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Abstract

Background: Electronic health (eHealth) information is ingrained in the healthcare experience to engage patients across the
lifespan. Both eHealth accessibility and optimization are influenced by lifespan development, as older adults experience greater
challenges accessing and using eHealth tools as compared to their younger counterparts. The eHealth Literacy Scale (eHEALS)
is the most popular measure used to assess patient confidence locating, understanding, evaluating, and acting upon online health
information. Currently, however, the factor structure of the eHEALS across discrete age groups is not well understood, which
limits its usefulness as a measure of eHealth literacy across the lifespan.

Objective: The purpose of this study was to examine the structure of eHEALS scores and the degree of measurement invariance
among US adults representing the following generations: Millennials (18-35-year-olds), Generation X (36-51-year-olds), Baby
Boomers (52-70-year-olds), and the Silent Generation (71-84-year-olds).

Methods: Millennials (N=281, mean 26.64 years, SD 5.14), Generation X (N=164, mean 42.97 years, SD 5.01), and Baby
Boomers/Silent Generation (N=384, mean 62.80 years, SD 6.66) members completed the eHEALS. The 3-factor (root mean
square error of approximation, RMSEA=.06, comparative fit index, CFI=.99, Tucker-Lewis index, TLI=.98) and 4-factor
(RMSEA=.06, CFI=.99, TLI=.98) models showed the best global fit, as compared to the 1- and 2-factor models. However, the
4-factor model did not have statistically significant factor loadings on the 4th factor, which led to the acceptance of the 3-factor
eHEALS model. The 3-factor model included eHealth Information Awareness, Search, and Engagement. Pattern invariance for

this 3-factor structure was supported with acceptable model fit (RMSEA=.07, Δχ2=P>.05, ΔCFI=0). Compared to Millennials
and members of Generation X, those in the Baby Boomer and Silent Generations reported less confidence in their awareness of
eHealth resources (P<.001), information seeking skills (P=.003), and ability to evaluate and act on health information found on
the Internet (P<.001).

Results: Young (18-48-year olds, N=411) and old (49-84-year olds, N=419) adults completed the survey. A 3-factor model had
the best fit (RMSEA=.06, CFI=.99, TLI=.98), as compared to the 1-factor, 2-factor, and 4-factor models. These 3-factors included
eHealth Information Awareness (2 items), Information Seeking (2 items), and Information and Evaluation (4 items). Pattern

invariance was supported with the acceptable model fit (RMSEA=.06, Δχ2=P>.05, ΔCFI=0). Compared with younger adults,
older adults had less confidence in eHealth resource awareness (P<.001), information seeking skills (P<.01), and ability to evaluate
and act upon online health information (P<.001).
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Conclusions: The eHEALS can be used to assess, monitor uniquely, and evaluate Internet users’ awareness of eHealth resources,
information seeking skills, and engagement abilities. Configural and pattern invariance was observed across all generation groups
in the 3-factor eHEALS model. To meet gold the standards for factor interpretation (ie, 3 items or indicators per factor), future
research is needed to create and assess additional eHEALS items. Future research is also necessary to identify and test items for
a fourth factor, one that captures the social nature of eHealth.

(J Med Internet Res 2018;20(7):e10434) doi: 10.2196/10434
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Introduction

Background
Telemedicine and electronic health (eHealth) transcends
geographic, social, and political boundaries, making them
essential tools to leverage health care delivery and surveillance
[1,2]. The Internet has become deeply penetrated into society,
with nearly 90% of adults in the United States having Internet
access [3]. Millennials (18-35-year-olds), however, continue to
adopt the Internet at a more rapid rate than members of
Generation X (36-51-year-olds), Baby Boomers
(52-70-year-olds), and the Silent Generation (71-115-year-olds)
[4]. Although age-related disparities in Internet adoption have
declined in recent years [5], the strategies to narrow this chasm
and optimize the eHealth experience will require a closer look
at the unique attributes of generations.

Generational differences in technological adoption can be
broadly attributed to the point in one’s life that technology was
penetrated into society [6]. Members of Generation X created
the same technology that has become central to Millennials’
everyday lives. Rather than being familiar with and growing up
with technology, Baby Boomers and members of the Silent
Generation were introduced to technology after their social and
cultural identities had been established. Widespread adoption
of the Internet and the capabilities of technology have led Baby
Boomers and members of the Silent Generation, who are
traditionally considered late adopters of innovations like
technology [4,6], to become excited and willing to adapt and
learn about new technologies [7]. However, barriers related to
unfamiliarity and uncertainty surrounding the use, value, and
security of health information technologies persist among
middle-to-older age adults [8-11], especially among those who
are not avid health service users [12]. Evidence also shows that
non-primary care physicians who are 55 years old and over are
less likely to integrate electronic health record systems into their
practice, as compared to their younger physician counterparts
[13]. Consistent with theoretical underpinnings of the Diffusion
of Innovation and the Technology Acceptance Model [7,14],
technology tends to be adopted more quickly among younger
age groups who find that it is both useful and easy to use.

Adoption of eHealth, however, does not ensure that the
technology is used appropriately or that it is used to access
high-quality and actionable health information [15]. eHealth
literacy, driven by health and computer literacies, is defined as
the capacity to locate, understand, evaluate, and act upon health
information from technology [16]. People with a low degree of
eHealth literacy are less likely to find the Internet as a useful

health information tool, to trust the health information from
diverse online sources and channels [17], and to actively seek
out health information from the Internet [18]. Literacy in eHealth
is a central skill set that influences not only health information
seeking behaviors [19-21], but also the likelihood of engaging
in proactive health-related outcomes and experiences [18,22].
Similar to generational values, researchers argue that social and
cultural contextual frames influence eHealth literacy [23,24].
As such, understanding how generational age serves as a
function of eHealth literacy and optimizing its measurement
across these groups will be critical in the evolving technological
era.

Empirical evidence over the past decade has shown that an
inverse correlation exists between age and eHealth literacy
[18,22,25,26]. Older adults generally have lower health literacy
than their younger counterparts [27,28], yet this population is
increasingly adopting the Internet with a high degree of
confidence to access health information and supplement their
health care [4,25]. Paige and colleagues [17] found that adults
in the middle-to-older adult age groups, or Boomers and
members of the Silent Generation, were more likely to have
low eHealth literacy than their younger counterparts. Older age
groups were also less likely to trust health information from
social support forums but more likely to trust health information
from Facebook. These age disparities have been attributed to
older adults’unique health needs as compared to younger adults
[29,30], including specialized health information related to
chronic disease [31-33], the potential risk for social isolation
[34,35], and physical and cognitive limitations that are due to
the natural aging process [36]. The generational differences in
information seeking behaviors in the non-health context have
also been highlighted in the literature to show that Millennials
and Baby Boomers consult different informational sources [37].
For these reasons, it would be naïve to assume that eHealth
literacy is measured and conceptualized equivalently across
generational age groups. To our knowledge, evidence to support
that measurement invariance of eHealth literacy scores exists
across generations does not exist.

Valid age-group comparisons of eHealth literacy and associated
patient-reported outcomes cannot be established without
evidence that eHealth literacy measures function equally, or
invariant, among young and old adults [38,39]. Measurement
invariance indicates that the latent construct captured by an
instrument will function similarly across different groups.
Multi-group comparisons that do not meet the assumption of
measurement invariance are ambiguous and subject to bias
[38,40] and may use misleading or false claims to advance
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research and practice [41]. Without such evidence, it is unknown
if the different relationship between eHealth literacy and age is
due to real differences or systematic biases. As such, older adults
may have a lesser degree of confidence to use eHealth. However,
it is also possible that normal age-related cognitive declines
[42] and low health literacy [28] readily reported among older
adults contribute to depleted attention and working memory to
recall accurate responses. As such, specific items may appear
more salient in one age group over another. Establishing
measurement invariance across eHealth literacy scales will have
significant implications for fair and equitable testing standards.
Also, it will alleviate bias in using these instruments to identify
patients who are likely to benefit from online programs.

Since the conceptualization of eHealth literacy in 2006, several
instruments have been developed to capture this construct in
the evolving era of eHealth. The seminal instrument, the eHealth
Literacy Scale (eHEALS), is a brief 8-item measure with
theoretical underpinnings in self-efficacy, or the confidence in
one’s capability to engage in behavior to result in the desired
outcome [43]. Alongside the emergence of online social
environments, like social media, there have been criticisms that
the instrument has a compromised degree of content validity
[16], particularly regarding its insufficient ability to capture the
multidimensional and dynamic features of eHealth. In response,
formative research was conducted to derive constructs salient
to eHealth literacy and its measurement inductively. The most
significant contribution noted by these instruments is the ability
to capture the dynamic feature of eHealth and pressing issues
related to eHealth use (eg, privacy). These instruments included
items that assess if an Internet user can talk to their offline health
care provider about the health information found on the Internet
[44], as well as their skills related to privacy protection and
message self-creation with a keyboard [45]. Another instrument
related to eHealth literacy assessed the Internet users preferred
mode of interaction and online experiences, as well as their
degree of computer anxiety and health information needs [46].
These new instruments tap into unique aspects of eHealth
literacy, but they do not provide insight into the communication
exchange processes that are missing from eHEALS. Instead,
these instruments have been said to leave eHealth literacy
literature static, as recent attempts to advance the concept and
measurement have not built upon previous literature [47]. Given
this information, it is possible that new operational definitions,
concepts, and measures that do not build upon seminal work of
eHealth literacy may lead researchers astray from the core
operational behaviors (ie, locate, understand, evaluate, act upon).
Although measures of eHealth literacy have been published,
eHEALS remains the most widely used and refined instrument
in the literature [48-50] .

Evidence for the internal structure and external validity of
eHEALS as a unidimensional measure exists across diverse age
groups. These populations include adolescents [51], college
students [52], the general adult population [52], patients with
chronic disease [53], older adults recruited to surveys conducted
online [54], and baby boomers and older adults recruited through
the telephone [55]. More recently, studies applying sophisticated
psychometric modeling techniques have found that eHEALS
is a multi-dimensional measure that captures operational

behaviors consistent with the seminal operational definition of
eHealth literacy [16]. The eHEALS has been identified as a
2-factor measure of eHealth literacy among Australian adults
who are at-risk for cardiovascular disease [56]. The 2-factor
model was replicated among general adult populations in
Germany [57] and Israel [57,58]. These factors have been
defined as measuring information seeking and information
appraisal. Most recently, the eHEALS 3-factor structure has
been reported among adults later in the lifespan. Sudbury-Riley
and colleagues [49] report that eHEALS scores produce a
3-factor model of information awareness, seeking, and appraisal
skills among baby boomers. Similarly, the 3-factor model of
eHEALS has been confirmed among baby boomers and older
adults [55], chronic disease patients [53], as well as middle age
adults, with an average age of 53, in a magnetic resonance
imaging and computed tomography medical imaging outpatient
clinic [59]. The 3-factor structure of eHEALS scores, however,
has not been reported or confirmed among younger age groups,
like Millennials or members of Generation X. As such, the
discrepancy in 1-, 2-, and 3-factors captured among
middle-to-older age adults and the general population in
international contexts brings into question whether or not
eHEALS produces similar factor structures across the lifespan.

Sudbury-Riley and colleagues [49] found measurement
invariance for the 3-factor structure among baby boomers in
the US, United Kingdom, and New Zealand. As such, the
multidimensional eHEALS structure does not vary among Baby
Boomers across international borders, regardless of the various
health care provisions and coordination that drive social and
cultural frames. Age, however, is also a strong determinant that
shapes and influences the social and cultural frame of a given
population [60]. Baby Boomers are a single generation within
the lifespan, and measuring their health-related technological
skills is well justified. However, Baby Boomers are a single
generation whose socio-cultural and political frame has a
significant influence on health outcomes and health services
uptake [61-63]. Evidence that research on generational
differences in eHealth adoption sets a precedent to also consider
the potential generational variability in measures that assess
eHealth literacy.

Although a “gold standard” eHealth literacy instrument does
not exist [47], the eHEALS remains the closest to reaching this
status due to its brevity, popularity, and theoretical
underpinnings in health behavior change theory. Researchers
have recommended the refinement of the eHEALS, specifically
to account for the social nature of eHealth [47,64,65]. Before
embarking on this mission, there is an obligation to understand
the multidimensional factor structure of the eHEALS across
age groups and whether or not these factor structures are
invariant. Without such evidence, it will be challenging to refine
eHEALS as a reliable measure that produces scores with a high
degree of validity evidence across the lifespan in the social era
of eHealth. Therefore, the purpose of this study is to examine
the structure of eHEALS scores and the degree of measurement
invariance among three generations: Millennials, Generation
X, and Baby Boomers and the Silent Generation.
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Methods

Sample and Procedures
A sample of Qualtrics Panelists from the United States
completed an online survey in May 2015, which was approved
by the university Institutional Review Board (IRB). The sample
was stratified by race (ie, Caucasian, Black/African American).
Per Qualtrics Panels, the survey functioned as opt-in, meaning
that panelists who met inclusion criteria were offered the
opportunity to consent to participate. For this particular survey,
the inclusion criteria included residing within the United States
and being older than 18 years old. Some respondents (n=11)
did not provide their age and were subsequently removed from
the final sample (N=829). Upon removing respondents who did
not provide an age value, there were no missing eHEALS data
in this sample.

Measures
The following sociodemographic factors were measured across
the sample [66]: (1) age (in years), (2) gender (Male, Female),
(3) race (Black/African American, Caucasian), (4) ethnicity
(Hispanic, non-Hispanic), (5) education level, (6) annual income,
and (7) Internet use for Health. The eHealth Literacy was
assessed with the eHEALS (Norman and Skinner, [51]), an
8-item, 5-point Likert-type rating scale (1=strongly disagree,
5=strongly agree).

Data Analysis
The age group of the sample was categories as: (1) Millennials
(18-35-year-olds), (2) Generation X (36-51-year-olds), and (3)
Baby Boomers (52-70-year-olds) and Silent Generation
(71-115-year-olds) [67]. Baby Boomers and the Silent
Generation were collapsed into a single group for this study
because the sample only contained 45 members of the Silent
Generation. Frequency and descriptive statistics were computed
to describe the sample and eHealth literacy scores. A series of
chi-squared analyses were conducted to determine if
sociodemographic factors were significantly different by age
group.

Dimensionality
Multi-group exploratory structural equation models (MG-ESEM)
were conducted with Mplus v7.3 [68] to inform the number of
factors underlying eHEALS items. MG-ESEM is not a
confirmatory factor analysis approach. Instead, it is a structural
equation modeling (SEM) approach that integrates principles
of exploratory factor analysis. This statistical approach is
justified by the limited, and inconsistent (eg, 1-factor, 2-factor,
3-factor), knowledge regarding measurement properties of
eHEALS across generations. For example, there is no priory
theory to support that a certain number of factors are salient
across generations who complete the eHEALS. Moreover, there
is limited theoretical support to suggest that specific items from
eHEALS would belong to one factor over another. Considered
a novel framework to examine the measurement and structural
properties through a SEM lens [69], a similar statistical approach
has been used in measurement studies to examine the properties
of eHEALS among baby boomers and older adults [55].

The fit of 4 MG-ESEM factor models was evaluated across each
generation. Each model was independently examined, beginning
with 1-, 2-, 3-, and finally a 4-factor model structure. The
following criteria were used to evaluate the global model fit of
each model [70]: (1) statistically non-significant chi-square
value, (2) Root mean square error of approximation (RMSEA)
value less than .08, (3) comparative fit index (CFI) value greater
than .95, (4) Tucker-Lewis index (TLI) value greater than .95,
(5) standardized root mean square residual (SRMR) less than
.08, and (6) smaller Akaike information criterion (AIC). Factor
loadings of .30 or greater [71] were examined to form the base
model for testing measurement invariance.

Measurement Invariance
Mplus v7.3 [68] was used to carry out 3 analytical invariance
tests within Confirmatory Factor Analyses (CFA) framework
to test if the instrument functions similarly across each
generational age group [39]. There were 3 tests of measurement
invariance conducted [72]. The first was configural invariance,
in which all parameters from the factor model identified in the
MG-ESEM are freely estimated across groups to confirm that
the underlying factor structure is equivalent. Next, pattern
invariance tests the equivalence of unstandardized factor
loadings across groups, which is used to examine if items are
related to the factors in the similar ways across groups. Finally,
the unique invariance test examines the equivalence of item
measurement error across groups. Chi-square difference tests
were conducted for model comparisons to test each level of
measurement invariance, and several fit indices such as RMSEA,
SRMR, CFI, and TLI, were also examined to evaluate the fit
of the final model. A change in chi-square statistic was
compared to the critical value with the relevant for the change
in degrees of freedom. If the chi-square difference test was
significant, adding invariance constraints was considered
worsening the model fit and indicating lack of invariance. As
chi-square is sensitive to sample sizes [73], a CFI change less
than .01 was considered as non-significant changes in model
fit, supporting invariance [74].

Comparing Electronic Health Literacy Scale Scores by
Age Group
The statistical software SPSS v24 [75] was used to examine the
internal consistency, or Cronbach’s alpha, of items comprising
each eHEALS factor and compute the average of item scores.
The reliability of each factor across age groups was determined
by the omega coefficient, which is more appropriate for
congeneric factor analysis models that do not function under
tau-equivalence [76,77]. A one-way analysis of variance
(ANOVA) and Tukey post-hoc analyses were conducted to
identify the mean difference in eHealth literacy scores among
each generation. Statistical significance was detected at P<.05.

Results

Sample Characteristics
As shown in Table 1, the mean ages of Millennials, Generation
X, and Baby Boomers/Silent Generation Members were 26.64
(SD 5.14), 42.97 (SD 5.01), and 62.80 (SD 6.66), respectively.
Respondents were mostly female (603/829, 72.74%), earning
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at least US $35,000 each year (499/829, 60.41%), and living
with at least some college experience (623/829, 75.15%%).
There were no statistically significant differences in gender,
income, or education across each generation group. Nearly half
of the respondents were Black/African American (412/829,
49.70%) or Caucasian (417/829, 50.30%), and most were
non-Hispanic or Latino (807/829, 97.2%). A greater number of
Millennials used the Internet for health-related purposes, as
compared with members of Generation X or Baby
Boomers/Silent Generation groups (P=.009).

Dimensionality
The estimates of model fit for 1-4 factor models are presented
in Table 2. Exceeding the acceptable level of RMSEA were the
1-factor (value=.14), 2-factor (value=.09) models. The 3-factor
model (RMSEA=.06, 90% CI 0.04-0.08, CFI=.98, TLI=.98)
and 4-factor model (RMSEA=.06, 90% CI 0.04-0.08, CFI=.99,
TLI=.99) indicated good global model fit. Similarly, the AIC
values for the 3-factor (value=12750) and 4-factor
(value=12737.50) models were lower than the values for the
1-factor, 2-factor, and 4-factor models.

Table 1. Sociodemographics of millennials, generation X, and baby boomers/silent generation members.

Baby Boomers/Silent Generation (N=384)Generation X (N=164)Millennials (N=281)Characteristic

62.80 (6.66)42.97 (5.01)26.64 (5.14)Age in years, mean (SD)

Gender, n (%)

99 (25.7)54 (32.9)73 (25.9)Male

286 (74.3)110 (67.1)207 (73.7)Female

0 (0.0)0 (0.0)1 (0.36)Missing

Racea, n (%)

163 (42.3)93 (56.7)156 (55.7)Black/African American

222 (57.7)71 (43.3)124 (44.3)Caucasian

Ethnicity, n (%)

6 (1.6)2 (1.2)8 (2.9)Hispanic

378 (98.2)161 (98.2)267 (95.4)Non-Hispanic

1 (0.3)1 (0.6)5 (1.8)Missing

Education level, n (%)

12 (3.1)5 (3.0)12 (4.3)< High school

88 (22.9)31 (18.9)58 (20.7)High school/GED

136 (35.3)47 (28.7)99 (35.4)Some college

67 (17.4)39 (23.8)65 (23.2)Bachelor’s degree

59 (15.3)28 (17.1)26 (9.3)Master’s degree

23 (5.9)13 (7.9)18 (6.4)Advanced graduate

0 (0.0)1 (0.6)2 (0.7)Missing

Annual income (US $), n (%)

65 (16.9)28 (17.1)60 (21.6)≤$20K/year

79 (20.6)33 (20.1)62 (22.3)$20K-$34,999K/year

61 (15.9)27 (16.5)50 (18)$35K-$49,999K/year

88 (22.9)25 (15.2)57 (20.5)$50K-$74,999K/year

91 (23.7)51 (31.1)49 (17.6)≥$75K more/year

Internet use for healthb, n (%)

366 (95.1)157 (95.7)278 (99.3)Yes

19 (4.9)7 (4.3)2 (0.7)No

aBlack/African Americans and Caucasian respondents were less likely to be a member of Generation X than any other generation, χ2(2, N=829)=15.62,
P<.001.
bMore Millennials reported using the Internet for health, as compared to members of Generation X or Baby Boomers/Silent Generation, χ2 (2,
N=829)=9.35, P=.009.
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Table 2. Global model fit estimates for multi-group exploratory structural equation models

AICeTLIdCFIcSRMRbRMSEAa (90% CI)P valueχ 2 (df)Model

13135.05.89.88.13.14 (0.13-0.15)<.001577.67 (90)1-Factor Model

12842.55.95.96.09.09 (0.08-0.10)<.001263.16 (79)2-Factor Model

12742.33.98.98.08.06 (0.05-0.08)<.001138.95 (67)3-Factor Model

12737.50.98.99.08.06 (0.04-0.08)<.001108.12 (54)4-Factor Model

aRMSEA: root mean square error of approximation.
bSRMR: standardized root mean square residual.
cCFI: comparative fit index.
dTLI: Tucker-Lewis index.
eAIC: Akaike information criterion.

Although the 4-factor model yielded the best fitting model,
items from the scale did not statistically significantly load onto
the fourth factor. Therefore, the 3-factor model was used as the
basis for assessing measurement invariance among young and
old respondents.

Table 3 shows the statistically significant unstandardized factor
loadings for the 3-factor model among Millennials, Generation
X, and Baby Boomers/Silent Generation groups. Factor 1, which
includes items that assess awareness about what health
information is available on the Internet and where it can be
located, contained significant factor loadings for Items 1-2

across all groups. Similarly, items 5-8 yielded high (greater than
.40) and significant loadings on Factor 3, which included items
that assess confidence in evaluating and using health information
to answer health-related questions. Items 3 and 4, which assessed
knowledge about how to use and find helpful health resource
on the Internet, had a moderate to strong relationship with Factor
2 across all generation groups. All 3 factors were statistically
significantly correlated with one another across all 3 groups.
Interestingly, the correlation of Factor 1 with Factors 2 (r=.98)
and 3 (r=.80) were much stronger than for the other generation
groups. The final 3-factor model used to guide measurement
invariance testing is shown in Figure 1.

Table 3. The 3-factor loadings for each generation.

Baby Boomer/Silent GenerationcGeneration XbMillennialsaElectronic Health Literacy Scale Item

Factor 3Factor 2Factor 1Factor 3Factor 2Factor 1Factor 3Factor 2Factor 1

.06.01.69d.06.01.69d.06.01.69d(E1) I know what health resources are
available on the Internet

–.01.18e.64d–.01.18e.64d–.01.18e.64d(E2) I know where to find helpful health
resources on the Internet

.22f.40f.07.22f.40f.07.22f.39f.07(E3) I know how to use the health infor-
mation I find on the Internet to help me

.01.78d–.02.01.78d–.02.01.78d–.02(E4) I know how to find helpful health
resources on the Internet

.72d.02–.09.72d.02–.09.72d.02–.09(E5) I have the skills I need to evaluate
the health resources I find on the Inter-
net.

.45d.18e–.01.45d.18d–.01.45d.18d–.01(E6) I know how to use the Internet to
answer my questions about health.

.50d–.03.17.49d–.03.17.49f–.03.17(E7) I can tell high quality health re-
sources from low quality health re-
sources on the Internet

aFactor 1 with Factor 2 (r=.70, P<.001), Factor 1 with Factor 3 (r=.63, P<.001), Factor 2 with Factor 3 (r=.76, P<.001).
bFactor 1 with Factor 2 (r=.98, P<.001), Factor 1 with Factor 3 (r=.80, P<.001), Factor 2 with Factor 3 (r=.77, P<.001).
cFactor 1 with Factor 2 (r=.79, P<.001), Factor 1 with Factor 3 (r=.79, P<.001), Factor 2 with Factor 3 (r=.89, P<.001).
dP<.001
eP<.05
fP<.01
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Figure 1. Proposed 3-factor electronic health literacy scale (eHEALS) measurement model.

Measurement Invariance
Table 4 shows the results for configural, pattern, and unique
factor invariance tests through the use of a CFA. The 3-factor
model has slightly poorer, but acceptable, model fit in regards
to configural invariance. This is determined from the RMSEA
(value=.08, 90% CI 0.06-0.09) and CFI/TLI (.98 and .97,
respectively), confirming that the 3-factor model represents the
factor structure of eHEALS across all generations. Adding
constraints on the factor loadings across generation groups
(pattern invariance testing) resulted in slight improvement of
RMSEA and relatively steady SRMR, CFI, and TLI values. The
change in chi-square was not statistically significant and the
CFI did not deviate by .01. In regard to unique factor invariance,

the change in chi-square (Δχ2=69.51, Δdf=16) was statistically
significant at. P<.05. As such, unique factor invariance was
rejected as equating the error variances of each item across
groups significantly diminished the model fit. Moreover, the
AIC value for the pattern invariance model (value=12,770.60)

was lower than the models testing for configural
(value=12,775.72) and unique factor (value=12,808.11)
invariance. Therefore, measurement invariance of for the
proposed 3-factor structure exists among Millennials, the
Generation X, and Baby Boomers/Silent Generation.

Electronic Health Literacy Scale Scores by Age Group
Table 5 shows the average scale scores for the 3-factor eHEALS
model across each generation. Internal consistency alpha
estimates were within appropriate range for each factor, and
omega coefficients demonstrated equivalent values to support
reliability of the data. A one-way ANOVA showed that eHEALS
scores varied across generations for Factor 1 (F [2, 827]=8.17,
P<.001), Factor 2 (F [2, 826]=6.00, P=.003), and Factor 2 (F
[2, 827]=18.51, P<.001). Tukey honest significant difference
(HSD) post hoc analyses showed that, on average, members of
the Baby Boomer and Silent Generation groups reported less
knowledge and confidence in their eHealth literacy across all
factors (P<.05), as compared to members of the Millennial and
Generation X groups.
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Table 4. Fit statistic summary for testing measurement invariance in the 3-factor model of electronic health literacy scale.

Model comparison, Δχ2 ( Δdf)AICeTLIdCFIcSRMRbRMSEAaχ2 (df)Model

0.0 (0)12775.72.97.98.03.08160.33 (61)Model 1: Configural Invariance

14.88 (10)12770.60.97.98.05.07175.21 (71)Model 2: Pattern Invariance

69.51f (16)12808.11.96.96.08.08244.72 (87)Model 3: Unique Factor Invariance

aRMSEA: root mean square error of approximation.
bSRMR: standardized root mean square residual.
cCFI: comparative fit index.
dTLI: Tucker-Lewis index.
eAIC: Akaike Information Criterion.
fP<.05.

Table 5. Average eHealth literacy scores by age group.

TotalBaby Boomer/Silent
Generation

Generation XMillennialsElectronic Health Literacy Scale Factor

Mean (SD)ωαMean (SD)aωαMean (SD)ωαMean (SD)ωα

7.48 (1.71).84.847.22 (1.67).83.837.72 (1.80).91.917.69 (1.68).80.80Factor 1: Information Awarenessb

7.85 (1.51).88.887.66 (1.46).89.898.02 (1.57).91.908.02 (1.50).86.86Factor 2: Information Seekingc

14.89 (2.88).84.8414.25 (2.97).86.8615.55 (2.77).84.8515.37 (2.66).79.79Factor 3: Information Engagementd

aP<.05.
bFactor 1 (min score=2; max score=10).
cFactor 2 (min score=2; max score=10).
dFactor 3 (min score=4; max score=20).

Discussion

Principal Findings
This study examined the degree of measurement invariance in
eHEALS scores in the United States belonging to the Millennial,
Generation X, and Baby Boomers/Silent Generations. The
eHEALS is a multidimensional measure that can be used to
assess eHealth literacy across the lifespan consistently.
Millennials are more knowledgeable and confident in their
online health information awareness, information seeking skills,
and information engagement abilities, as compared to members
of Generation X and the Baby Boomers/Silent Generation.
Further, this study offers significant implications for the
continued use and potential refinement of eHEALS in future
research and practice-based settings.

The eHEALS scores best fit a positively correlated 3-factor
model that captures the following underlying factors:
information awareness, information seeking, and information
engagement. This finding comes at a time when there is
inconsistent evidence for the factor structure of eHEALS.
Results of our study contrast with those described by Nguyen
and colleagues [52], who explored the dimensionality of
eHEALS when it was administered online to a significant
proportion (60%) Millennials. Data from Nguyen and colleagues
[52] showed eHEALS to have a unidimensional structure with
a principal components analysis, which traditionally identifies
the fewest number of factors that explain the substantial amount

of variance in observed variables [78]. Considering the
conflicting evidence describing the dimensionality of eHealth
literacy, our alternative multi-group exploratory structural
equation modeling approach sought to validate constructs
implicit within eHEALS items across three different age groups.
Moreover, the current study strived to cast a broader net to
explore not only which eHEALS items best explained retained
factors, but also how these factors might function in a
theoretically driven manner consistent with eHealth literacy
literature. Contrary to findings reported by Nguyen and
colleagues [52], evidence generated in this study supported a
3-factor model of the English-version of eHEALS. Of note, our
sample of Web-based panelists included proportionately more
adults representing older Baby Boomer and Silent Generations.
These 2 generations were underrepresented in their analyses
conducted using an Internet-based sample obtained through
machine learning software.

The 3-factor eHEALS model supported in this study captures
a more precise assessment of eHealth literacy that goes beyond
individual knowledge and perceptions of behavioral capability.
The 3-factor eHEALS model comprises items that measure
self-efficacy towards central operational skills related to eHealth
literacy (ie, locate, evaluate, apply). These operational skills
are associated with unique, albeit related, dimensions of
self-efficacy in the context of eHealth literacy [16], which
explains the highly correlated 3-factor model containing unique
factors.
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Configural and pattern invariance was upheld across all
generation groups in the 3-factor eHEALS model, suggesting
that eHEALS scores from the 3-factor model can be interpreted
equivalently, regardless of respondents’age group membership.
Despite invariance between groups in the current study, the
items that comprise each of these factors are inconsistent with
the results of previous literature. Stellefson and colleagues [55]
examined the factor structure of eHEALS scores among Baby
Boomers and Silent Generation members during a telephone
interview and found that Item 3 (ie, “I have the skills I need to
evaluate the health resources I find on the Internet”) significantly
loaded on both Factor 2 and Factor 3. In that study, Factor 2
included items related to knowing how to use and find helpful
health information on the Internet to make informed health
decisions. Factor 3 included only 1 other item with a significant
factor loading, which addressed the ability to evaluate the quality
of online health information. Findings from Stellefson and
colleagues [55] run contrary to the current study and also
findings reported by Sudbury-Riley and colleagues’ [49], who
speculated that the content and theoretical underpinnings of this
particular eHEALS item (Item 3) denote skills related to
confidence in the ability to evaluate and act upon health
information from the Internet. After a closer inspection of Item
3 content, it appears that this question may assess two distinct
skills: (1) can one evaluate health information from the Internet?
and (2) can one find health information on the Internet? The
mode of data collection in Stellefson and colleagues’ [55] study
was over the telephone, whereas the data collected in the current
study and Sudbury-Riley and colleagues’ [49] was through a
Web-based survey. It is possible that respondents only
cognitively processed a single operational behavior outlined in
this item (ie, find, evaluate), or perhaps the telephone
interviewer placed emphasis on one skill over the other. Future
research is needed to understand how data collection modality
(eg, telephone, online) might directly affect the interpretation
of the eHEALS items and ultimately the construct validity of
the data produced.

Lastly, the final test of measurement invariance proved to be
insufficient. The residual error variances of items were
significantly different across age groups when tested within the
3-factor eHEALS model. Unique factor invariance is the strictest
form of measurement equivalence. It is rarely achieved in
practice, and experts have recently acknowledged that
establishing unique factor invariance can be somewhat
unreasonable for subjective measurement [79]. Therefore, we
suggest that scores produced by the eHEALS may still be used
as a comparative index to examine eHealth literacy across age
groups [72].

Limitations
This study sampled opt-in respondents from a Qualtrics Survey
Panel taken from the general US population. Despite the
population from which the sample was derived, the respondents
were predominantly female with a normally distributed income
and educational level. Moreover, half of the sample identified
as Caucasian and the other half as Black/African American. In
other words, this study enrolled over 400 respondents from
population subgroups (ie, middle-older age adults, Black/African
Americans) that are traditionally underserved in health

promotion research. Although this represents a limitation
affecting the generalizability of data to the entire US population,
the diversity of sample characteristics remains a significant
strength of this measurement study.

This was a self-reported Web-based survey, and, therefore, the
results of this study can only speak to the interpretation and
measurement invariance of scores from eHEALS administered
on the Web. There is sufficient reliability and validity evidence
of eHEALS delivered via telephone among middle-to-older age
adults [55], a population most likely to respond differently to
Web-based versus telephone-administered surveys [80]. Future
research could explore the degree of measurement invariance
of the 3-factor eHEALS model across generations according to
the mode of survey administration. Moreover, respondents of
this Web-based survey were members of Qualtrics Panels who
opted-in to participate. The purposefully racially stratified
sample and normally distributed income levels compromises
the generalizability of the findings. However, the oversampling
of minorities and low-income adults engaged these particularly
vulnerable and hard-to-reach populations in survey research.

Although this study did not consider the geographic region (ie,
rural versus urban) of the sample, nearly 70% of the sample
reported using social media for health-related purposes, which
requires a sufficient level of broadband. Rural adults are
generally older [81] and have limited broadband connections
[82] that enable sustained access to eHealth services. Moreover,
rural residents are nearly twice as likely to not use the Internet
as compared to their urban counterparts [82,83]. Therefore,
factors beyond geographic location may limit rural adults’
eHealth use. Based on the limited empirical evidence related to
the eHealth literacy of rural populations [84], future research
is needed to explore eHealth literacy and its measurement among
populations according to rurality regarding physical space (ie,
Rural-Urban Commuting Area or Metropolitan Statistical Area
data) and sociocultural rural identity.

Practical Implications
Acknowledging the multidimensionality of scores obtained
from eHEALS will allow practitioners to obtain a more precise
understanding of consumers strengths and weaknesses using
the Internet for health-related purposes. Rather than ambiguously
interpreting “low eHealth literacy” based on prior
unidimensional assumptions underlying eHEALS, practitioners
considering the 3-factor model of eHEALS can identify the
degree to which their patients have confidence in online health
information awareness, search, and engagement. Interpreting
scores based on 3 underlying eHEALS dimensions can assist
practitioners and researchers to more efficiently direct patients
to eHealth resources that are appropriate to their relative skill
set, whether it is simply increasing awareness of existing online
health information resources or providing a direct link to a
particular website with credible health information. Precisely
identifying limitations in core operational behaviors central to
eHealth literacy will help to inform more tailored and efficient
eHealth literacy interventions that consider an individual’s
perceptions of technology adoption and acceptability.

Compared with Millennials, older generations reported lower
knowledge and self-efficacy in each of the factors captured by
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eHEALS. Specifically, adults belonging to Generation X and
the Baby Boomers/Silent Generation had less confidence in
their (1) awareness of online health information, (2) skills to
locate online health information, and (3) ability to evaluate and
act on health information once it is located online. This finding
is consistent with previous literature stating that older adults
have lower proficiency in eHealth literacy than their younger
counterparts [18,22,25,26]. However, it is currently difficult to
measure the degree to which specific eHealth literacy skills are
deficient across different age segments. Our study helps to shed
light on how to interpret eHEALS scores, such that information
is gathered regarding which particular eHealth literacy skills
are limited and the degree to which they are limited across age
groups. eHEALS has strong potential to be used as the standard
assessment tool for coordinating eHealth literacy training
interventions based on these three discrete factors. For example,
structured interventions could be delivered in three modules
where skill-building activities aim to improve eHealth
awareness, as well as information seeking and evaluation.
Although older and younger adults respond differently to
eHealth literacy interventions [85], these 3 factors (ie, skill sets)
are central components of eHealth literacy, and thus should be
considered in the planning, implementation, and evaluation of
training interventions designed to improve the eHealth literacy
of older adults through narrowing the chasm that currently exists
between eHealth adoption and sustained use.

Finally, the results of this study provide implications for refining
and updating the eHEALS. The brevity of eHEALS makes it
an ideal scale for use in research and clinical care. However, it
is necessary to ensure that there is an adequate number of items
that correspond to each factor. Some measurement guidelines
support the reliability of highly correlated factors that only
comprise 2 items each [86,87]. However, other measurement
standards recommend including at least 3 items per factor [88].

In the current study, the 3 eHEALS factors were correlated to
a statistically significant degree. The strong factorial relationship
allowed the model to function adequately with fewer items on
Factors 1 and 2. This finding is contrary to the findings reported
by Sudbury-Riley and colleagues [49], who found that only 1
latent factor (ie, online health information awareness) was best
reflected by 2 eHEALS items, whereas factors related to
information seeking and application (eg, knowing how to find
and use online health information, self-efficacy to evaluate, and
use online health information) were comprised of 3 items each.
Further research is needed to develop unbiased items that
sufficiently capture the theoretical underpinnings of eHealth
literacy and its multidimensional constructs. Moreover, to
account for the dynamic and interactive nature of eHealth [2],
future research can build upon our findings to create and test
new items that account for a fourth latent factor that captures
“social” skills related to eHealth literacy.

Conclusion
Valid age group comparisons can be made with the 3-factor
structure of eHEALS among Millennials, Generation Xers, and
Baby Boomer/Silent Generation members. Results of this study
add to the library of literature showing that older adults have
significantly lower eHealth literacy scores as compared to
younger adults. Specifically, this study supports that members
of younger generations have a greater awareness of eHealth
resources and more confidence in their information seeking and
engagement skills on the Internet, as compared to older
generations. The brevity of eHEALS coupled with its
multi-dimensional structure can assist health care practitioners
and researchers in tailoring eHealth literacy interventions
designed to augment user performance on these relevant
constructs. Furthermore, findings of this study have significant
implications for more precisely measuring and improving
eHealth literacy skills across the lifespan.
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