to have
an application that sends alarms to a broker that routes them to

a consumer app that represents the receiving of these alarms by
the health care team.

We chose the type of exchange called topic for routing the
messages. The topic exchange routes messages to one or many
queues based on matchings between a message routing key and
the pattern that is used to bind a queue to an exchange. We
declared one queue named sensor_readings to where the
publisher sends the data and the consumer receives data. We
also declared the binding key for our consumer (ie, the class
that is consuming heart rate data) as #.heartrate (Figure 8).

The routing key is defined based on the pattern
<patientID>.<heartrateValue>. For example, we could have a
routing key as 16.88, representing a patientID=16 and
heartrateValue=88.

The notifications sent to health providers are created based on
this message. In this case, the final notification received by
nurses contains information related to the patient, such as
identification, location, and vital signs.

Figure 8. RabbitMQ scheme utilized in our application.

Application Modeling—Class Diagram
In Figure 9, as can be seen from the class diagram for our
application, the consumer application monitors a specific vital
sign based on the anomalies settings defined for each patient.
The consumer app invokes the reasoning mechanism through
the ReasoningAboutHowToNotify class, which knows how to
notify based on the defined notifications settings (eg, the MNI
value configured for each patient).

We present the results of our algorithm by using graphs we
generated using the R language and the ggplot2 [14] library.
The graphs shown in Figures 10-13 illustrate the delivery
process of all notifications related to the patient monitored in
experiment 5 (PatientID=5). We show whether the algorithm
decided to deliver an alarm immediately or after a delay by
grouping alarms to deliver them together.

To better visualize the results of experiment 5 through the
graphs, we split the output data of our algorithm for this

experiment (comprising a total of 204 alarms) into 4 pieces of
data containing 51 alarms each. Thus, we plot each piece of
data into a graph, showing the alarm triggering time through
the x-axis and the notification time on the y-axis. As can be seen
from Figure 10, the occurrence of the first notification
(NotificationID=1) of an alarm of heart rate for patient 5
happened at the notification time 2019-10-01 02:21:41.767,
that is, almost immediately after the occurrence of the first alarm
(that happened at the alarm triggering time 2019-10-01
02:21:41.746). Following the strategy of our reasoning
algorithm, the next notification of an alarm of heart rate for this
patient should not be received by the caregivers before MNI.
As in this experiment MNI corresponds to 5 min, the timestamp
for the next delivery of a heart rate alarm related to patient 5
should occur at least 5 min after 2019-10-01 02:21:41.767. As
can be seen in Figure 10, the next heart rate alarms for patient
5 were held in the alarms buffer and delivered together at the
timestamp 2019-10-01 02:26:41.77 as a unique notification
(NotificationID=2) with a delay of approximately 5 min.
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Figure 9. The class diagram for our application, where the consumer application monitors a specific vital sign based on the anomalies settings defined
for each patient.

Figure 10. Illustration of the results of the alarm triggering and delivery processes related to the patient monitored in our experiment 5 (PatientID=5).
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Figure 11. Illustration of the results of the alarm triggering and delivery processes related to the patient monitored in our experiment 5 (PatientID=5).

Figure 12. Illustration of the results of the alarm triggering and delivery processes related to the patient monitored in our experiment 5 (PatientID=5).
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Figure 13. Illustration of the results of the alarm triggering and delivery processes related to the patient monitored in our experiment 5 (PatientID=5).

Figures 14-18 illustrates the results of the delivery processes
related to all patients monitored in our experiments
(PatientID=1,2,3,4, and 5, respectively).

We show the results for all of our experiments summarized in
Table 3, where we can compare the number of alarms triggered
by our system in each experiment with the number of
notifications delivered to the caregivers.

Figure 14. Illustration of the results of the delivery process related to all our experiments.
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Figure 15. Illustration of the results of the delivery process related to all our experiments.

Figure 16. Illustration of the results of the delivery process related to all our experiments.
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Figure 17. Illustration of the results of the delivery process related to all our experiments.

Figure 18. Illustration of the results of the delivery process related to all our experiments.
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Table 3. Results of our experiments to evaluate our reasoning algorithm about how to notify caregivers considering the reduction of the number of
notifications received by them.

Reduction in alarms received, %Notifications in relation to the total of alarms, %Heart rate notifications,Heart rate alarms, nExperiment

99.00.944071

99.20.734232

99.00.933083

99.30.645864

99.00.922045

Discussion

The first hypothesis we want to evaluate with this case study
says that the caregivers should not receive more than one
notification about the same type of anomaly for the same patient
within the defined MNI. By executing our reasoning algorithm
throughout the experiments, we saw that hypothesis 1 holds for
all of them, as within all the occurrences of notifications for
each patient, there is no occurrence of a notification of the same
type within the defined MNI. We support this affirmation by
presenting, in Figures 14-18, a summary of the results from our
experiments using graphs containing all notifications that
occurred in each experiment. As can be seen, considering all
experiments, there was no occurrence of delivery of notifications
of the same type for the same patient that happened before the
specified delay, that is, the MNI value of 5 min.

The second hypothesis that says that patient safety will not be
compromised by the use of the reasoning algorithm about how
to notify also holds, as the notification interval (MNI) we
defined is no longer than 5 min. This means that a group of
alarms that are happening to a given patient can be held in a
buffer for, at most, 5 min before the buffer is fully released to
the caregivers as a unique notification. However, in order not
to prejudice patient safety, the first occurrence of an alarm is
always delivered to the caregivers immediately after its
occurrence. In this case, only the next occurrences of the alarms
are delivered to caregivers with the addition of a given delay.

In Table 3, we made a comparison between the number of
alarms triggered by our system and the number of notifications

delivered to the caregivers, in each experiment. These results
show that the reduction of the notifications received by the
caregivers can be up to 99.3% (582/586) of the total of alarms,
with a mean of 99.17% (1912/1928) of reduction in the number
of total alarms, considering all the experiments.

According to Winters et al, nearly all studies assume that a
reduction in the number of total alarms and/or false alarms will
reduce alarm fatigue [9]. Thus, by presenting these results, we
expect that our algorithm can be used as a useful strategy for
avoiding alert fatigue. We also expect our approach can be
useful for helping to prevent its negative consequences, such
as disruption of patient care, disabling of alarm systems by staff,
reduction in responding, lack of caregiver response, and real
events being less likely to be acted on, among others.

In future work, we are planning to extend our approach to reason
about whether to notify the caregivers’ team with an indication
of a FAP. The idea is to provide a reliable classification system
in which caregivers may trust so the FAP label added to the
notification can help them prioritize their work, especially when
they are under alarm fatigue conditions.

Other important future work focuses on how to use reasoning
to decide whom to notify within the group of caregivers,
considering their specialization level, degree of experience,
availability, geolocation, and current workload conditions.

Note that our system is experimental and does not consider
security, something that needs to be taken very seriously in an
operational health care alarm system.
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