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Abstract

Background: The growth in the availability of personal genomic data to nonexperts poses multiple challenges to human-computer
interaction research; data are highly sensitive, complex, and have health implications for individuals and families. However, there
has been little research on how nonexpert users explore their genomic data.

Objective: We focus on how to support nonexperts in exploring and comparing their own personal genomic report with those
of other people. We designed and evaluated CrossGenomics, a novel tool for comparing personal genetic reports, which enables
exploration of shared and unshared genetic variants. Focusing on communicating comparative impact, rarity, and certainty, we
evaluated alternative novel interactive prototypes.

Methods: We conducted 3 user studies. The first focuses on assessing the usability and understandability of a prototype that
facilitates the comparison of reports from 2 family members. Following a design iteration, we studied how various prototypes
support the comparison of genetic reports of a 4-person family. Finally, we evaluated the needs of early adopters—people who
share their genetic reports publicly for comparing their genetic reports with that of others.

Results: In the first study, sunburst- and Venn-based comparisons of two genomes led to significantly higher domain
comprehension, compared with the linear comparison and with the commonly used tabular format. However, results show gaps
between objective and subjective comprehension, as sunburst users reported significantly lower perceived understanding and
higher levels of confusion than the users of the tabular report. In the second study, users who were allowed to switch between
the different comparison views presented higher comprehension levels, as well as more complex reasoning than users who were
limited to a single comparison view. In the third study, 35% (17/49) reported learning something new from comparing their own
data with another person’s data. Users indicated that filtering and toggling between comparison views were the most useful
features.

Conclusions: Our findings (1) highlight features and visualizations that show strengths in facilitating user comprehension of
genomic data, (2) demonstrate the value of affording users the flexibility to examine the same report using multiple views, and
(3) emphasize users’ needs in comparison of genomic data. We conclude with design implications for engaging nonexperts with
complex multidimensional genomic data.

(J Med Internet Res 2018;20(9):e10297) doi: 10.2196/10297
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Introduction

Overview
Recent years have seen a sharp increase in the availability of
personal genomic data to nonexpert consumers. People with no
formal training in genetics can get access to their genomic
information by sending a saliva sample to a direct-to-consumer
genetic testing provider, and results are delivered using a Web
app. Users then must interpret large amounts of complex data
involving sensitive issues such as disease risk and carrier status.
The interpretation of the data may impact lifestyle decisions,
emotional state, and well-being of users and their biological
family members.

The availability of extant and complex data in need of
understanding by nonexperts is an opportunity for
human-computer interaction (HCI) research [1]. Identifying
user needs and developing novel ways to help users understand
their personal genomic data can make a substantial impact on
the well-being of people. However, to date, HCI research on
interaction with personal genomic data is in its infancy. Studies
that investigated the information practices of personal genomic
data users found that nonexperts seek to contextualize and
compare their personal data with others (eg, family members
and others with similar medical conditions) [2,3]. The
family-relevant nature of genetic data highlights the need for
tools to enable nonexperts to explore not only their own data
but also to compare and contrast it with the data of others.

We present CrossGenomics, the first tool to date for nonexpert
engagement with multiple gene variant reports. The tool
facilitates the exploration of shared genomic information among
family members or a comparison of genomic information with
others. Such comparisons enable users to explore what variants
they share with others and what sets them apart, thus increasing
the understanding of their genetic makeup and enriching the
genomic narrative people can construct. There has been a
growing interest in exploring how people form social ties around
health conditions caused or influenced by genetic
characteristics—what Kuznetsov et al have called biosociality
[2]. In this paper, we discuss findings from 2 user studies
focusing on assessing the usability and understandability of
comparing genetic reports of family members using alternative
prototypes of CrossGenomics. In the third study, we explore
how people engage with genomic information of famous people,
thereby drawing on the public availability of personal genomic
information of a few known people, the growing interest in
biosociality, and the trend of self-comparison with celebrities,
which is increasingly evident in popular culture [4,5].

Beyond the domain of personal genomics, this study expands
on a growing body of work, which identifies needs and
opportunities to design information-tracking tools for
collaborative monitoring of and reflection on family health
[4,6-8]. In particular, the paper makes the following
contributions: (1) presenting the iterative design and evaluation
for a tool that facilitates multidimensional and multiperson
comparisons of complex personal data, (2) analyzing the
differences between objective comprehension and perceived
understanding and shedding light on discrepancies between

subjective and objective knowledge, and (3) exploring user
needs in the context comparing personal genetic data across
individuals.

Background

Nonexpert Engagement With Personal Informatics
Our work on communicating personal genomics to nonexperts
draws upon an increasing body of work in personal informatics,
which investigates how to make personal data more
understandable for nonexpert users and more embedded in
everyday lives of people. Rooksby et al proposed the term Lived
Informatics to highlight that collecting and using personal
information is embedded in day-to-day lives of people [9]. A
widely accepted model of how people use personal informatics
tools is the 5-stage model of Li et al [10], which describes the
iterative transition between preparation, collection, integration,
reflection, and action. This model had been extended by
differentiating stages of reflection [11,12] and characterizing
challenges in lived informatics for diverse goals of users [13].

Researchers have also studied design interventions and
guidelines for making personal data more understandable and
accessible for nonexperts. For example, Rapp and Cena
investigated usage patterns, information needs, and challenges
of naïve users or those who are new to personal informatics.
Their findings highlight important differences compared with
experienced users, including reduced tolerance to practical
difficulties, ambiguous representations, and unintuitive
interaction modalities [14]. They also proposed design strategies
to address these issues [14] and studied the impact of a new
personal informatics system designed to address the needs of
naïve users [15]. Epstein et al visualized subsets of collected
location and physical activity data using a variety of
presentations [16]. Bentley et al developed a system that
aggregates multiple aspects of personal well-being data and
provides people with insights based on complex relations using
natural language [17]. They showed that users were able to
understand complex relationships and change their behavior to
improve their well-being.

Designing for nonexpert engagement with personal genomics
shares goals with personal informatics. However, there are some
important aspects unique to personal genomics, including the
dynamic nature of its interpretation (as new scientific discoveries
are made), and the varying levels of certainty of evidence
regarding the implications of the data for well-being of a person.
In addition, although personal genomic data are deeply personal
and sensitive, they are shared across biological family members
and communities. In this study, we focus on the shared aspect
of the data, allowing individuals to compare their genomic
information with relevant others.

Nonexpert Engagement With Personal Genomic
Information
Direct nonexpert user engagement with personal genomic
information has been relatively understudied in the HCI field
[18]. Several studies investigated the motivation for and
subjective experience of genetic testing and of using interactive
tools to understand results [19,20].
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Leighton et al [19] found that nonexperts misinterpret genetic
testing results without appropriate assistance. Kuznetsov et al
[2] presented users with their own 23andMe data to understand
how they make sense of and contextualize their results. Shaer
et al [3] studied how nonexperts who participate in the Personal
Genome Project explore their own data. They found that similar
to other types of personal information [9], engaging with
personal genomics could serve a goal, such as finding
information about family ancestry and medical history, or be
driven by more general curiosity. Their findings also indicate
that nonexperts seek to understand their personal genomic
information in the context of other individuals, ancestry
information, and family medical history.

Exploring the impact of specific report designs, Haga et al [21]
studied alternative formats for a text-based genetic laboratory
report. Shaer et al [3] compared alternative designs of visual
genetic variant reports and showed that a bubble-chart
visualization is more effective than other design approaches.
On the basis of this finding, they developed a visual tool for
nonexperts to explore their own personal genomics information
[22]. In this study, we draw on design recommendations
introduced by Shaer et al [22] and apply them to the design of
a multiperson genetic report that supports the comparison of
multiple genomes.

Sharing and Exploring Health Data
In recent years, we have witnessed the rise of cocuration in
health and medical contexts by nonexperts [23]. Websites such
as TuDiabetes, PatientsLikeMe, and Eat.ly help users to make
sense of their experiences and conditions by presenting, sharing,
and commenting on health knowledge [24-26]. These websites
can elicit new concepts for nonexpert health care vocabularies,
coding sets, and classifications [25]. In a first effort to facilitate
shared genomic data exploration among biological family
members by nonexperts, we designed and evaluated
CrossGenomics, which enables users to explore what variants
they have in common with others.

Comparing Genetic Information
Visual tools that compare personal genomic data of different
people were introduced by industry with nonexperts, but such
tools focus on ancestry exploration. A visualization offered by
23andMe presents shared chromosomal segments between
individuals but does not enable comparison and exploration of
health and trait information. Several visual tools are available
for comparing multiple genomes, including Ensembl [27], IGV
[28], Gitools [29], Circos [30], Genome Data Viewer [31], and
OMICtools [32]. However, these tools were designed for expert
users seeking to discover new genetic associations with traits
and disease. Such tools provide access to a large variety of
metrics, filters, and visualizations, creating numerous leads for
discovery. In contrast, CrossGenomics is intended for nonexperts
as a report on the existing state of knowledge with regard to the
known effects of genetic variants (through published research).
We aim to facilitate nonexpert engagement with the data through
exploration, while at the same time communicating the multiple
dimensionality and uncertainty inherent to genetic data.

Visual Tools for Comparing Complex Datasets
In other domains, tools were developed for users to compare
and contrast multidimensional and complex datasets [33-37].
The LifeLines system [38], which displays personal history
information, was found to perform better compared with a
tabular representation. In the context of energy consumption,
Valkanova et al [39] presented an interactive visualization
system that compares individuals and communities. Most
relevant to our research context are tools that allow comparison
between individuals who are related to one another. For instance,
to support collaborative exploration of family-related
information, Zimmerman et al explored the value of
technology-supported parents-teens interactions around issues
of finance [40]. These tools demonstrate the potential and need
to further consider design guidelines for developing tools for
nonexperts to compare complex data.

Open Humans
Open Humans [41] is a platform dedicated to enabling
individuals to manage data and contribute it to research. It was
developed with grants from the Robert Wood Johnson
Foundation and the Knight Foundation and is currently
supported through grants from the Shuttleworth Foundation.
Open Humans enables its volunteers to connect data from a
variety of current -omic sources. Individuals can join studies
on the site, share data with those studies, and contribute to new
research. Open Humans acts as an aggregator of participants
and data, enables these participants to join new studies, makes
data available via application programming interfaces (APIs),
and has features for study recruitment and deployment. Open
Humans currently supports a variety of -omic data, including
genome and exome data (Harvard Personal Genome Project,
Gencove, VCF file donation), genotyping data (23andMe,
Ancestry DNA), and microbiome data (American Gut, uBiome).
This aggregation of participants and data by Open Humans
allowed for the creation and promotion of our study to a pool
of potential participants with publicly shared genomic data.

Methods

Design
We designed novel interactive gene variant reports that allow
nonexpert users to compare variants across individuals. Through
an iterative design process, we developed 3 alternative designs
of an interactive visual personal genomics comparison tool
called CrossGenomics that enables nonexpert users to compare
their gene variants with others. We used the data and
interpretation created by the GET-Evidence gene variant report
[42], which contains a list of gene variants known to be
associated with traits or medical conditions. Thus, our interactive
reports only present gene variants with known (ie, published)
effects.

We focused on highlighting 3 dimensions of the data, which
were found to be particularly important when exploring personal
genomic information [22]: impact, which refers to type of effect
(eg, whether the gene variant causes or protects against disease),
rarity, which highlights gene variants that are especially unusual
(high rarity indicates low frequency in the population), and
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certainty, which describes the strength of scientific evidence
supporting a putative effect. Comparing and contrasting people’s
data across these dimensions can help them explore
commonalities and differences, as well as implications for
potential future health conditions.

In visualizing these dimensions, we drew upon GenomiX [22],
an interactive gene variant report for a single genome, where
color, size, and position represent impact, rarity, and certainty,
respectively. The 3 visual prototypes we developed for
CrossGenomics use the same visual encoding as Genomix for
representing individual variants but are varied in the
visualization technique used for depicting and comparing
multiple gene variant reports.

Across the 3 alternative visual prototypes we created for
CrossGenomics, color and size retain the same meaning. Color
represents impact—pathogenic (red), benign (gray), protective
(blue), pharmacogenetic (purple), or carrier (colored polka dot
pattern). These impact categories were derived from
industry-standard classifications in GET-Evidence [42]. It is
common for published effects to be classified in this manner.
Similar classifications are used by ClinVar of National Center
for Biotechnology Information [43]. Only variants with known
effects are represented. Size represents rarity—the larger the
representation of the variants, the rarer the gene variant is.

Users could filter gene variants based on person, health category,
potential impact, and certainty of evidence with the options
“Well-Established,” “Likely,” and “Uncertain.” These categories
of certainty of evidence were determined by the GET-Evidence
[42] interpretation. Users could also click on a variant to learn
more about it. Information, including the variant’s name, clinical
importance, potential effect, and an effect summary, would

appear in the sidebar. There was also a clickable glossary to
explain scientific jargon.

To represent and facilitate comparisons across multiple
genomes, we developed 3 alternative prototypes of
CrossGenomics, each based on visualization techniques
currently used by experts for comparative genomic data: linear
[44] and circular alignments [27,29-31,45] and a Venn diagram
[28]. However, as our tool is aimed at nonexperts, in our design,
we carefully balanced simplifying the visualizations with
highlighting important dimensions and facilitating free
exploration.

We iterated on the design of these 3 visual reports by testing
prototypes in increasing fidelity with nonexpert users
(Mechanical Turk workers), experienced users (nonexperts with
access to their personal genomics reports), and genomics domain
experts. In each iteration, we refined the design, addressing
issues such as ordering, synchronized selection, and filtering
and sorting variants, size, and alignment.

In addition, we developed a table-based report that is modeled
after the GET-Evidence report [42], to reflect the current report
type the users of personal genomics often have access to. We
implemented CrossGenomics as a Web app using JavaScript
with D3.js.

CrossGenomics 1.0
Figures 1-4 show the 4 alternative designs we developed for
comparing personal genetic reports: a table-based report (Figure
1), a linear visualization (Figure 2), a sunburst visualization
(Figure 3), and a Venn visualization (Figure 4). These 4
prototypes were evaluated in user study 1.
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Figure 1. Tabular report: the table is similar to the existing GET-Evidence report with each row representing a variant in one or both of the reports.
Two columns were added to the table and check marks were used to denote the presence of a gene variant for each sibling.

Figure 2. Linear visualization: each rectangle represents a gene variant. Jamie’s variants are represented along the top, Alex’s variants are represented
along the bottom, and their shared variants grouped to the left.
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Figure 3. Sunburst visualization: each arc represents a gene variant. The inner circle represents Jamie’s variants and the outer circle represents Alex’s.
Variants in both circles represent the ones Jamie and Alex have in common.

Figure 4. Venn visualization: displays a Venn diagram of gene variants. The bubbles on the left represent Jamie’s variants and bubbles on the right
are Alex’s. Bubbles in the middle represent the variants Jamie and Alex have in common.

Ethics Statement
The studies were approved by the institutional review boards
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User Study 1: Comparing Interactive Genetic Reports
of Two People

Overview
Our first user study aimed to evaluate the effectiveness of each
of the 4 alternative report views in comparing the genetic reports
of 2 people (CrossGenomics 1.0). In particular, we investigated
the following questions:

RQ1: To what extent are users able to comprehend
both intraindividual (important genetic information
of an individual) and interindividual information
(comparing similarities and differences in the reports
of 2 people)?

RQ2: How do people engage with a comparison tool
for personal genomic data, and what visualization
features are most helpful for comprehension?

RQ3: How does the report type impact comprehension
of genomic data comparison?

RQ4: Are there any gaps between subjective and
objective comprehension?

A website was developed for a between-subject experiment
with the 4 alternative report views comparing the personal
genomic information of 2 fictional siblings, Jamie and Alex
(Figures 1-4). This fictional dataset of personal genetic reports
of 2 siblings was created based on publicly available personal
genomic data shared on Open Humans, using the GET-Evidence
[42] interpretation. The same data were used across the different
views. Using a fictional dataset to assess nonexpert
comprehension of personal genomic data is a common practice
in personal genomics studies [19,21,29].

Procedure
After digitally signing a consent form and responding to basic
demographic questions, participants completed a tutorial on
personal genomics using materials from the Personal Genetics
Education Project [46]. Comprehension of pretask material was
assessed by a 6-question quiz [3,22]. Those who failed to answer
at least 3 questions correctly were excluded from the analysis.
Users were then randomly assigned to one of the 4 experimental
conditions in which they were exposed to one of the report
views and interacted with it.

To assess the effectiveness of the report views, we examined
comprehension of the users after their interaction with them.
Participants were asked to answer comprehension questions
using their report tool. The questions (see Multimedia Appendix
1) required intraindividual and interindividual information. This
questionnaire was developed in consultation with a genomics
expert with experience in engaging nonexperts to explore how
personal genetic data relate to published research. It was adapted
from an existing questionnaire [3] for use in the comparative
context of this study. We then pilot-tested the questionnaire
with nonexperts (Mechanical Turk workers).

In addition, participants were asked about their perception of
ease of use of the tool using a 5-point Likert scale. Participants
were also asked about their perceived understanding of the
report. Finally, participants were asked open-response questions
about how useful the visual features of the report were and what

aspects should be improved. The full study 1 questionnaire is
included in Multimedia Appendix 1.

Participants
We recruited participants via Amazon Mechanical Turk.
Mechanical Turk is widely used in research aimed at a diverse
nonexpert population [47,48], as well as studies of visualization
perception [49]. Our goal in the experiment sample selection
was not to form a representative sample of a broader public who
currently undergo direct-to-consumer genetic testing (DTCGT)
but rather to prepare for a relatively near future in which
DTCGT is more prevalent. Prior research [50] has shown that
the population of Mechanical Turk is at least as representative
of the US population as other subject pools. The 99% approval
rate threshold was set to ensure that participants take the
response to the task before them seriously.

A total of 485 users were distributed across the following
conditions: Venn view 24.5% (119/485), sunburst view 24.5%
(119/485), and linear view 27.4% (133/485), and 23.5%
(114/485) used a table-based view currently available to
consumers (ie, control condition). Demographics of users are
described in Table 1.

Data Analysis
We compared user responses across conditions using analysis
of variance (ANOVA) and post hoc Tukey HSD tests. Responses
of users to comprehension questions were scored as 1 if correct
and 0 if incorrect. The sum of scores served as a comprehension
measure, ranging between 0 (all responses incorrect) and 5 (all
responses correct). Responses to the perceived understanding
and ease-of-use questions were calculated as the mean of the
responses to the respective survey items, ranging between 1 and
5. Responses to the open questions were analyzed using content
analysis methods: first-level codes were developed from
preliminary review by 2 independent coders. The codes were
then collapsed into categories based on frequency, and themes
were identified through analysis of categories. Intercode
reliability based on 100% of the data was very good at 93%.

User Study 2: Comparing Interactive Genetic Reports
of Four People

Overview
In study 2, we sought to evaluate the extension and redesign of
the tool (CrossGenomics 2.0) to facilitate a comparison between
4 fictional family members, 2 siblings and their parents. We
evaluated the effectiveness of each of the 3 report views (table,
linear, and sunburst) in comparing the genetic reports of 4 family
members, as well as a fourth view that offered users the ability
to switch between the 3 other prototypes. Figures 5-7 show the
interactive reports used in this study.

In particular, we expanded on our investigation of RQ1-RQ4
from user study 1 and explored an additional question:

RQ5: Does the ability to switch between different
genetic data visualization, based on the information
sought by the user, affect comprehension and
behavior?
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Similar to study 1, we assessed to what extent users were able
to comprehend both intraindividual information and
interindividual information. We conducted a between-subject
experiment, comparing the 4 different interactive report
prototypes. Each report presented the personal genomic
information of 4 fictional family members, 2 parents and 2
children. The same personal genomic data, which were created
based on publicly available genomic information shared on
Open Humans, using the GET-Evidence [42] interpretation,
were used across the different views.

Procedure
After digitally signing a consent form and responding to basic
demographic questions, users completed the same tutorial on

personal genomics and comprehension test of pretask material
from study 1. Those who failed to answer at least 6 questions
correctly were excluded from the analysis. Users were then
randomly assigned to one of the 4 experimental conditions in
which they were exposed to one of the tools and interacted with
it.

To assess the effectiveness of the tools, we examined users’
comprehension using 14 comprehension questions. The
questions were designed to assess users’ understanding of
different concepts (impact, comparison, carrier status, category,
rarity, and certainty) and required intraindividual and
interindividual information. This comprehension questionnaire
was developed in consultation with the same genomics expert
from study 1, adapting the questionnaire from study 1.

Table 1. Demographic information for the 3 user studies.

Purchased DTCGTa,
n (%)

CompensationGender (female),
n (%)

Average age
(years)

PopulationParticipants, NStudy number

6 (1.2)US $5233 (48.0)34.8Amazon Mechanical Turk US users
with a record of at least 100 tasks at
an approval rate above 99%

4851

9 (5.0)US $599 (54.1)35.2Amazon Mechanical Turk US users
with a record of at least 100 tasks at
an approval rate above 99%

1832

49 (100)Lottery for a FitBit
Ionic Watch

17 (34)51.3Users with publicly available
23andMe data on Open Humans

493

aDTCGT: direct-to-consumer genetic testing.

Figure 5. Tabular report: the table is similar to the existing GET-Evidence report, with each row representing a variant in any of the reports. Four
columns were added to the table and a checkmark or a carrier indicator was used to denote the presence of a gene variant for each family member. We
added a new search and filters bar.
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Figure 6. Linear visualization: each rectangle represents a gene variant and each row represents a family member’s genome. Parent 1’s variants are
represented at the top, followed by Parent 2’s variants, then Child 1’s variants, then Child 2’s variants at the bottom. The colored variants in each row
represent the variants of one family member.

Figure 7. Sunburst visualization: each arc represents a gene variant, and each full circle represents a family member’s genome. The outer circle represents
Parent 1’s variants, followed by Parent 2’s variants, then Child 1’s variants, and then Child 2’s variants in the inner circle. The colored variants in each
circle represent the variants of one family member.

Participants were also asked about their subjective perception
of ease of use of the tool, using a 5-point Likert scale. Finally,
users were asked open-response questions about the usefulness
of the visual features of the report and about possible
improvements. The complete study 2 questionnaire is included
in Multimedia Appendix 2.

Participants
We recruited 183 Mechanical Turk users, who were distributed
across the following conditions: linear (45/183, 24.5%), sunburst
(43/183, 23.5%), and table (48/183, 26.2%), and 45 (24.5%)
used a report that combines the 3 conditions with toggle
functionality. All participants in the combined report switched
at least once between views. Participant demographics are
described in Table 1.
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Data Analysis
Analysis was the same as in study 1, but with the addition of
chi-square tests. For Q9-Q12, responses were coded as correct
if the answer described a pathogenic or pharmacogenetic variant
or a variant for which the family member was a carrier if the
user mentioned the potential effect for offspring in their
reasoning. In addition, responses to these questions were
assigned a complexity score from 0 to 6 for their reasoning,
with the goal of measuring ability of the users to assimilate
complex information and use it appropriately in their analysis
of the report.

User Study 3: Evaluating Interactive Reports With
Users’ Own Data

Overview
In study 3, we sought to evaluate the modification of the tool
(CrossGenomics 2.1) with users interacting with their own
personal genomic data. We evaluated the integration of the
GenomiX single-user gene variant visualization [22] with a
redesigned version of the combined view—comparing the user’s
own personal genomic report to the report of one of the 4 famous
people using the tabular, linear, sunburst, and Venn diagram
visualizations. In doing so, we sought to draw on the trend of
self-comparison with celebrities, which is increasingly evident
in popular culture [4,5]. All the filter and search features from
CrossGenomics 2.0 were included in this version.

In particular, we investigated the following question:

RQ6: To what extent and in what ways are users
interested in comparing their genetic data with others?

Procedure
We created a study on Open Humans, recruiting users with
publicly available 23andMe data. Participants were enrolled in
our study and were assigned anonymous project member IDs.
Although the study called for users with publicly available data
in all communications with potential participants [51], any Open
Humans user was technically able to enroll. Open Humans
enables individuals to publicly share data through a multistep
process (informed consent, quiz, and opt-in for each data type),
and we discovered that some participants did not realize they
had not completed all necessary steps. Thus, we created a Python
script to identify which users did not have publicly available
data and informed them that although they were under no
obligation to make their data public, we could not generate a
report unless they did. Some of these users chose to make their
data publicly available, while others removed themselves from
the study. We created another Python script to convert the
available datasets into files with comma separated values format
compatible with our visualization. We then sent messages
through the Open Humans API, inviting participants to view
their report and respond to our feedback form. Each user was
sent a unique link that included their project member ID as a
variable passed through the URL. On page load, the visualization
would read the ID and load the corresponding data.

The feedback form was implemented on Google Forms.
Participants were sent a link in their invitation message along
with the link to the tool, and the tool itself also contained a

feedback tab with the same form embedded. Users could choose
whether to record their project member ID. Participants were
asked about their motivation for exploring their genetics, as
well as which tools they had previously used to explore their
personal genetic data. In addition, participants were asked to
rate the ease of use and their perceived understanding on a
5-point Likert-scale and were asked open-response questions
about new insights using the tool and their interest in genome
comparison. The feedback form also included a series of
demographic questions. Participants could choose to provide
contact details for a future study comparing their data with their
real-life family dataset using our tool. The complete study 3
questionnaire is available in Multimedia Appendix 3.

Participants
A total of 163 reports were generated, and 137 (84.0%, 137/163)
users viewed their report. Of those, 49 (30.0%, 49/163)
responded to our feedback form about the tool. Users who
completed the study were entered in a lottery for a FitBit Ionic
Watch for completing the feedback form. We present the
findings from these 49 respondents, as well as the usage data
from the 38 respondents who recorded their project member ID
with their feedback. All users had publicly available 23andMe
data on Open Humans.

Overall, 36% of respondents (18/49) reported working in life
sciences (8/49) or studying life sciences at the collegiate or
higher level (16/49). Additional demographics are described in
Table 1.

When asked to select their highest level of education, 8% (4/49)
of respondents had a high-school diploma, 20% (10/49) of
respondents had some college education, 6% (3/49) had an
associate’s degree, and 10% (5/49) had a bachelor’s degree. In
addition, more than half of the respondents reported having an
advanced degree—29% (14/49) of respondents had a master’s
degree and another 29% (14/49) had a doctoral degree. These
education demographics are consistent with the description of
early adopters by Rogers’ theory of the diffusion of innovations
[52], which details that early adopters tend to have expert
knowledge, an advanced education, and a willingness to engage
in trials of new technologies.

Data Analysis
Responses to the 5-point Likert-scale questions for perceived
understanding, ease of use, and inquiries about new insights
were coded from 1 (strongly disagree) to 5 (strongly agree) for
each question. Responses to the open questions were analyzed
in the same methods as in studies 1 and 2. Intercode reliability
based on 100% of the data was very good at 96%. Four
participants submitted multiple feedback forms. In these cases,
the data from the free-response questions were combined, and
the most recent quantitative data from the Likert-scale responses
were used.
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Results

User Study 1: Comparing Interactive Genetic Reports
of Two People

Comprehension and Perceived Understanding
Participants spent, on average, 19.5 min (SD 8.8) on the task
of exploring the genetic reports of 2 fictional family members
and responding to comprehension and perceived ease-of-use

questions. The average time it took users to complete their task
did not differ significantly across the 4 conditions (see Figures
1-4; F3,481=1.107, P=.35). However, the results of the ANOVA
and post hoc corrections (see Tables 2 and 3) show differences
in the effects of using the tools: objective comprehension scores
of the Venn tool users and the sunburst users were significantly
higher than scores of the table users (P<.001 and P=.03,
respectively). At the same time, however, sunburst users
reported significantly lower perceived understanding than table
users (P=.03).

Table 2. Comprehension, perceived understanding, and ease of use across report types.

Ease of usePerceived understandingComprehensionReport type

3.923.813.83Venn

3.583.633.63Sunburst

3.813.743.53Linear

3.783.923.22Table

Table 3. Significant differences in post hoc comparison.

P valueReport types

Ease of usePerceived understandingComprehension

N/AN/Aa<.001Venn and table

N/A.03.03Sunburst and table

.02N/AN/AVenn and sunburst

aN/A: not applicable.

In addition, reported ease of use of sunburst users was
significantly lower than that of Venn users (P=.02). A regression
analysis revealed no significant effect of demographics and
education level on comprehension, perceived understanding,
and ease of use.

Usage
Participants used the filtering feature 12.4 times on an average.
Users of the linear tool filtered significantly more than users of
the other tools, filtering most by health category (8.1 times on
an average). The users of the sunburst and Venn tools filtered
by impact only 3.3 and 2.5 times, respectively—significantly
lower than linear and table tools users (both P<.001).

Features
Qualitative data indicated that filtering was found to be the most
helpful feature across all conditions, with 66.0% (320/485)
directly highlighting its impact on their understanding. For
example, one user noted that because of the sheer amount of
information, which makes the report overwhelming at first,
filtering made it “easier to at least see an overall picture of who
is more predisposed to certain conditions.” Filtering also helped
with specific searches, as one participant commented “...being
able to filter it to just show the variants that were related to
cancer helped create a clear comparison.”

Moreover, 10.3% (50/485) of the users noted that they would
have liked filtering which enables to “combine filter results so
that [they] can look at multiple categories at once [and could]

result in a single ‘hit’.” This comment was less significantly
frequIn total, 56.5% of users (51% in the combinent in the Venn
relatively to the linear (P=.03), sunburst (P=.01), and table
(P<.001).

Confusion
Some users found the information to be overwhelming or
confusing. Specifically, the sunburst was found to be more
confusing (13.4%, 16/119) than the table (5.3%, 6/114; P=.03).
For example, one user in the sunburst condition commented
that “...the filters were helpful, but...did not know where to
begin and had trouble figuring out which filter to use.” In
addition, 11.8% (14/119) of the Venn tool users and 10.5%
(14/133) of the linear tool users found their visualization
confusing; however, the differences between them and other
conditions were not significant.

User Study 2: Comparing Interactive Genetic Reports
of Four People

Comprehension
Participants spent, on an average, 29.2 min (SD 12.5) on the
task of exploring the reports and responding to comprehension
and the perceived ease-of-use questions. The average time it
took users to complete their task did not differ significantly
across the 4 conditions (see Figures 5-7; F3,177=0.672, P=.57).
However, the results of the ANOVA (see Tables 4 and 5)
indicate a significant effect of report type on objective
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comprehension for the 3 conditions (F3,176=5.538, P=.001). Post
hoc comparisons using Tukey HSD test indicated that the mean
score for the table and combined report type were significantly
higher than the mean score for the linear report.

Further analysis of scores by individual questions indicates a
significant effect of report type on the scores of only 3 of the
14 comprehension questions (Multimedia Appendix 2). For
RQ6, “Which child shares the most cancer-related variants with
Parent 1?,” participants in the combined condition (mean 0.89,
SD 0.32) scored significantly higher than those in the linear
condition (mean 0.77, SD 0.48, P=.04; F3,177=2.810, P=.04).
For RQ7, “Parent 1 has _____ cancer-related variants than

Parent 2,” participants in the linear condition (mean 0.44, SD
0.50) scored significantly lower than those in the combined
(mean 0.71, SD 0.46, P=.04) and table conditions (mean 0.79,
SD 0.41, P=.01; F3,177=4.754, P=.01). For RQ8, “Which variants
are not expected to affect Child 1 themselves, but may affect
Child 1’s future children?,” participants in the combined
condition (mean 0.67, SD 0.48) scored significantly higher than
those in the linear (mean 0.33, SD 0.48, P=.01) and sunburst
conditions (mean 0.40, SD 0.50, P=.04), and participants in the
table condition (mean 0.65, SD 0.48) scored higher than those
in the linear condition (mean 0.33, SD 0.48, P=.01; F3,177=2.810,
P=.04).

Table 4. Mean scores and SD for comprehension, perceived understanding, and ease of use for participants in each of the 4 conditions.

Ease of use, mean (SD)Perceived understanding, mean (SD)Comprehension, mean (SD)Report type

3.93 (0.91)3.69 (0.86)9.55 (2.94)Linear

4.07 (0.64)3.69 (0.69)10.58 (3.11)Sunburst

4.09 (0.80)3.78 (0.84)11.17 (2.25)Table

4.32 (0.57)3.86 (0.67)11.67 (1.92)Combined

Table 5. Post hoc differences from the linear tool, with significant and trending P values.

P valueReport types

Ease of usePerceived understandingComprehension

.07N/Aa.001Linear and combined

N/AN/A.01Linear and table

aN/A: not applicable.

Overall, we find that the use of the combined report, which
enables users to switch between report types based on their
information needs, is associated with significantly higher
comprehension level. We also find that using the table-based
report leads to better comprehension than each of the
noncombined visual reports.

Subjective Experience
Despite the difference in comprehension scores across
conditions, the results of the ANOVA suggest no significant
effect of report type on the perceived understanding
(F3,177=0.502, P=.68) or ease-of-use scores (F3,177=2.083, P=.10;
see Table 5), with the exception of a trending difference between
the combined and linear conditions, indicated by post hoc
analysis (P=.07). There was a strong correlation between
perceived understanding and ease-of-use scores (r=.735,
P<.001), a moderate correlation between ease of use and
comprehension (r=.328, P<.001), and a weak correlation
between perceived understanding and comprehension (r=.170,
P=.02).

Complexity
Correct responses to Q9 to Q12 were assigned a complexity
score from 0 to 6 for their reasoning, with points assigned when
users reference each of the following concepts: potential impact,
the certainty of evidence, carrier status, rarity, and clinical
importance, with a final possible point for synthesis of

information. In 3 questions (Q10-Q12), which inquire about
which variant each family member would be most likely to
discuss with their health care provider, there was a significant
effect of report type on the complexity score of the correct
responses (Tables 6-8). Post hoc comparisons indicated that
users of the combined report had significantly higher complexity
scores for these questions than the users of the linear tool.
Further analysis by individual concepts revealed that the users
of the combined report mentioned clinical importance
significantly more than users of the linear tool in their correct
responses for all 4 questions. Users of the combined report also
mentioned certainty of evidence significantly more than the
users of the linear tool for Q10 and Q11.

Demographics
A regression analysis revealed no significant effect of
demographics on comprehension or subjective experience.

Usage
Participants in the combined report switched on an average 5.16
times between views (SD 3.4, minimum=1, maximum=15).
Moreover, 40% (18/45) of users switched views more than 5
times (see Figure 8). Out of the 45 users who interacted with
the combined tool, 34 users primarily used the table, seven users
primarily used the linear tool, and 4 users primarily used the
sunburst tool. Furthermore, 17 of the 45 users (38%) spent more
than 90% of their time exploring and answering comprehension
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questions using one of the 3 views. Within the combined
condition, no correlation was found between the amount of

switching between views and either comprehension, perceived
understanding, or ease of use.

Table 6. Average combined complexity scores in correct responses to question (Q)9 to Q12 by condition.

Q12Q11Q10Q9Report type

P valueScoreP valueScoreP valueScoreP valueScore

.59a1.25.58a1.21.51a1.20.551.40Linear

.781.43.771.69.921.63.721.47Sunburst

1.151.701.22a1.691.161.751.101.79Table

.84a1.89.881.88.81a2.05.741.70Combined

aSignificant difference between the linear and combined conditions.

Table 7. Analysis of variance results to question (Q)9 to Q12.

F (3,177)Question

1.918Q9

6.620Q10

3.948Q11

4.368Q12

Table 8. Post hoc differences between linear and combined reports for question (Q)9 to Q12.

P valueReport types

Q12Q11Q10Q9

.01.01<.001.13Linear and combined

Figure 8. Comparison tab of CrossGenomics 2.1, where users can toggle between the four comparison visualizations using the buttons under “Change
Views”.

While exploring the report, across the 4 conditions users applied
on average 7.60 filters (SD 10.8, minimum=0, maximum=111)
and searched the report 5.5 times (SD 5.8, minimum=0,
maximum=28). There was no significant effect of condition on

the amount of filtering (F3,177=1.599, P=.19) or searching
(F3,177=0.474, P=.70). No correlation was found between the
number of filters applied and comprehension, perceived
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understanding, or ease of use. There was a weak correlation
between the number of searches and both perceived
understanding (r=.204, P=.01) and ease of use (r=.171, P=.02).

Report Features
Users were also asked to describe, in open-ended questions,
which features were most helpful for understanding and
comparing the reports, as well as how the tool can be improved.

Overall, users across all conditions liked the filter and search
functionalities and suggested simpler language and more
filtering options as improvements. In total, 56.5% (104/183) of
users (23/45, 51% in the combined condition, 24/45, 53% in
the linear condition, 21/43, 49% in the sunburst condition, and

35/48, 73% in the table condition), χ2
3 (N=181)=7.009, P=.07,

reported filtering to be one of the most helpful features. In the
words of one user in the combined condition, saying, “The
ability to filter by individual and category of gene (pathogenic
and protective) made navigating the data much easier.”

Furthermore, 33.25% (61/183) of users (13/45, 29% in the linear
condition, 12/43, 28% in the sunburst condition, 14/48, 29% in
the table condition, and 21/45, 47% in the combined condition),

χ2
3 (N=181)=4.956, P=.18, also reported that the search

functionality was helpful for interpreting the reports. As one
user in the combined condition wrote:

Being able to search and filter out the various subjects
was the most helpful to me. Being able to only focus
on the information that I was interested in made the
process much easier.

Furthermore, 22% (10/45) of users in the combined condition
explicitly stated they liked being able to switch between
representations. A user emphasized this by saying, “I also
enjoyed being able to switch from table view to bar view to
easily understand the information better.”

A different user noted the different usage for each view, stating:

The bar graph is easiest when lining up which family
members have which genomes, and the sunburst graph
was easiest when just filtering in/out things in general.
The table is nice, but visually not as pleasing, but
could be potentially the most useful especially if you
don't have the ability to have an interactive graph.

Another user shared:

The different visualizations made it easier to
understand the data in some situations [for example,
the bar chart made it easier to understand quickly
which family members shared what variants, whereas
the table made it easier to learn about each variant].

Overall, 19.4% of all users (9/45, 20% in the combined
condition, 11/45, 24.4% in the linear condition, 7/43, 16.3% in
the sunburst condition, and 8/48, 16.7% in the table condition)
reported difficulty with medical terms used in the report. One
user, who viewed the tabular report, suggested, “Some of the
explanations could be written in a more accessible manner.”

In addition, 10.4% of users (5/45, 11.1% in the combined
condition, 2/45, 4.4% in the linear condition, 5/43, 11.6% in

the sunburst condition, and 7/48, 14.6% in the table condition)
reported requirement for more filtering options. The differences
in proportion between the conditions were not significant.

User Study 3: Evaluating Interactive Reports With
Users’ Own Data

Previous Use of Genome Tools
All 49 users had their genome mapped by 23andMe. Unlike the
users of our previous 2 studies, we classified these 49 users as
expert users, as they had previous experience of exploring their
genome. Furthermore, 88% (43/49) of those users had also used
at least one of the following tools to explore their results:
Promethease (41/49), SNPedia (30/49), Google (17/49), ClinVar
(17/49), GET-Evidence (15/49), PubMed (15/49), Wikipedia
(14/49), Genevieve (14/49), and OMIM (10/49).

Motivation
We asked participants to rank the personal importance of 8
potential reasons for exploring information about their genetics
on a 5-point Likert scale from Not at all to Extremely (Table
9).

Usage
A total of 78% (38/49) participants provided their project
member IDs, which allowed us to identify their specific usage
data from the tracking logs on our tool. The usage data of these
users are presented here.

Visualizations

All 38 users began on the comparison tab, with their genomic
report compared with the report of George Church by default.
Of these, 68% (26/38) viewed the overview report and 63%
(24/38) viewed the glossary. Within the comparison tab, 79%
(30/38) users viewed all 4 visualizations, 8% (3/38) users viewed
only 3, 5% (2/38) users viewed only 2, and 8% (3/38) users did
not switch visualizations at all. As the default visualization on
page load, all users viewed the Venn diagram visualization. In
addition, 89% (34/38) users viewed the sunburst visualization,
87% (33/38) users viewed the linear visualization, and 84%
(32/38) users viewed the tabular report. Moreover, 58% (22/38)
of the users compared their data with all 4 comparison genomes,
whereas 16% (6/38) users did not change comparison genomes.

Variants

Users clicked on a total of 1609 variants in the interactive
sunburst, linear, and Venn diagram visualizations. In addition,
124 variants were saved by 13 users. The majority of variants
were clicked and saved in the Venn diagram, the default view
of the tool on page load.

Filtering

The comparison and single-user visualizations also included a
filter bar, which affords users the ability to filter variants—by
certainty of evidence, potential impact, and category—and
search for a specific term. In the comparison view, 24 users
applied 209 filters and searches. Of these, 30 certainty of
evidence filters were applied, 29 of which were for
well-established variants. A total of 44.4% (93/209) filters
included a filter for potential impact, 20.0% (42/209) for
pathogenic variants, and 17.2% (36/209) for variants affecting
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drug response of a user. Another 14.3% (30/209) filters specified
a certain health category, such as Cancer or Metabolism. Four
users also searched for specific terms, such as Alzheimer, in
their data.

Perceived Understanding
In this study, 12% (6/49) of respondents reported they would
need the help of a health care professional to better understand
their results (on a 5-point Likert scale, mean 2.36, SD 1.03). In
addition, 41% (20/49) reported feeling that the report gives them
a firm grasp of their health and genetics (mean 2.98, SD 1.15,).
On the goal of communicating uncertainty, 82% (40/49) felt
they could grasp the extent to which the knowledge regarding
different variants is certain or uncertain (mean 3.92, SD 0.88).

Ease of Use
In this study, 84% (41/49) of respondents reported that they
found the information in the report to be presented in a clear
and accessible manner (on a 5-point Likert scale, mean 3.94,
SD 1.04). In addition, 65% (32/49) found the glossary helpful
(mean 3.60, SD 1.05), and 39% (19/49) found the ability to save
variants helpful while interacting with the report (mean 3.22,
SD 1.13).

Report Features
When asked which features were most helpful for understanding
the report, users mentioned the usefulness of filtering in both
the comparison and single-user visualizations. One user wrote:

I think most reports fail to grab attention except for
a few variants that are highlighted. Sorting by
certainty helped that some here.

Table 9. Average personal importance for potential reasons for exploring information about their genetics, 5-point Likert scale (not at all, slightly,
moderately, very, and extremely).

Mean (SD)Reason

3.86 (1.14)To learn personal disease risk or health-related information

4.40 (0.81)Curiosity

4.28 (0.81)To contribute to research

3.14 (1.50)Interested in distant ancestry (race or ethnicity)

3.20 (1.46)Learning more about my family origin and recent ancestry

2.78 (1.40)To provide disease risk information for children and other family members

4.22 (1.04)To learn more about myself

2.00 (1.20)Understanding these data for professional purposes

Users also commented on the value of toggling between different
views. In the words of one user:

I specifically liked the ability to see the data presented
in all three visualizations. The information for each
particular variant was succinct and easy to follow.

Several users also commented that although they enjoyed the
visualizations, the tabular view offered a valuable overview to
all the descriptions at once. One user wrote:

I liked the table view the best, I could just read
straight down, without having to move around
page...The visual was interesting but I spent more
time on table view.

When asked how they felt the report could be improved, several
users mentioned that they wished they could print their report,
while others suggested a more robust tutorial. In the words of
one user, “[I] would like to be able to download the variant
report in pdf format to refer to offline.” Several users also
mentioned that they wished the tool began on their report,
instead of the comparison tool.

New Insights
In this study, 49% (24/49) of the users reported learning new
insights and information about their genetics using this tool that
they had not noticed in previous reports (on a 5-point Likert
scale, mean 3.16, SD 1.31). In addition, 43% (21/49) also

reported that the visualization changed their understanding of
their report (on a 5-point Likert scale, mean 3.00, SD 1.21).
When asked to elaborate on what new insights and information
about their genetics they learned from this visual report, some
users reported discovering new variants that they had not noticed
in previous reports. For example, one user wrote,
“FUT2-W154X, ADA-D8N, and DPYD-M166V were all
variants I hadn’t noticed before and found interesting.” Other
users commented on the understandability of this report as
compared with others, stating, “The way other reports or
worded/written, I have hard time understanding if I have or
don’t have [a variant], very confusing.” Other users reported
that they did not learn anything new, as they had previously
poured over their report, but still found the experience
worthwhile. In the words of one user, “I had seen most of this
information in previous reports, but I did enjoy the interactive
visualization.”

Comparison
A total of 35% (17/49) reported learning something new from
comparing their data with another person (on a 5-point Likert
scale, mean 2.63, SD 1.30). When asked to elaborate on what
they learned, 24% (12/49) expressed amazement at the number
of shared variants between themselves and the comparison
genomes. Others reported that they viewed the comparisons out
of curiosity but did not learn anything new. In the words of one
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respondent, “I looked at the comparisons but they did not engage
me because I do not know the people.”

When asked if there are any other potential people with whom
they would like to compare their data, 51% (25/49) responded
with at least one family member. In the words of one participant:

I liked the Venn diagram and I would use it to
compare with other family members. This would be
awesome if I could load even more data—for example,
for our family of four—to see what we passed on to
our kids.

In fact, more than half of the users (51%, 25/49) recorded their
project member ID or email address to be contacted with
opportunities to compare their data with that of their family
members using our tool. In addition, 10% (5/49) participants
lamented that they would have liked to compare themselves
with specific members of their family who have passed away
or are not interested in genetic testing. When asked what
questions they would like to explore in comparison with these
individuals, 24% (12/49) mentioned an interest in inheritance
patterns between family members. In addition, 10% (5/49) of
users mentioned an interest in exploring potential health risks
through family comparison.

Discussion

User Study 1: Comparing Interactive Genetic Reports
of Two People
We found that all views allowed users to complete the task of
comparing 2 personal genomic reports with at least moderate
domain comprehension of both intraindividual and
interindividual information (see Table 2; RQ1). The sunburst-
and Venn-based prototypes led to significantly higher domain
comprehension, compared with the linear prototype and the
commonly used tabular report (RQ3). However, we identified
gaps between objective and subjective comprehension, as
sunburst users reported significantly lower perceived
understanding and higher levels of confusion (RQ4).

Although the Venn tool appears to be most effective, it is limited
in scalability, as it can only show the data of 2 users at a time.
The other prototypes, in particular the sunburst and the linear
tools, can present data of a larger number of users. In study 2,
we aimed to further explore the utility of these prototypes in
facilitating domain comprehension when comparing a larger
number of genomic reports. Our redesign includes genomic
reports from 4 biological family members. As expanding the
number of compared reports to 2 was a planned feature, we
decided to first evaluate and learn from the comparison of 2
personal genomic reports.

Through analysis of the open-ended responses, we learned that
users viewed the ability to filter and search the data as most
helpful (RQ2). We found a relatively consistent pattern of usage
of these features across the 4 report types. These findings led
us to implement a search tool in our next design iteration across
all different visual reports and to redesign our filtering
functionality to allow users to combine filters. In study 2, we
investigated the role of search and filtering when there is an
increase in the information displayed.

Redesign
There were 3 redesign iteration stages leading to CrossGenomics
2.0. The first iteration stage focused on expanding the
visualization by presenting the genetic reports of 2 family
members to 4. This resulted in the linear visualization having
4 linear bars and the sunburst visualization having 4 concentric
rings. We did not include the Venn visualization in this redesign.

Due to increase in the information displayed, we added a filter
to show or hide certain family members so that users could
focus on certain individuals without being distracted by others.
We also added tutorial tooltips that briefly describe the function
of the key, filters, and variant information panels. On the basis
of feedback gathered from the first study, we increased the size
of the panel where variant information appeared so that scrolling
was not required. We also modified the filtering panel so that
users could combine filters and see all of the filters they had
selected.

We tested this version in a pilot study with 25 nonexpert users
(Mechanical Turk workers) per condition. We found that users
in the table condition used the browser search function to find
particular important keywords (eg, cancer) and found the search
to be helpful. In addition, we identified that users were not
saving variants for revisiting the information.

Informed by these findings and by the findings from study 1,
we implemented a search tool that was consistent across the
different visual reports and allowed searching for keywords
within a visual report and highlighted the save button by
changing the button color from gray to blue. We also introduced
a new visual report that allowed users to switch between the 2
visual reports (linear and sunburst) and the table report. This
version was subsequently tested with 10 Mechanical Turk users
per visual report.

Results further highlighted the important role of the search
feature, as well as a need to combine the application of the
potential impact and certainty of evidence filters with the
category filter. Results also indicated that users still rarely saved
variants. As such, we moved both the search and the category
filters to be part of the core filter functionality, allowing a user
to combine all of them together. We also added a tooltip
prompting users to save a variant on the first selection.

Figures 5-7 show the 3 redesigned reports, integrated into an
interactive tool, which allows users to switch between these 3
views. These 3 prototypes were evaluated separately in
comparison with the combined tool in study 2.

User Study 2: Comparing Interactive Genetic Reports
of Four People
Users across all conditions completed the task of comparing 4
personal genomic reports, demonstrating at least moderate
domain comprehension of both intraindividual and
interindividual information (see Table 4; RQ1). A key finding
from this study is that users in the combined condition did, in
fact, switch between the views presented and demonstrated
higher comprehension levels, as well as more complex reasoning
(RQ5). More than 20% of the users in this condition explicitly
mentioned switching between views as a helpful feature (RQ2).
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We also found that using the table-based report led to better
comprehension than the noncombined visual reports (RQ3). In
particular, the linear visualization performed the worst compared
with the combined tool and with the table-based report. The
sunburst tool did not perform significantly better or worse
compared with any of the tools. In addition, we found that
although all users of the combined tool switched at least once
between visualizations, about three-fourths of these users chose
to primarily use the table-based report to answer comprehension
questions. A possible explanation for these results may be the
lack of familiarity and experience of nonexperts with visual
tools, in contrast with familiarity with table-based reports.

Despite the difference in comprehension scores across
conditions, the results suggest no significant effect of report
type on the perceived understanding. This indicates a gap
between objective and subjective comprehension (RQ4).

On the basis of these findings, which indicate that overall the
combined condition of CrossGenomics 2.0 is effective for
comparing personal genomes across individuals, we adapted
this tool to study (in study 3) how Open Humans participants
use it to explore their own personal genomic data.

Adapting CrossGenomics for User Data
Following user study 2, the combined visual report from
CrossGenomics 2.0 was modified to load real 23andMe data
that were shared publicly on Open Humans profile of a user.
This allowed us to engage a pre-existing community where
individuals are publicly sharing genetic data, including nearly
1000 individuals who already publicly share these data in the
Harvard Personal Genome Project [42] or openSNP projects
[53]. This new prototype of CrossGenomics allowed users to

compare their own report with one of the 4 publicly shared
genomes of famous scientists and thought leaders on genetics
(George Church, Esther Dyson, Steven Pinker, and Carl
Zimmer). The tool provided users with 4 different views: tabular,
linear, sunburst, or Venn diagram visualizations.

The genome to which the data of a user are compared could be
selected using a radio button. This modified comparison tool
was integrated with the single user GenomiX [22] gene variant
report, presented in a separate tab, to create CrossGenomics
2.1—a tool that allows users of Open Humans to explore their
own 23andMe data and compare it with 4 other genomes.
Figures 8-10 show the GenomiX tool integration and the 4
visualizations in the comparison tool.

User Study 3: Evaluating Interactive Reports with
Users’ Own Data
Results indicate that the majority of participants found the report
to be presented in a clear, accessible, and comprehensible
manner. Findings also indicate that the ability to switch between
views is particularly helpful. In addition, participants highlighted
filtering, sorting, and saving variants as important features.
These findings shed light on how people engage with a
comparison tool for personal genomic data and what features
are most helpful for comprehension. More than half of
participants expressed interest in comparing their personal
genomic data to that of a family member using our comparison
tool, expressing motivation to explore inheritance patterns and
health risks. Fewer users were interested in the comparison of
their data to the “famous genomes” provided. Over one third
of the participants reported learning something new from
comparing their data to another, mostly highlighted the
similarities between their own report and the others’ reports.
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Figure 9. Overview tab of CrossGenomics 2.1 in graph view, where users can view their own personal genomic data graphed by certainty of evidence
and potential health effect in our single-user GenomiX visualization.
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Figure 10. Overview tab of CrossGenomics 2.1 in category view, where users can view their own personal genomic data by health category in our
single-user GenomiX visualization.

These findings indicate an interest in comparison and highlight
the ways in which nonexperts seek to compare their genetic
data to others’ (RQ6). Findings also suggest that users are able
to comprehend both intra-individual (important genetic
information of an individual) and inter-individual information
(comparing similarities and differences in the reports of two
people; RQ1).

Principal Findings
Taken together, the 3 studies advance the prior personal
informatics research by offering a novel approach to enabling
user engagement in the transition between integration, reflection,
and action [10-12]. Overall, we contribute to research on
personal and health informatics in 2 central ways: first, we
advance the literature in the specific domain of personal
genomics by offering and evaluating a novel design for
interpersonal, comparative, and genomic information reporting
tool. Second, the findings underscore the need to understand
and design for the social aspect of deeply personal information
and call for careful theoretical consideration of design decisions
in this space.

The first prototype (study 1) served as a proof-of-concept for
eliciting users’ feedback. As a result of the reported findings,
we redesigned the tool by introducing a consistent search tool
across the visual reports and by adding a new feature to enable
users to switch between the reports. Study 2 was an extension
of study 1, enabling users to compare up with 4 people, which
further corroborated the usefulness of the redesign done after
study 1. Building on both studies and users’ feedback, in study
3 we sought to enable Open Humans participants to explore
their own personal data. The findings offer a new perspective
on how users can integrate and reflect on data, both in a personal
and social context: (1) highlighting features and visualizations
that show strengths in facilitating user comprehension of
genomic data, (2) demonstrating the value of affording users

the flexibility to examine the same report using multiple
perspectives, and (3) emphasizing users’ needs in comparison
of genomic data. In the following paragraphs, we discuss the
findings in detail, as well as the ethical considerations and
implications for the design of tools for multiuser engagement
with complex multidimensional data.

In user study 1, we evaluated 4 alternative views for
CrossGenomics, a novel interactive tool enabling nonexpert
users to explore what gene variants they share with others and
what sets them apart. We found that the sunburst- and
Venn-based prototypes led to significantly higher domain
comprehension, compared with the linear prototype and the
commonly used tabular report (RQ1). Although the Venn tool
appears to be particularly effective, it is limited in scalability,
as it can only show the data of 2 users at a time. The other
prototypes, in particular the sunburst and the linear tools, can
present data of a larger number of users. A trade-off therefore
exists between the utility of the tool and its user coverage per
comparison session.

We also found that users viewed the ability to filter and search
the data as most helpful for comprehension and exploration
(RQ2). We found a relatively consistent pattern of usage of
these features across the 4 report types, suggesting these features
are important for both visualization and table-based reports.
These findings highlight the benefit of providing features that
allow users to focus on and switch between relevant subsets or
dimensions of the information. Recent study by Feng et al has
corroborated this finding, suggesting that the presence of
text-based search influences information-seeking goals of people
and can alter both the data explored and the ways in which users
engage with it [54]. In addition, they found the effects of the
search are amplified in visualizations where the users are
familiar with the underlying dataset, such as the expert users in
our third study.
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In user study 2, we also found that using the table-based report
led to better comprehension than the noncombined visual reports
(RQ3). In particular, the linear visualization performed the worst
compared with the combined tool and with the table-based
report. This stands in contrast to the popularity of the linear
alignment visualization in tools for experts [27,29-31,45]. In
addition, we found that although all users of the combined tool
switched at least once between visualizations, about
three-fourths of these users chose to primarily use the
table-based report to answer comprehension questions. A
possible explanation may be the lack of familiarity and
experience of nonexperts with visual tools, in contrast with
familiarity with table-based reports. This highlights a need to
guide users carefully through the use of visual reports. Recent
research has proposed and evaluated new ways of providing
such guidance [55].

The findings from user study 1 also suggest a discrepancy
between objective and subjective knowledge of users—what
users know and how much they think they know [56-58] (RQ4).
We found that the sunburst tool that was associated with higher
domain comprehension (objective knowledge) compared with
the tabular report was also associated with significantly lower
perceived understanding (subjective knowledge), which may
be explained by the users’ comments about the sunburst tool as
being significantly more confusing or overwhelming. Similar
discrepancies were reported in other domains in which
information tools were used for clarifying complex information
[59]. For example, Gunaratne et al [60] found that exposure to
social annotations of financial disclosure documents increased
performance but reduced perceived understanding. A possible
explanation for such discrepancies is that the more
knowledgeable users become, the more they realize how
complex the information presented to them is and realize how
much of it they do not understand. Although we did observe a
similar trend in the second study, the discrepancy between
objective and subjective knowledge was not statistically
significant. Further research is needed to explore these
differences.

A key finding from user study 2 is that users who were given
the flexibility to choose how personal genomic data are
presented to them (through the ability to switch views) did, in
fact, switch between the views presented and that these users
demonstrated higher comprehension levels and were able to
offer more complex reasoning to justify their choices based on
evidence from the visualizations (RQ5). Thus, the findings
suggest that providing users’ autonomy to pursue their
information needs based on their preferences, as well as to
explore data from multiple perspectives lead to better
comprehension and perceived ease of use.

The findings from user study 3 suggest that a majority of our
users have an interest in comparing their personal genomic data
with that of a family member using our comparison, and fewer
users were also interested in the comparison of their data with
the famous genomes provided, beyond a one-time exploration
(RQ6). Of the participants who reported gaining new insight
from the comparison tool, most highlighted the similarities
between their own report and the report of the other person.
Building on the concept of biosociality—how people form social

ties around health conditions caused or influenced by genetic
characteristics—one future direction to explore would be to
focus on people with known similar conditions or similar
communities for comparison.

The studies and their findings also raise ethical issues. One such
concern stems from unique combination of unchanged data and
changed interpretation of personal genomic information, driven
by the new findings resulting from advances in genetic research.
By making individual and social personal genomic data
available, comparable, and interpretable, users can engage
continuously with unchanging data for life [61]. However,
access to such data in the context of personal information can
inform everyday choices of users [61],and access to comparative
information about others may lead to information surveillance
[1], which is particularly concerning in situations where future
genetic research may suggest previously unknown relationships
between genetic data and health conditions. As a result, new
implications about users’ data could be shared with others
without the original user’s control. Moreover, the promise of
empowerment, often pervasive in discussions of health
self-tracking and personal informatics [62], and the critical
perspectives approach to this promise [63,64,65] are all the
more evident in the case of personal genomics, where
individuals’ agency is often limited and where powerful
institutional actors (including state agencies and financial
institutions) have the potential to gain from access to information
and its present and future interpretations.

Design Implications
On the basis of our findings from the 3 studies outlined above,
we propose a number of design implications, some of which
are specific to the personal genomics context, and some more
general, concerning insights for multiuser engagement with
complex multidimensional data.

The context of personal genomics in which data of individual
family members is directly relevant to other family members,
calls for both holistic and focused points of view. In that sense,
the trade-off between scalability and effectiveness evident in
the performance differences between the Venn and the sunburst
visualizations reflects a design consideration for practitioners;
some design cases may call for prioritization of better
understanding—both objective and perceived—such as in the
case of rich comparisons between siblings where a Venn
approach would be most effective, whereas others may require
a broader but less rich perspective in which a sunburst approach
might work better.

Beyond personal genomics, insights from this study can inform
other approaches to visualizing personal data. For example, the
approaches presented here to visualizing genomic information,
illustrate a method to engage with Lived Data [66], allowing
users to explore their data in a broad and socially relevant
context. They also offer a perspective on Lived Data that
transition from temporal changes of data to temporal changes
of potential interpretations. These approaches can be used to
compare cuts of interest (collected data of some shared feature)
across users [13] and serve as a practical way to represent the
interconnected self within the context of relevant others [67].
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The design approach presented in studies 2 and 3, which
integrates multiple views, underscores the need for autonomy
for users to pursue their information needs and to explore data
from multiple perspectives. Such an approach leads to better
comprehension and perceived ease of use. To that end, 2 types
of features are needed that will help users to further reap the
benefits from multiuser personal genomic comparison tools.
These include tutorials to carefully guide users through the use
of visual reports and features that allow users to focus on and
switch between relevant dimensions of the information,
particularly with users who are familiar with the underlying
dataset [54].

Two key issues concern possible adverse implications for the
proposed approach. First, ability of nonexperts to engage with
their personal information in a social context carries a concern
of misinterpretation and information overload, which may dilute
the understanding of the data and undermine the original goals
of the tools designed. More research on filtering mechanisms,
such as the approach proposed by Jones and Kelly [68], is
needed to ensure effective engagement with socially
contextualized personal data. A second issue concerns privacy
—the effectiveness of multiuser personal genomic comparison
tools arises from the juxtaposition of multiple genetic profiles,
yet that same aspect of their value to users implicitly assumes
that users would be interested in and willing to share their data
with other family members. This assumption may hold for many
families but not for all. Making personal genome comparison
tools available to users may lead to undue expectations, or even
pressure, among family members concerning data sharing. This
concern also highlights a need to develop new mechanisms for
users to understand the risks associated with publicly sharing
genetic data, as well as to control what aspects of their data to
share, with whom, and for what purposes.

Limitations
Although the design and evaluation of CrossGenomics offer
insights into the design of future personal genomics exploration
and comparison tools, there are limitations to this study that
should be considered in future research. First, we did not assess
the fluency and familiarity of participants with visualization
techniques, so we cannot speak about the effect of this
experience on comprehension, subjective experience, and
behavior in interacting with these 4 report types. Second, the
analytical validity and clinical utility of DTCGT have been
debated [69]; however, CrossGenomics is a tool for exploring
and facilitating health information-seeking behavior [70], rather
than a clinical tool, and as such is not attempting to provide or

assess clinical utility. Third, a majority of the users of the
combined report primarily used the table, which could be
because of the nature of our sample. Namely, the users in our
first and second study most likely exhibited less exploratory
behavior than those of the potential nonexpert users interacting
with their own personal genetic and family data. Our third study,
which included users interacting with their own data, did not
offer the opportunity for a meaningful comparison between
family members. In addition, our sample of early adopters is
not representative of the general public, as it is limited to
individuals with genetic data who also chose to share it publicly.
Although it is rare to find families with public genetic data, our
future study will engage nonexpert users comparing their own
personal genetic data, with the data of their family members.

Conclusions
The rapid increase in the availability of complex personal
genomic data to nonexpert users poses research and practice
challenges and opportunities. The interpretation of such data
may impact lifestyle decisions, emotional state, and well-being
of users and their family members. However, research on
interaction of users with personal genomic data is still limited.
The familial nature of personal genomic data highlights the
need for tools to enable nonexperts to explore not only their
own data but also to compare and contrast their data with data
of other biological family members, who share common genetic
characteristics.

Beyond the contribution of this research to the personal
genomics domain, our study makes the following contributions:
(1) presenting the design and evaluation of tools that facilitate
multidimensional, multiperson comparisons, (2) analyzing the
differences between comprehension and perceived
understanding, leading to a better understanding of discrepancies
between subjective and objective knowledge, and (3)
highlighting design considerations for multiuser engagement
with complex multidimensional personal data.

Empowering nonexpert users by facilitating a better
understanding of their genetic characteristics and that of their
families is an important step in helping people be more
self-informed. We intend to further evaluate CrossGenomics
with nonexpert users comparing their own personal genetic data
with the data of their family members. Ultimately, our goal is
to make CrossGenomics a free tool available for the Open
Humans community. Personal genomics is a domain in which
interactive technologies can make a real difference in the lives
of users, and the studies reported here advance both research
and practice in this direction.
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