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The first attempts to translate neuronal activity into commands
to control external devices were made in monkeys yet in 1960s
[1]. After that, during 1960-1970, the biological feedback was
realized in monkeys, to provide voluntary control of the firing
rate of cortical neurons [2,3]. The term “brain-computer
interface” appeared only in earlier 1970s [4]. The
brain-computer interface is usually referred to as a
“brain-machine interface” in invasive studies. Nowadays, the
brain-computer interface and brain-machine interface research
and applications are considered one of the most exciting
interdisciplinary areas of science and technology.

In particular, brain-computer interfaces are very promising for
neurorehabilitation of sensory and motor disabilities [5],
neurocommunication [6], exoskeletons [7], cognitive state
evaluation [8], etc. Advanced mathematical methods for
extraction and classification of neuronal activity features hold
out hope for the future use of brain-computer interfaces in
everyday life. At the same time, the lack of effective invasive
neuroimaging techniques providing a high-resolution neural
activity recording for medical purposes limits the brain-machine
interface implementation in clinics.

In their paper, Elon Musk and Neuralink [9] have successfully
addressed the major issues hampering the next generation of
invasive brain-computer interface (or brain-machine interface)

development by introducing a novel integrated platform enabling
a high-quality registration of thousands of channels. Their device
contains arrays of flexible electrode threads with up to 3072
electrodes per array, distributed across 96 threads. To overcome
a surgical limitation, the authors have built a neurosurgical robot
that inserts 6 threads per minute with a micrometer spatial
precision. To increase the biocompatibility, they created a
neurosurgical robot, which implants polymer probes much faster
and more safely than existing surgical approaches. Using this
platform in freely moving rats, the authors report a spiking yield
of up to 85.5%.

Although the developed system is considered an effective
platform for research in rodents, it can serve as an invasive
neurointerface prototype for clinical applications. Specifically,
multielectrode neurointerfaces may become the basis for new
communication systems and advanced assistive technologies
for paralyzed people as well as control external devices and
interact with the entire environment, eg, by integrating into new
fast developed technologies, such as Smart Home and Internet
of Things. Moreover, the brain-computer interface applications
are very promising for detecting hidden information in the user’s
brain, which cannot be revealed by conventional communication
channels. Currently, the use of noninvasive brain-computer
interfaces in these fields is limited by a low number of
commands that can be recognized. This limitation arises from
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a relatively small number of features, which can be extracted
from the scalp-level electroencephalography or functional
near-infrared spectroscopy recordings. The invasive
brain-computer interfaces (or brain-machine interfaces)
demonstrate much better performance than noninvasive
brain-computer interfaces; however, they require a larger
number of channels to obtain more detailed information about
the individual spiking activity of the neurons across distributed
cortical regions. The device reported in the paper of Elon Musk
and Neuralink approaches the solution to this problem.

One of the most promising applications of noninvasive
brain-computer interfaces is monitoring, control, and training
of human’s psychophysiological states and cognitive abilities.
In such studies, the subject’s mental state is continuously
evaluated by the passive brain-computer interface. The passive
brain-computer interface analyzes the current brain activity of
the user without any aim to control command generation and
provides information about features of the actual brain activity
related to attention, emotional state, fatigue, etc [10]. These
top-down processes originating on the cortical level are spatially
distributed and relatively slow, and therefore, they have
well-pronounced markers on the noninvasive
electroencephalography and functional near-infrared
spectroscopy signals.

However, in the case of spatially localized neuronal activity,
the noninvasive techniques are unable to recognize distinguished
features of neurophysiological diseases in real time, and
therefore, one needs to insert electrodes into particular brain
regions. For example, to predict epileptic seizures, the neuronal
activity must be recorded from predefined focal areas of the
brain, where an earlier manifestation of this pathological activity
is mostly pronounced and can be promptly detected in real time
[11]. Recently, an efficient method for epilepsy prediction based
on electrical brain activity was proposed [12,13]. The method
allows forecasting a focal seizure up to 5 seconds before it
occurs. This time is sufficient for a brain-machine interface to
generate a proper signal, which suppresses the forthcoming
seizure. For drug-resistant patients, the complete abolishment
of epileptic seizures might be achieved by a brain-machine

interface/brain-computer interface that predicts a seizure onset,
combined with a system that interferes with the process that
causes the seizure. Thus, seizure prediction remains an
unresolved problem due to insufficient information about neural
processes in the onset brain area. Therefore, one possible and
very important clinical application of the Neuralink technology
is a brain-machine interface for patients with drug-resistant
epilepsy. These brain-machine interfaces should imply the brain
stimulation (electrical, magnetic, optogenetic, etc) to interrupt
or even prevent epileptic seizures. The stimulation can be
delivered to the brain in either an open-loop or a closed-loop
fashion. In the former case, there is no need to monitor the
current brain activity, since the stimulation is activated manually
or in accordance with a predefined stimulation protocol.

As an example of the open-loop system, in Figure 1a,we present
the vagus nerve stimulator manufactured by Cyberonics, Inc
(Texas, United States) in 1977. The stimulator contains an
implantable pulse generator and an electrode to stimulate the
left vagus nerve in a repetitive “duty cycle” (“on” for 30 seconds
and then “off” for 5 minutes), which allows reducing the number
of seizures by an average of 30%–40% [14]. Along with the
vagus nerve stimulator, other open-loop antiepileptic devices
are also used for deep brain stimulation. One of the first
open-loop deep brain stimulators was the stimulator of the
anterior nucleus of the thalamus in epilepsy proposed by
Medtronic, Inc (United States) for patients with partial-onset
epilepsy [15] (Figure 1b).

Although the open-loop systems enable a significant reduction
in the number of epileptic seizures, it is obvious that a more
efficient control of epileptic activity requires continuous
monitoring of the current brain activity, which can be achieved
by using closed-loop brain-machine interfaces. One of the first
closed-loop brain-machine interfaces was the responsive
neurostimulator designed by Neuropace Inc. (California, United
States; Figure 1c). It contains implanted electrodes for recording
the intracranial electroencephalography used by the algorithm,
which determines the moment of time when a seizure starts. To
interrupt the seizure, the triggered focal electrical stimulation
is sent to a specific brain area [16].
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Figure 1. The schematic illustration of brain-machine interface prototypes to suppress epileptic seizures using electrical stimulation. (a) Vagus nerve
stimulator containing (1) an implantable pulse generator and (2) a stimulation lead. (b) Stimulator of the anterior nucleus of the thalamus in epilepsy
containing (1) an implantable pulse generator and (2) intracranial electrodes placed in the anterior thalamic nuclei bilaterally. (c) Responsive neurostimulator
containing (1) implanted deep electrodes for recording electroencephalography signals, (2) an implantable device for processing electroencephalography
signals from electrodes, and (3) strip electrodes receiving an electrical stimulation signal generated by the device to stop seizures.

It is important to point out that epileptic seizures are well
detected using electrocorticography or intracranial
electroencephalography, which display a pronounced marker
of the high-amplitude rhythmic activity. Recent studies reported
a 100% accuracy of this technique in detecting epileptic seizures
in rats [17]. Since the preictal activity may not differ from a
normal behavior, the prediction of seizures is a very challenging
task. Although existing algorithms allow seizure predictions
with high sensitivity, they are too complicated and too specific
to be used in clinics [18]. One of the closed-loop systems for
the seizure prediction and prevention was recently tested in vivo
in rats [11] (Figure 2). The seizure prediction algorithm was
based on the electrocorticography signals recorded by three
electrodes in the cortex and the thalamus, as shown in Figure
2a. The brain-machine interface was able to correctly predict
45% seizures, but the number of false predictions varied from

20 to 100 per hour among animals. In this regard, one can expect
that the technique developed by Elon Musk and Neuralink with
thousands of channels will significantly improve seizure
prediction. The large number of registered channels will increase
classification accuracy in pre-epileptic state recognition and
decrease the number of false positives during light slow wave
sleep. This is indeed a step toward the next generation of
brain-machine interfaces for drug-resistant epilepsy. The
accurate seizure prediction algorithm based on the multichannel
Neuralink technology enables the prevention of ongoing seizures
and protects the patient against unnecessary stimulations caused
by false alarms. Thanks to the developed brain-machine interface
platform with thousands of channels, significant progress is
expected in solving this important problem, enabling new
clinical trials for patients resistant to drug therapy.
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Figure 2. (a) Schematic representation of the experiments with a rat. (b) The set of electrocorticography recordings taken from subgranular layers 4
(Ctx4) and 5 (Ctx5) of the somatosensory cortex and postero/lateral thalamus before and during onset of the epileptic spike-wave discharge. (c)
Histological verification of the electrode location in the somatosensory cortex (S1) and postero/lateral thalamus (based on data from [<xref ref-type="bibr"
rid="ref11">11</xref>]). Th: thalamus.

Another type of brain dynamics associated with spatially
localized cortical sources is a motor-related neuronal activity.
This problem has a significant social impact. Today, most
brain-computer interfaces and brain-machine interfaces are
designed for patients with severe motor disorders. The
brain-computer interface allows a disabled person to control
wheelchairs, exoskeletons, and robotic manipulators by
generating commands via voluntary changes of brain activity
in the motor cortex induced by motor imagery. For instance,
these brain-computer interfaces are used to control a cursor or
a wheelchair in two dimensions with the intention of moving
the left or right hand [19]. However, the performance of such
noninvasive brain-computer interfaces for movement control
is limited by a small number of commands. Studies on animals,
primarily monkeys, have shown the effectiveness of invasive
registration of cortical neuron activity to create an effective
brain-machine interface for controlling more complex
movements. In 2008, an invasive interface was implemented,
which allows a monkey to control an anthropomorphic
manipulator [20]. In the experiment, the signal from 15-25
cortical units was recorded in the monkey, to control a robotic
arm to feed itself. The monkey performed a continuous
self-feeding task with a mean success rate of 69.5%. Similar
results were obtained with an invasive interface that controlled
the lower limbs [21] or both hands simultaneously (bimanual
movements) [22] using cortical activity patterns.

It should be noted that the use of invasive brain-machine
interfaces allows patients with tetraplegia to perform reach and
grasp tasks with a robotic arm manipulator [23]. At the same
time, the brain-machine interface implementation in humans is
still not employed in clinical practice due to surgical difficulties
and the problems of biocompatibility. In this context, the
proposed neurosurgical robot can be considered an important
step toward human implants. A significant advantage of the
robot is its rapid manipulation to insert six-electrode threads

per minute in addition to its capacity in precisely inserting the
most biocompatible polymer probes. Another potential clinical
application of the brain-machine interface might be the
restoration of neuronal connections, lost due to degenerative
diseases, such as Alzheimer disease, or replacement of dead
neurons with artificial ones. Comprehensive studies covering
many aspects of this issue are currently underway [24].

Finally, we would like to draw attention to the importance of
the neural activity modulation in the next-generation
brain-machine interfaces. This possibility is essential for
applications such as neuroprosthetics in order to provide
biological feedback as a sense of touch [25], and new therapeutic
approaches for patients with drug-resistant epilepsy in order to
prevent ongoing seizures by the appropriate electric stimulation
[26]. In view of the foregoing, the authors of the paper highlight
the capability of their custom electronics to deliver an electrical
stimulation to every channel, but unfortunately, do not present
these results in the paper. It would be interesting to know how
the authors plan to deliver electrical pulses to cells and record
the neural activity simultaneously, in particular, whether the
stimulation preserves the potential for simultaneous recording
of the neural activity with the minimized effect of
stimulus-induced artifacts. If this issue is successfully addressed,
it would become possible to interact with the neural activity in
the continuous manner instead of the neuron stimulation with
the electrical pulses in a discrete closed-loop fashion. Nowadays,
this is achieved by the optogenetic brain stimulation [27,28]
with the help of hybrid optoelectronic interfaces [29] and
thought to be a substantial advantage of optogenetics over the
electrical stimulation and recording.

One of the main obstacles for clinical applications of implanted
devices is their low biocompatibility that does not allow
long-term recordings. Elon Musk and Neuralink approach this
problem by utilizing a biocompatible polyimide, which
encapsulates a gold thin film trace. By choosing electrically
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conducted materials, one has to play between impedance and
biocompatibility. The authors tested the
polyethylenedioxythiophene-doped polymer with polystyrene
sulfonate and iridium oxide and achieved lower impedance for
the former, but better biocompatibility for the latter. They
promise to continue research in this direction and extend their
techniques and processes to other types of conductive electrode
materials and coatings.

Last, but not the least, are the unpleasant consequences of this
work that we should pay attention to, since every achievement
of humanity has two sides. On one hand, it intends to improve
the quality of life, but on the other hand, it can be used by
unscrupulous people for their selfish goals. Therefore, every
scientist should think not only about a positive impact of his/her
research, but also about its possible negative effects. Among
the undesired effects of brain-machine interfaces with electrodes
implanted into the human brain is the possibility that a

government or a nongovernmental organization will control
and manipulate the person’s behavior not only through mass
media, but also by directly sending commands to the brain. In
this regard, numerous debates about ethics of using
brain-machine interfaces are currently underway in the media.

In summary, the novel neurointerface by Elon Musk and
Neurolink has all chances to become a real step forward to the
next generation of brain-machine interfaces for both research
and clinical applications. Invasive interfaces can help disabled
people control external devices and communicate with other
people. We believe that future communication technologies will
be based on brain-computer interfaces that will read brain signals
and translate them to messages, which then will be sent to
mobile or other devices. Furthermore, invasive brain-machine
interfaces will allow a direct communication between people
by their thoughts.
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