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Abstract

Background: Telemonitoring of symptoms and physiological signs has been suggested as a means of early detection of chronic
obstructive pulmonary disease (COPD) exacerbations, with a view to instituting timely treatment. However, algorithms to identify
exacerbations result in frequent false-positive results and increased workload. Machine learning, when applied to predictive
modelling, can determine patterns of risk factors useful for improving prediction quality.

Objective: Our objectives were to (1) establish whether machine learning techniques applied to telemonitoring datasets improve
prediction of hospital admissions and decisions to start corticosteroids, and (2) determine whether the addition of weather data
further improves such predictions.

Methods: We used daily symptoms, physiological measures, and medication data, with baseline demography, COPD severity,
quality of life, and hospital admissions from a pilot and large randomized controlled trial of telemonitoring in COPD. We linked
weather data from the United Kingdom meteorological service. We used feature selection and extraction techniques for time
series to construct up to 153 predictive patterns (features) from symptom, medication, and physiological measurements. We used
the resulting variables to construct predictive models fitted to training sets of patients and compared them with common
symptom-counting algorithms.

Results: We had a mean 363 days of telemonitoring data from 135 patients. The two most practical traditional score-counting
algorithms, restricted to cases with complete data, resulted in area under the receiver operating characteristic curve (AUC)
estimates of 0.60 (95% CI 0.51-0.69) and 0.58 (95% CI 0.50-0.67) for predicting admissions based on a single day’s readings.
However, in a real-world scenario allowing for missing data, with greater numbers of patient daily data and hospitalizations

(N=57,150, N+=55, respectively), the performance of all the traditional algorithms fell, including those based on 2 days’ data.
One of the most frequently used algorithms performed no better than chance. All considered machine learning models demonstrated
significant improvements; the best machine learning algorithm based on 57,150 episodes resulted in an aggregated AUC of 0.74
(95% CI 0.67-0.80). Adding weather data measurements did not improve the predictive performance of the best model (AUC
0.74, 95% CI 0.69-0.79). To achieve an 80% true-positive rate (sensitivity), the traditional algorithms were associated with an
80% false-positive rate: our algorithm halved this rate to approximately 40% (specificity approximately 60%). The machine
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learning algorithm was moderately superior to the best symptom-counting algorithm (AUC 0.77, 95% CI 0.74-0.79 vs AUC 0.66,
95% CI 0.63-0.68) at predicting the need for corticosteroids.

Conclusions: Early detection and management of COPD remains an important goal given its huge personal and economic costs.
Machine learning approaches, which can be tailored to an individual’s baseline profile and can learn from experience of the
individual patient, are superior to existing predictive algorithms and show promise in achieving this goal.

Trial Registration: International Standard Randomized Controlled Trial Number ISRCTN96634935;
http://www.isrctn.com/ISRCTN96634935 (Archived by WebCite at http://www.webcitation.org/722YkuhAz)

(J Med Internet Res 2018;20(9):e263) doi: 10.2196/jmir.9227
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Introduction

Background
Exacerbations of chronic obstructive pulmonary disease (COPD)
are a major cause of acute hospitalizations. Prompt intervention
with antibiotics and corticosteroids may prevent admissions
and improve quality of life [1,2], but difficulties in recognizing
early symptoms of deterioration [3] often result in delays in
accessing care [2,4] and starting treatment. Telemonitoring of
symptoms and physiological measurements has been advocated
to facilitate early identification and treatment of exacerbations.
However, despite patients’ perceptions [4], the evidence from
randomized controlled trials that telehealth prevents admissions
is less than convincing [5-9]. One reason for this is that, far
from clarifying the early detection of exacerbations, previously
employed algorithms (typically based on international
definitions of exacerbations [10]) generate frequent, clinically
unnecessary alerts [11].

New symptom-based algorithms have been designed to improve
identification and assessment of established exacerbations
[12,13]. There is some evidence that a composite measure
combining oxygen saturation and heart rate with symptoms may
predict deteriorations requiring treatment with antibiotics or
corticosteroids [14], although these physiological measures
have marked day-to-day variation, which may obscure subtle
changes due to early exacerbations in individual patients [15].
The optimal algorithm is thus not yet clear.

Recently, there have been major advances in developing
computational and statistical methods for analyzing noisy,
incomplete data, broadly described as machine learning and
data mining [16,17]. When applied to predictive modelling,
such methods can determine patterns of risk factors useful for
improving the quality of predictions. This is in contrast to
conventional algorithms, which typically use a small number
of established risk factors. However, these techniques are not
yet in use for predicting hospital admissions for COPD in
patients undergoing telemonitoring.

Objective
Data from the Telescot COPD telemonitoring program [4,11]
included daily symptom and physiological measures, which
could be linked with health care use (consultations, prescription
of medication, and hospital admission); baseline data on age,

severity of COPD, comorbidity, and anxiety and depression
scores; and contextual data (such as weather conditions from
the Met Office (the United Kingdom [UK] meteorological
service) [18]. Using machine learning and high-dimensional
data mining, we aimed to use this large dataset to identify
patterns predictive of hospital admissions or decisions to start
corticosteroids.

Methods

The Telescot COPD trial (ISRCTN 96634935) [11] was
undertaken in 2009-2011 preceded by a pilot study [4] in 2008
in Lothian, Scotland. Ethical approval was granted by the
Lothian research ethics committee (reference 08/S1101/60),
with UK National Health Service (NHS) management approval
from NHS Lothian, Scotland.

Datasets and Handling
The telemonitoring database of day-to-day symptoms and
physiological measures from the Telescot COPD trial [11] and
pilot study [4] was held by the NHS. These were linked in the
Lothian safe haven with trial data held by the research team and
hospital admission data. Datasets were deidentified before
analysis.

The Telemonitoring Dataset
The Telescot COPD program [4,11] included 146 patients who
had moderate to severe COPD (forced expiratory volume in the
first second of expiration [FEV1] and forced vital capacity both
<70%) and at least one admission to hospital in the previous
year for an exacerbation of COPD. They recorded data with
some gaps over an average of 16 months. Patients were asked
to provide daily symptoms and physiological readings (pulse
and oxygen saturation, and a subset of the study population also
provided spirometry data on a less regular basis) and to record
antibiotic and corticosteroid use. The symptom score was based
on the presence of major symptoms (scored 2) or minor
symptoms (scored 1) based on the work of Anthonisen et al
[19] and others [2,10,11,15] (see Textbox 1). Data were checked
daily by a respiratory professional or trained telehealth monitor,
and patients were contacted if their symptom score rose above
5. Acceptable ranges for pulse rate and oxygen saturation were
set individually, and patients were contacted if readings fell
beyond these ranges.
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Textbox 1. Definitions of chronic obstructive pulmonary disease exacerbation onsets on day t used as predictors of hospital admissions on day t+1.
Note that the last 3 definitions cannot be used for this evaluation unless an early detection can be made, as they detect an onset of an exacerbation with
a 1-day delay. For these definitions, we report an approximate upper bound on the predictive performance under the assumption that the exacerbations
can be detected.

1. Major symptoms
a. Breathlessness, sputum color, and sputum amount.

2. Minor symptoms
a. Cold, wheeze, sore throat, cough, and fever.

3. Symptom counts
a. nMajor = number of major symptoms present on day t,

b. nMinor = number of minor symptoms present on day t,

c. nAll = nMajor + nMinor.

4. Definitions
a. Definition 1 (after Anthonisen et al. [19]): nMajor≥2.

b. Definition 2 (modification of Rodriguez-Roisin [10]): nAll≥5.

c. Definition 3 (modification of Exacerbation 1 as in Seemungal et al. 2]): define a 'bad day' as one where (nMajor≥2) or ([nMajor=1] and
[nMinor≥1]). An exacerbation is said to occur on day t if days t and t +1 are bad, but days t –1 and t –2 are not bad.

d. Definition 4 (modification of Seemungal et al. 2] as in Burton et al. 15): Like Definition 3, but a bad day is defined as one where (nMajor≥1)
and (nAll≥3).

e. Definition 5 (after Pinnock et al. 11): An exacerbation is said to occur on day t if:
i. (nAll≥5) on day t, or

ii. (nAll=4) on day t and (nAll≥4) on day t +1.

Trial Data
Baseline trial data on demographic characteristics, body mass
index, spirometry, Medical Research Council Dyspnoea Scale
[20], Hospital Anxiety and Depression Scale [21], St George’s
Respiratory Questionnaire [22], previous hospital admissions,
and comorbidity were also available. At the end of the trial, we
searched hospital records for admissions during the trial, and 2
clinicians determined whether the admission was due to COPD,
partly due to COPD, or unrelated to COPD.

Met Office Health Forecasting Data
The UK Met Office Healthy Outlook service uses a rule-based
model, combining observed and forecast parameters, including
season, humidity, temperature, air quality, and rates of
influenza-like illness to issue forecasts. These have been shown
to provide a 10-day warning of periods of higher risk of COPD
exacerbations at a population level [18], but it is unclear whether
this is predictive at an individual level. We hypothesized that
including Met Office data along with telemonitoring and
baseline data would improve the algorithm’s prediction. We
therefore combined the telemonitoring dataset with the Met
Office COPD health forecasting dataset. This consisted of the
outputs of the Met Office’s Healthy Outlook COPD alert
algorithm [18], maximum and mean temperatures in the last 48
hours, and 3 binary temperature indicators (mean temperature
<2°C, maximum temperature <4°C, and maximum temperature
<7°C).

Choice of Outcomes
We gave patients taking part in the study an individualized
action plan, which typically advised starting antibiotics if their
symptom score exceeded 5, so antibiotic courses were very
frequent events. As a proxy for more serious exacerbations, we
tested the prediction of two main outcomes: admission to
hospital for COPD and initiation of oral corticosteroid treatment.

Preprocessing
We defined patient episodes as sliding windows of
patient-generated data for a fixed number of consecutive days
up to the current day (inputs), linked to the admission or
corticosteroid outcome on the following day (output).

We considered the simple score-counting algorithm in the
complete-data setting, where we used only episodes without
any missing symptom variables to compute risk scores for 1-
or 2-day windows. Additionally, we evaluated the
score-counting algorithms and the machine learning models in
the imputation setting using identical patient episodes, where
we imputed each missing variable by copying the last
observation of that variable for that patient for up to 15 days.
We excluded episodes where the outcome variable was missing
and patient episodes where we could not impute the observations
due to long windows of no provided data. Where we used
imputation, for each variable in the patient episode, we defined
an auxiliary indicator to encode whether the input variable was
imputed or provided by patient; we used these auxiliary variables
as additional inputs into the machine learning models. Note that
the sample size and the number of admissions for the imputation
setting were higher than those for the complete-data setting.

J Med Internet Res 2018 | vol. 20 | iss. 9 | e263 | p. 3http://www.jmir.org/2018/9/e263/
(page number not for citation purposes)

Orchard et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


For example, if some measurements were not reported prior to
a hospital admission, then we excluded the episode from the
complete-data analysis, but we could retain it in the imputed
setting when the reported variables were exact and the missing
variables were imputed.

Data Analysis
We identified a large number of potentially predictive features
by using established data mining techniques (see below) and
tested them in combinations using nested cross-validation
procedures, where we selected and extracted the feature by using
only the inner training folds of data. Because data were
incomplete, we conducted separate analyses (1) limited to time
periods with no missing data, and (2) from all time periods with
imputation of missing data.

Identification of Novel Features
For each patient, we constructed up to 153 predictive patterns
(features) from symptom, medication, and physiological
measurements, by using feature extraction techniques for time
series [23,24], hypothesized to be predictive of the future events
[2] (see Multimedia Appendix 1). The exact number varied
between the complete and imputed settings and depended on
which types of variables (telemonitoring, weather, and their
combinations) we used as inputs. We imputed variables
measured at baseline by using population medians for the
continuous variables or population modes for the categorical
variables, and we assumed the variables to be fixed (stationary)
throughout the study. We used the resulting variables to
construct predictive models fitted to the training sets of patients.
We used only the past, and not the future, variables for imputing
the missing variables or constructing the time-series features
for each patient episode. The resulting variables were combined
to learn additional features in the hidden layers (neural nets),
used for computing feature-space similarity functions
(nonparametric methods), or combined with feature selection
by filtering [25] to set priors on hyperparameters (adaptive
regularized classifiers) during training. When we used the output
variables directly or indirectly to select or extract the features
during training, we ensured that the procedure was nested within
the training folds, so that the data used for the evaluations
remained unseen.

Standard Exacerbation Models
We considered several definitions of exacerbations based on
the criteria of Anthonisen et al [19] and clinical guidelines [26]
and used in studies on COPD exacerbations [2,10,11,15]. Major
symptoms were changes in patients’ self-reported
breathlessness, sputum color, and sputum amount, and minor
symptoms were cold, wheeze, sore throat, cough, and fever.
Using definitions from the literature, we considered 5 definitions
of exacerbation (Textbox 1). We evaluated the onsets of
exacerbations on a given day (t) as predictors of admissions the
following day (t +1). Note that, from the considered definitions,
only definitions 1 and 2 could be used for this type of evaluation.
For example, definition 3 is defined as the presence of at least
two consecutive days of major symptoms, or one major and at
least one minor symptom, with the exacerbation onset taken to
be the first day when the symptom criteria are met [1,2,27],

whereas definition 4 is its slight modification [15]. Thus, for
definitions 3 to 5, by using the exacerbation indicator on day t
as a marker of an admission on day t +1, we evaluated an upper
bound on the predictive performance under the assumption that
these exacerbations can be detected early (eg, by making
accurate predictions of the future symptoms).

Novel Predictive Modeling
We assessed how well we could predict hospital admissions
and decisions to start corticosteroid treatment in patients
undergoing telemonitoring using the extracted features. We
considered several types of models. (1) Nonparametric
predictive methods, such as sparse maximum-margin classifiers
[16,28,29]: these approaches allow for complex mappings from
covariates to target outcomes to obtain high-quality “black-box”
predictions. (2) Regularized classifiers based on the adaptive
extensions of elastic nets [30]: in low dimensions, these methods
have the advantage of generating intelligible predictions, but
they may sometimes result in lower predictive performance
than nonparametric methods or ensembles due to rigid
constraints on the mappings between covariates and outcomes.
(3) Ensembles of boosted classifiers [31] that we expected to
be well suited for dealing with highly imbalanced datasets such
as ours (where the number of episodes corresponding to COPD
admissions was several orders of magnitude lower than the
number of episodes without admissions). (4) Long short-term
memory multitask neural network models: these methods are
state-of-the-art for speech recognition, where very large datasets
are available [32]. However, we found their performance to be
only a little better than that of the other models for our smaller
incomplete imbalanced dataset. We considered these models
using the preprocessing strategy discussed above and using
training by a variant of back-propagation for recurrent networks.

We repeated the procedure by considering features occurring
(1) 24 hours prior to hospitalization or earlier, and (2) 24 hours
prior to the decision to start corticosteroids or earlier. We fitted
models 1 and 2 by regressing the outcomes on telemonitoring
only (physiological, medication, and symptom variables),
weather variables only, and telemonitoring and weather variables
jointly. We used the more computationally expensive models
(3 and 4) for regressing the outcomes on the telemonitoring
variables in the imputed scenario. Hyperparameters were learned
by the grid search (models 1 and 2) or by random search (models
3 and 4) over inner folds in the nested cross-validation
procedure.

We compared these methods with the conventional algorithms
using multiple definitions of exacerbations from Textbox 1 as
predictors of the future clinical admissions and corticosteroid
therapy.

Validation of Novel Predictive Models
To test this range of models, we used k-fold cross-validation,
in which we split the data into k disjoint subsets (“folds”) of
equal size, and fitted the models repeatedly to k –1 training
folds, evaluating them on the remaining test fold. The procedure
was repeated k times, and the overall performance was evaluated
by aggregating the results across the test folds. During the nested
cross-validation, we performed the cross-validation procedure

J Med Internet Res 2018 | vol. 20 | iss. 9 | e263 | p. 4http://www.jmir.org/2018/9/e263/
(page number not for citation purposes)

Orchard et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


for each choice of test data in a nested loop, where we used the
inner training folds for feature extraction and selection and for
estimating model parameters, we used the inner validation folds
for estimating hyperparameters (such as the degree of model
complexity), and we used the outer test folds purely for the
performance evaluation. In our implementation of the procedure,
we ensured that the test outer folds were made up of individuals
who did not appear in the training sets or the inner folds (ie, we
used no patient episodes for individuals from test datasets as
any part of the training data). Thus, we used the outer test sets
of patients purely for evaluations, and not for variable selection,
parameter learning, or hyperparameter learning. We evaluated
the predictive performance expressed as the aggregated area
under the receiver operating characteristic curve (AUC), a
calibration-invariant measure of predictive performance of
binary classifiers. The aggregation was achieved by merging
the predictions of the classifiers across the test folds and by
averaging the merged AUC across multiple repetitions of
cross-validation with the random fold partitions.

Experimental Comparison
We excluded 11 individuals with more than 95% missing data
and analyzed data for 135 individuals who provided symptoms
and physiological measurements regularly. We chose the outer
folds to have approximately the same number of patient
episodes, although an equal splitting could not be guaranteed,
as patients had unequal numbers of the reported measurements.
We used 10 inner and 10 outer folds of the nested
cross-validation procedure for all but the most computationally
expensive models. To evaluate the variation in the performance,
we used 10 runs of the nested cross-validation with different
training or test fold partitions.

We evaluated simple score-counting algorithms that did not
need long series of past symptoms to generate predictions, both
in the complete and in the imputation scenarios. We used
machine learning models that needed longer sequences of
partially missing past observations in the imputation scenario.
In that scenario, we excluded all patient episodes that we could
not impute according to the considered procedure due to too
much data being missing. For a fair comparison of multiple
models, we ensured the consistency of the imputations and
patient episodes across the folds.

Results

Predicting Hospital Admissions of Individuals
In the complete-data scenario, we evaluated how well the
traditional definitions of exacerbation onset on one day predicted
24-hour hospital admissions the following day, using the
definitions from Textbox 1. Depending on the choice of the
algorithm, we had between 14,106 and 17,610 patient episodes,
and between 8 and 17 hospital admissions. We obtained the
best predictions by using definition 5 (mean AUC 0.657, 95%
CI 0.523-0.792, N=16,170 patient episodes, where we computed
the error bars on the AUC as the consensus estimate of the
methods of empirical resampling, Chebyshev, and DeLong and

colleagues [33]; Table 1); however, we based this estimate on

a dataset with only N+=9 admissions. Additionally, using this
definition, an exacerbation starting on one day could only be
detected when the score remained elevated the following day
(see Textbox 1), making it impractical for predicting an
admission on the second day. Score-counting algorithms
definitions 1 and 2, where onsets of exacerbations are computed
on a single day, resulted in the AUC estimates of 0.600 (95%
CI 0.509-0.692) and 0.578 (95% CI 0.496-0.672), respectively,

for N=17,610 episodes and N+=17 admissions (Table 1).

When evaluated in the pragmatic imputed-data scenario allowing
for missing data, with a greater number of patient episodes
(N=57,150) and a greater number of hospital admissions
preceded by the symptom and physiological measurements

(N+=55), the performance of all the traditional definitions of
exacerbation dropped to near random. For example, for
definition 2, we obtained an AUC of 0.524 (95% CI
0.486-0.544); see Table 1. The most likely reason for this drop
was the need to rely on a simple imputation strategy due to the
limited availability of daily symptom data on the days preceding
hospital admissions.

Machine learning models demonstrated significant
improvements in the prediction of future admissions over the
traditional symptom-counting methods. Working with the
imputed-data scenario, the best machine learning model (neural
net) using telemonitoring data resulted in the aggregated AUC
of 0.740 (95% CI 0.673-0.803) evaluated on test data for

N=57,150 episodes, N+=55 admissions (Table 1). The other
machine learning models had similar performance, with the
mean aggregated AUC of 0.721-0.738, which shows that the
improvement over symptom scores could be achieved across a
range of models (see Multimedia Appendix 2). To achieve an
80% true-positive rate (sensitivity), the traditional algorithms
were associated with an 80% false-positive rate (20%
specificity); our algorithm halved this rate to approximately
40% (specificity around 60%).

Adding the weather data (the Healthy Outlook criterion and the
additional weather-related variables) to the telemonitoring
measurements resulted in no significant improvement in the
predictive performance of the best model, with the aggregated

AUC of 0.739 (95% CI 0.685-0.794, N=57,150, N+=55). This
cannot be explained by the weather variables being correlated
with the telehealth variables, as the best model using the weather
data only had the near-random AUC of 0.526 (95% CI

0.504-0.548, N=107,078, N+=151).

The best model for admissions refitted to the entire dataset
following the model selection used 135 variables and was
difficult to characterize. By linearizing its outputs, we found
that the factors contributing most to the predictions included
all 3 groups of variables collected by telemonitoring, together
with current smoking status: current symptoms, current and
delayed physiological measures, and current and delayed
self-reported medications.
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Table 1. Predictive accuracy of hospital admission and use of corticosteroids of different definitions of exacerbation.

Samples, NEvents, N+AUCa (empirical 95% CI)PracticalDescription

Prediction of 24-hour admissions using exacerbation definitions, complete data

17,610170.600 (0.509-0.692)YesDefinition 1

17,610170.578 (0.496-0.672)YesDefinition 2

14,10680.553 (0.440-0.666)NoDefinition 3

14,10680.490 (0.424-0.556)NoDefinition 4

16,17090.657 (0.523-0.792)NoDefinition 5

Prediction of 24-hour admissions using exacerbation definitions, imputed data

57,150550.513 (0.477-0.551)YesDefinition 1

57,150550.524 (0.486-0.544)YesDefinition 2

56,702550.496 (0.471-0.521)NoDefinition 3

56,702550.505 (0.473-0.536)NoDefinition 4

57,150550.517 (0.479-0.555)NoDefinition 5

Prediction of 24-hour corticosteroid decisions using exacerbation definitions, complete data

97682380.655 (0.630-0.679)YesDefinition 1

97682380.605 (0.581-0.628)YesDefinition 2

84891780.568 (0.544-0.592)NoDefinition 3

84891780.544 (0.522-0.567)NoDefinition 4

93222370.646 (0.622-0.670)NoDefinition 5

Prediction of 24-hour corticosteroid decisions using exacerbation definitions, imputed data

13,8993160.660 (0.639-0.681)YesDefinition 1

13,8993160.605 (0.585-0.625)YesDefinition 2

10,4422280.564 (0.543-0.586)NoDefinition 3

10,4422280.543 (0.524-0.564)NoDefinition 4

12,4773160.647 (0.626-0.668)NoDefinition 5

Prediction of 24-hour admissions using machine learning models, imputed data

57,150550.740 (0.673-0.803)YesMachine learning model

Prediction of 24-hour corticosteroid decisions using exacerbation definitions, imputed data

13,5033160.765 (0.738-0.791)YesMachine learning model

aAUC: area under the receiver operating characteristic curve.

Predicting Peaks in Symptom Scores in Populations
The Healthy Outlook [18] algorithm and the weather variables
did not improve the quality of predictions of hospital admissions
for individuals in our dataset. However, at the population level
we found that, over some contiguous time periods,
predominantly during fall and winter, prediction of the 2-week
population-averaged baseline-adjusted symptom score using
the Healthy Outlook variables outperformed the prediction of
the simple delayed baseline-adjusted symptom score. The
Spearman correlation between the true and the predicted
outcomes over the test data folds increased from 0.44-0.55 (the
lagged heuristic) to 0.66-0.75 (Healthy Outlook), and the
Kendall rank correlation increased from 0.27-0.38 to 0.44-0.52.
See Multimedia Appendix 1 for additional detail.

Predicting Individuals Starting Corticosteroids
In contrast to the prediction of hospital admissions, the standard
score-counting algorithms were moderately predictive of
decisions to start corticosteroid treatments, both in the
complete-data and in the imputed-data scenario. Here, we
included in the analysis only episodes where patients reported
not taking corticosteroids on the first day of the exacerbation.
The onset events were defined as taking corticosteroids on the
following day. Using definition 1 (Textbox 1), we obtained an
AUC of 0.655 (95% CI 0.630-0.679) for the complete-data

scenario with N=9768 episodes and N+=238 corticosteroid
therapy onsets (Table 1). In the imputed-data scenario, we
obtained an AUC of 0.660 (95% CI 0.639-0.681) with N=13,899

episodes and N+=316 corticosteroid therapy onsets. Although
the machine learning models helped to improve the predictions,
leading to an AUC of 0.765 (95% CI 0.738-0.791) on the test
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datasets, this improvement was relatively lower than in the case
of predicting the admissions. The algorithm for predicting
corticosteroid onsets (a nonparametric model) used 153 features,
where the most important one, as suggested by linearizing, was
the total symptom score on the current day.

Discussion

Principal Results
In the context of telemonitoring, traditional algorithms of
predicting exacerbations with imputation of missing symptom
data were no better than chance when they were used for
predicting a COPD admission over the subsequent 24 hours,
and were only a little better than chance in the subset with
complete data provided by patients. The performance of machine
learning algorithms was considerably more accurate and, in
practice and subject to some conditions, would have halved the
number of false alerts in comparison with the traditional method
(see Multimedia Appendix 1 for additional detail). The algorithm
readily identified those at high and low risk of admission,
suggesting that, in a resource-constrained environment, a simple
triage strategy for targeting additional care could be based on
using the output of our method. Adding meteorological data
did not significantly enhance the accuracy of the model at an
individual level, although it did so, to some extent, at a group
level for the prediction of average baseline-adjusted symptom
scores, which could be of value to service planners. We found
that both the standard symptom-counting algorithms and the
machine learning algorithms were reasonably accurate for
predicting the decision to start corticosteroids within 24 hours.

Limitations
Despite the Telescot COPD trial [11] being one of the largest
individually randomized trials of telehealth in COPD, the
absolute number of admissions immediately preceded by a
complete record of physiological and symptom variables was
relatively small, which may have reduced the reliability of the
algorithm.

The lack of a gold standard definition for what constitutes an
exacerbation is a challenge to research in this area. Many mild
to moderate exacerbations were defined by medication use, and
patients’ individualized management plans advised
commencement of antibiotics with an increase in symptoms
(eg, if their sputum was dark green). Some also kept
corticosteroids, which they took if they were very breathless or
wheezy. This self-management may have interfered with what
would otherwise have been the natural history of the
exacerbation, reducing the relationship between some symptoms
and signs and the outcome (hospital admission), but potentially
strengthening the relationship between some components of the
algorithm and decision to start corticosteroids. Nonetheless, we
find the fact that the machine learning algorithm can predict
future admissions despite adjusting for self-reported medications
to be encouraging.

One methodological limitation of our approach is its reliance
on cross-validation, rather than multiple independent cohorts,
for evaluations of the predictive performance. In addition to
ignoring possible covariate or distribution shifts across multiple

cohorts, another well-known disadvantage of cross-validation
is the complexity of approximating confidence intervals of the
performance measures [34], especially for small or imbalanced
datasets. The use of a resampling approach such as
cross-validation was unavoidable given the small number of
large telemonitoring trials for COPD. Further validations in
unrelated datasets will be needed to confirm our findings. One
strength of our approach is the use of complementary machine
learning methods in the derivation of the optimal algorithm and
consistency of the findings across the methods. The considered
methods included regularized parametric and kernel methods,
boosting, and representation learning. A limitation of our
approach is its reliance on fixed-length feature vectors extracted
from time-series data, rather than variable-length predictors.
We argue that, although there have been some recent works on
using variable-length approaches for time-series predictions
[35], they demonstrated superior performance over other
methods when the number of cases exceeded ours by several
orders of magnitude, and they were not extensively compared
with sparse classifiers reliant on imputation methods. The closest
match to such models from those we considered—the long
short-term memory with the imputation strategy described
above—did not improve on the other models. Handling the
systematic missingness in variable-length conditional models
is an actively researched area that will be considered in the
future, and which is likely to become useful once bigger
telemonitoring datasets are collected. In this study, we used
imputation by forward-feeding, which is arguably one of the
most practical approaches at the point of inference when access
to past data is limited; other techniques may potentially be
considered.

The aim of this study was to demonstrate the potential of
machine learning for predicting COPD admissions and
corticosteroid use, not to elucidate the effects of each feature
or combination of features under different adjustments. Modern
artificial intelligence methods for predicting clinical events use
hundreds or even thousands of features to predict clinical
outcomes [34,36]. Due to complex architectures and interactions
between multiple variables, it is challenging to estimate the
effects of each feature [37,38]. In this study, we investigated
the effects only of classes of variables (telehealth,
weather-related, and their combinations) rather than each single
variable. This is a general limitation of high-dimensional
methods; future work is needed to investigate the marginal and
conditional effects, and a validation in a device trial will be
needed prior to translation to clinical practice.

A limitation of our work is that some of the measures were
available at only 1 or 2 time points (eg, anxiety and depression
scores, quality of life, exercise or physical activity data, and
smoking status were assessed at the beginning and end of the
1-year trial), and time-series data might have been more
informative. Other multicomponent scores known to be
predictive of COPD outcomes (such as the body mass index,
obstruction, dyspnea, exercise index [39] or dyspnea,
obstruction, smoking, exacerbation index [40]) might have been
useful predictors, as would serial FEV1 and more detailed serial
information on medication changes. Our machine learning
platform is extendable to such new types of data sources that
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may include systematic or informative missingness, which is
the strength of the approach.

Comparison With Prior Work
Interest in the development of more accurate predictive
algorithms using machine learning is increasing;
Sanchez-Morillo and colleagues [41] in a recent review
concluded that, while some of these show promise, they have
been based on relatively small numbers of patients and events
[42,43]. They require validation in larger samples of patients,
for longer periods of time. The closest to ours is probably the
very recent work of Shah et al [44], who used logistic regression
to predict future exacerbations and showed that using pulse rate,
oxygen saturation, and respiratory rate (from a pulse oximeter)
showed improved predictivity when compared with traditional
algorithms of COPD exacerbations. Our result in respect of the
value of meteorological data is consistent with the work of
Steventon et al [45] on the impact of Healthy Outlook on
admission rates.

Conclusions
The early detection and management of COPD remains an
important goal given the huge personal and economic costs of
the condition. Machine learning approaches, which can be
tailored to an individual’s baseline profile and can learn from
experience of the individual patient, show promise in achieving
this goal. There is a need for larger datasets with which to
develop more accurate algorithms; however, the lack of an effect
of telehealth in COPD demonstrated in trials has effectively
discouraged large implementations of the technology. One
solution (if governance regulations can be overcome) is to
amalgamate existing international datasets. Another may be to
explore the ability of algorithms to predict moderate
(nonhospitalized) exacerbations with all the challenges
highlighted above. Additionally, the potential of machine
learning to elucidate optimal interventions should be explored.
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