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Abstract

Background: Adaptive behavioral interventions are individualized interventions that vary support based on a person's evolving
needs. Digital technologies enable these adaptive interventions to function at scale. Adaptive interventions show great promise
for producing better results compared with static interventions related to health outcomes. Our central thesis is that adaptive
interventions are more likely to succeed at helping individuals meet and maintain behavioral targets if its elements can be iteratively
improved via data-driven testing (ie, optimization). Control systems engineering is a discipline focused on decision making in
systems that change over time and has a wealth of methods that could be useful for optimizing adaptive interventions.

Objective: The purpose of this paper was to provide an introductory tutorial on when and what to do when using control systems
engineering for designing and optimizing adaptive mobile health (mHealth) behavioral interventions.

Overview: We start with a review of the need for optimization, building on the multiphase optimization strategy (MOST). We
then provide an overview of control systems engineering, followed by attributes of problems that are well matched to control
engineering. Key steps in the development and optimization of an adaptive intervention from a control engineering perspective
are then summarized, with a focus on why, what, and when to do subtasks in each step.

Implications: Control engineering offers exciting opportunities for optimizing individualization and adaptation elements of
adaptive interventions. Arguably, the time is now for control systems engineers and behavioral and health scientists to partner to
advance interventions that can be individualized, adaptive, and scalable. This tutorial should aid in creating the bridge between
these communities.

(J Med Internet Res 2018;20(6):e214) doi: 10.2196/jmir.8622
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Introduction

Background
Overwhelming evidence suggests health behaviors such as
smoking, physical activity (PA), and diet are key to preventing
noncommunicable diseases such as many forms of cancer, heart
disease, and diabetes [1-4]. Across interventions (eg,
human-delivered and community-based), statistically significant
changes in health behaviors relative to control can be found,
but these differences rarely meet clinical targets such as 10,000
steps/day for PA, particularly when focused on behavioral
maintenance [5-7]. Mobile health (mHealth) interventions show
promise for promoting behavior change [8], but further work
is needed to realize their potential for meeting and maintaining
behavioral and clinical targets. To accomplish the goal of
meeting and maintaining clinically meaningful targets, many
have argued for adaptive mHealth interventions that are
individualized and vary the intervention based on an individual’s
evolving needs [9-18].

Adaptive interventions are complex interventions [19], which,
like static interventions (meaning interventions that are delivered
the same way to everyone and do not adjust provision of support
over time), often include multiple active ingredient components
meant to facilitate behavior change, such as goal setting or
problem solving. Adaptive interventions include additional
elements [9,11,12]. Since adaptive interventions adjust provision
of support over time, an additional element is decision points,
which are the meaningful windows of time when the selection
of intervention type or dose (henceforth labeled intervention
option) occurs (eg, daily or monthly). Adaptive interventions
also include tailoring variables, which are the baseline (eg,
demographics) and time-varying information (eg, stress, affect,
and weather) that informs intervention option selection at each
decision point. Finally, decision rules operationalize the
adaptation by specifying which intervention option to select at
a given decision point based on known information such as
tailoring variables.

For example, we have been developing an adaptive PA
intervention, Just Walk, which includes goal setting, positive
reinforcement, and self-monitoring components [20-22]. The
end goal for this intervention is to help individuals meet and
maintain PA guidelines of 10,000 steps per day by developing
an intervention that is responsive to the idiosyncratic and
dynamic nature of steps (see Case Study Overview section for
more details). Just Walk includes a target of daily decision
making and, thus, the decision point is each morning. Just Walk
includes multiple tailoring variables (eg, stress, mood, weather,
and self-efficacy) that can be used to inform the decision made
at each daily decision point. One intervention component within
Just Walk is a suggested daily step goal that can be adjusted
each day depending on a person’s changing needs. A second
intervention component is positive reinforcement for achieving
goals, which, in this case, involves provision of points that
translate into gift cards. For this component, available points
can vary each day, thus enabling a mechanism for increasing
motivation to meet a given goal on any given day.

As this example illustrates, there are many elements within this
seemingly simple adaptive intervention. The central thesis of
this work is that adaptive interventions are more likely to
succeed at helping individuals meet and maintain behavioral
targets if its elements can be iteratively improved via data-driven
testing of the elements. The classic evaluation strategy for
behavioral interventions is the randomized controlled trial
(RCT). An RCT provides information about whether an
intervention package can produce an effect relative to a
meaningful comparator (eg, current clinical best practice) but
limited information about how, when, where, and for whom
each element functions to produce the desired effect. As such,
an RCT does not provide sufficient insights for supporting
data-driven improvement (also called optimization) of the
elements of an adaptive intervention such as Just Walk.

Control systems engineering is a field that focuses on decision
making in systems that change over time. Control engineering
is pervasive (eg, pacemakers, climate control, and robotics) but
often goes unnoticed as a hidden technology [23] and to date,
has only been minimally applied for use in testing and improving
behavioral interventions [24-27]. The methods of control
systems engineering are well suited to iteratively improving
elements of adaptive interventions for real-world health behavior
change. For example, control engineering methods can be used
to account for and test the value of multiple tailoring variables
simultaneously when selecting interventions and can adapt
frequently (eg, every second, minute, hour, and day).

The purpose of this paper was to provide an introductory tutorial
on when and what to do when using control systems engineering
for designing and optimizing adaptive mHealth behavioral
interventions. We start with a review of the need for
optimization, building on the multiphase optimization strategy
(MOST) [28]. Next, we provide a brief overview of control
systems engineering with a particular focus on defining key
terms and highlighting the general logic that guides control
systems engineering. Following this, we describe attributes of
problems that are well matched to control engineering, and then
we summarize steps to take to design and optimize an adaptive
intervention via control systems engineering. We ground this
tutorial in our on-going case study, Just Walk.

Optimization: Unpacking Complex Interventions
In classic RCT’s, all elements are combined into a unified
package relative to another package. On the basis of this, limited
information about each element, such as the tailoring variables
to use for individualization or the decision rules to use for
adaptation, is available. If an intervention package produces
suboptimal results, it will be difficult, empirically, to localize
what elements or interaction between elements could be further
improved upon to produce a more potent intervention within
RCTs.

Collins et al have been pioneering MOST, which provides
structure for thinking about optimization of complex
interventions [28,29]. MOST is a comprehensive, principled-
engineering-inspired framework for optimizing and evaluating
behavioral interventions. The framework includes an RCT to
conduct summative evaluations of an optimized complex
intervention relative to a meaningful comparator, such as current
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best practice interventions [30], but also includes other
experimental designs for iterative improvement and thus,
data-driven optimization of a behavioral intervention.
Optimization is accomplished on the basis of optimization
criteria. Optimization criteria include measures and clinically
meaningful trade-offs such as cost, time, or minimal
effectiveness targets, with success (or failure) on each metric
determined before running an optimization trial. For example,
one optimization criteria could be that each intervention
component must be significantly better, statistically, than a
comparator, and the entire intervention package must be
deliverable for less than US $500. Optimization criteria can
also include constraints that limit the actions or feasible ranges
of the optimization procedure. For example, an adaptive
intervention component cannot make drastic changes such as a
large jump in suggested step goals from one day to the next.

The most common optimization trial used in MOST (indeed,
sometimes inappropriately labeled a MOST trial) is the use of
a factorial or fractional factorial design [31]. This optimization
trial can be used to optimize static complex interventions to,
for example, eliminate ineffective components [32] or test for
interaction effects between components [33] in relation to
optimization criteria such as cost-effectiveness [31]. As adaptive
interventions include additional elements beyond static
interventions, methods are required that can support data-driven
optimization of these elements.

One approach for optimizing adaptive interventions is the
sequential multiple assignment randomized trial (SMART) [34].
SMART is a method that mimics clinical practice and supports
the study of decision rules of adaptation, such as what to do
with nonresponders. As clinical visits are often separated by
weeks or even months, SMART was designed with relatively
infrequent decision points (eg, once every 3 months) as plausible
moments of adaptation. Furthermore, SMART can only account
for relatively few tailoring variables within a given decision
rule. As such, SMART is not well matched to adaptive
interventions that monitor multiple tailoring variables
simultaneously and with frequent decision points, such as daily,
as is the case with Just Walk.

There is another emerging method for optimizing adaptive
interventions called the microrandomization trial (MRT) [35].
MRT involves randomizing provision of support, not between
individuals but, instead, at each decision point. For example, if
we used MRT for our Just Walk intervention, we could
randomize whether a suggested step goal was provided each
morning or not to test for each day if a step goal increases steps
for that day compared with days without a step goal. There are
great opportunities for optimizing adaptive interventions via
MRT, particularly when coupled with adaptation strategies that
are broadly derived from the computer science method called
reinforcement learning (RL) [36]. In particular, MRT and RL
are well matched to the emerging intervention class called
“just-in-time adaptive interventions,” which provide support
during “just-in-time” states, meaning, when a person has the
opportunity to engage in a positive behavior (or vulnerability
to engage in a negative behavior) and the receptivity to want to
be provided support [11].

As demonstrated by our publication record [35], we are
supportive of the MRT approach. With that said, we contend
that there is great opportunity for taking advantage of the rich
history and methods from control engineering when optimizing
adaptive mHealth interventions. These methods are
complementary for optimizing adaptive interventions that, we
argue, should both be part of the repertoire of optimization trial
methods that health and behavioral scientists could use for
optimizing adaptive interventions, what Almiral et al have called
the “optimization toolkit” [37,38]. In the remainder of the paper,
we highlight the unique value of control systems engineering
for optimizing adaptive interventions.

Control Systems Engineering Overview
Control engineering has a long history dating back nearly a
century and is pervasive (eg, pacemakers, artificial pancreas
systems, and supply management) [23]. Control systems
engineering focuses on decision making in systems that change
over time. An algorithm called a controller defines decision
rules (often called policies in control parlance) that attempt to
balance mathematical equations related to predicted error, which,
in this context is deviation from a desired state. For example,
a desired state may be 10,000 steps/day, but if a person currently
walks 6000 steps/day, then the error is 4000 steps/day.
Controllers perform the same task as classic tailoring decision
rules [11,12] but with important differences. Classic tailoring
uses if-then structures, such as if stage of change=X then
Intervention=A; if stage of change=Y then intervention=B
[9,10]. Although controllers can use if-then structures, they can
use other structures, particularly mathematical equations and
optimization algorithms that can account for multiple tailoring
variables, intervention options, and responses of the person
simultaneously.

One can think of this like accounting. The controller keeps a
ledger of measurements. In all controllers, including
nonmodel-based controllers such as Proportional-
Integral-Derivative (PID) controllers [39,40], this ledger
includes measurements of provision of intervention options,
called controlled input variables in control parlance, and
outcome variable(s) (or outputs) that can define how close a
system (eg, a person) is in relation to the desired state (error),
particularly in response to intervention options. Decisions are
made based on the dynamic interrelationship between the
intervention options and outcome measure in the past (P portion
of a PID controller), present (I portion of a PID controller), or
the anticipated rate of change in the future (D; note some
controllers only include parts of this such as I or PI controllers).
For sake of clarity, we label this class of controller as
nonmodel-based controllers.

In more advanced controllers that include a dynamical model,
such as model-predictive controllers [41], other variables are
also measured, including (1) inputs, which include endogenous
variables that influence the outcome variables (eg, stress and
self-efficacy) and (2) disturbance variables, which are
exogenous variables (eg, weather) the system cannot control
and are not attributes of the person but impact the state of the
person and, thus, could influence intervention option selection.
In the ledger for model-based controllers, not only are
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intervention options and outcomes tracked, but their
interrelationships are defined via a dynamical model, which is
like a structural equation model but can model dynamics and
incorporate a wider range of response options via difference
and differential equations [15]. With this information,
model-based controllers can simultaneously monitor a wide
array of important issues related to individualization and
adaptation, such as variables that are particularly influential (eg,
one person’s steps are influenced by stress and another by day
of the week [22]) or a person’s changing responsiveness to
interventions, such as an intervention option only being useful
for a limited time via the novelty effect [42].

Both model and nonmodel-based controllers conduct a series
of simulations to predict responses to intervention options in
the near and distant future, either based on deviations between
the desired state and the state of the system alone
(nonmodel-based controllers) or via dynamical models
(model-based controllers). These forecasts are used to make
decisions. The intervention option predicted to most likely foster
movement toward the desired state within prespecified
constraints (eg, only small daily changes to step goals allowed)
is selected. In contrast, if-then rules require knowledge of the
match between tailoring variables and intervention options
before specification [43]. This difference means that, relative
to if-then structures, mathematical equations can manage more
complex decision environments (eg, more tailoring variables
and interventions options), can function with limited a priori
knowledge about an individual, and can perform when a
person’s responses fall outside of expectations and thus, are
feasibly more responsive to each individual’s changing needs.

Control engineering includes a wealth of methods for optimizing
adaptive interventions by managing and mitigating lack of
knowledge related to intervention elements. Lack of knowledge
can take various forms from sensor noise (eg, measurement
noise when inferring steps [44,45]) to incorrect models (eg,
inaccurate predictions). System identification is an experimental
and analytic suite of methods to generate or validate dynamical
models for future predictions, [46-49] or, to put it in more
behavioral terms, it can be used for rigorous theory testing.
System identification “excites” variance with a person via
plausible intervention options to test what happens in different
states and contexts of the person over time. For example, if a
control engineer wished to generate a dynamical model to
understand factors that impact a person’s steps, she may vary
a person’s daily suggested step goals in different states, such
as different days of the week or when stressed vs not [50].
System identification can occur using both open loop and closed
loop experimentation. An open loop experiment is “open loop”
because the intervention options that are provided to a person
are specified a priori and, thus, a person’s responsivity to the
intervention options are not taken into account when selecting
future intervention options. When a person’s data are taken into
account to adjust support, this is called a closed loop experiment.
Dynamical systems modeling analyzes what occurred following
the intervention options over time during different conditions
to generate a dynamical model for each person and, ideally, a
generic dynamical model structure such as a semiphysical model,
which is useful across individuals.

Key concepts related to testing controllers are performance and
robustness. Performance involves how well the controller can
produce the desired effect as efficiently as possible. Robustness
involves how well the controller can produce desired
performance when issues such as poor measurement, models,
or interventions or changing responsivity to interventions arise
[43]. It is quite common for controllers with high performance
to be less robust vs robust controllers to have poorer
performance (eg, take longer to achieve the desired state). As
such, a central focus of controller design and testing is to define
the right balance between performance and robustness, which
can occur via closed loop experimentation and robustness testing
[43,50,51].

A closed loop experiment can be used to test the controller in
relation to optimization targets, such as meeting and maintaining
PA guidelines. It is closed loop because, like in closed loop
system identification, a person’s response to each selected
intervention option provided is documented and then taken into
account when selecting the next intervention option, thus closing
the loop. This type of experiment can include a variety of
strategies to test the controller. For example, one could
systematically vary providing the predicted optimal vs
nonoptimal intervention option to test the controller, if
appropriate for the research and intervention. This sort of
strategy maps on to the computer science concept of exploring
vs exploiting [36]. Exploring involves including some
randomness to see what will happen when a predicted
nonoptimal option was provided. Exploitation, in contrast,
involves using all that is known about a person to select the
predicted optimal intervention option. Thus, comparing explore
vs exploit options is one way to test controllers, particularly
related to performance. In contrast, robustness testing [43]
involves examining how well the controller can function when
issues such as poor measurement or models arise and, thus, is
complementary and often done in tandem with closed loop
experimentation.

Within control systems engineering, it is common to use all of
these methods (ie, system identification, closed loop
experimentation, robustness testing) within a single system or
individual. In particular, system identification experiments (ie,
theory testing) and closed loop experiments (ie, testing with
controller actions present to support, among other things, testing
of the controller) can be offered sequentially to a single person
and, indeed, decision rules can be defined on when to switch
from one method to the next. For example, a closed loop
experiment might be used to test a controller striving toward
helping a person to meet PA guidelines. If the person meets the
behavioral target for a prespecified time (eg, 2 weeks), this
could trigger the switch to different optimization criteria, such
as targeting maintenance of steps and minimization of
interactions between the intervention and person (ie, a second
controller optimization algorithm for maintenance). The
combined study that includes system identification, closed loop
experimentation, and robustness testing is what we call a control
optimization trial that can balance the competing demands of
performance (eg, quickly helping a person meet goals) vs
robustness (eg, being responsive to individual differences and
changing needs). These methods enable a rigorous and efficient
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approach to optimize elements of an adaptive intervention for
each individual.

Attributes of Problems That Are
Well-Suited to Control Systems
Engineering

In this section, we describe attributes of problems that are
well-matched to control engineering. We ground our discussion
within the concrete case study of Just Walk.

Case Study Overview: Just Walk
Convincing evidence indicates PA is valuable for reducing risk
of certain types of cancer [52,53], cardiovascular disease [54],
and for improving glycemic control [55]. Walking or taking
steps is important for all adults but in particular, those who are
sedentary, overweight or obese, and in the age range of 40 to
65 years because they are at increased risk of chronic diseases
and because this group can safely walk and fit it into their lives
[56,57]. With an aging population, step interventions could help
prevent chronic diseases, reduce health care costs, and improve
functional life years and quality of life [52-55,58-70]. Guidelines
for steps suggest 7100 to 10,000 steps/day [56,57], but only
one-third of this group meet the guidelines [71-81]. Across PA
interventions for older adults (eg, human-delivered and digital),
results show 620 steps/day increases, which translate to
individuals walking, on average, 5388 steps/day, which is below
guidelines [5]. Findings are similar among healthy adults with
496 steps/day achieved, and even high-impact interventions
peak at 1363 steps/day increases; both below guidelines [6].
Even among interventions that produce an effect, maintenance
is rarely measured and, when it is, it is not achieved for a large
number of participants [82-85]. There is a strong need for

interventions that can help individuals meet and maintain PA
guidelines.

One reason meeting and maintaining PA is hard may be because
of the idiosyncratic and dynamic nature of steps. Specifically,
taking steps occurs in both incidental and purposeful ways
[86-88] such as commuting, leisure walking, or sports and is
engaged in differently by different people. Furthermore, when
and where individuals fit steps in also changes (eg, weekend
warriors vs evening gym rats) over time and also can vary
between individuals. Our prior work [22,89] shows that
individual variables (eg, stress and busyness) and contextual
factors (eg, weekend or weekday) have different relationships
to steps for different people. These idiosyncratic determinants
change over time. Walking routines change based on a variety
of factors such as small stressors (eg, pressing deadlines) to
large ones (eg, changing careers and retirement) and context
changes (eg, changes in season) [71-73,75,76,80]. It is also
common that interventions lose their potency, thus suggesting
reduced responsivity [8,84,90,91].

We have been developing Just Walk as an mHealth adaptive
walking intervention, specifically to account for the inherently
idiosyncratic and dynamic nature of walking behavior. Our
intervention includes individualized step goal suggestions,
self-monitoring (measured via a wearable device), and
contingent reinforcement (ie, points and gift cards) that are
provided when daily goals are met. In addition, we will
supplement our behavior change active ingredients via a range
of engagement-supporting tools such as suggestions for
weather-appropriate ways to be active. The mHealth system
includes, at present, a front-end mobile phone app (Figure 1),
a back-end server, and integration with wearable devices (eg,
Fitbit) to objectively measure PA.

Figure 1. Screenshots of the Just Walk App. The image on the left is the view inside the app, which includes the suggested step goal for the day (in
the red box), available points (in gold medal in the middle) and current steps (in green box). Below is the person’s step history. The image on the right
is the app’s “widget,” which enables a person to receive feedback relative to their goal without opening the app.
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Problems That Are Well-Suited to Control Systems
Engineering
We turn to a discussion on the types of problems that are well
suited for control engineering (see Textboxes 1 and 2). We
discuss each below and will use Just Walk to illustrate.

First, the problem is dynamic, meaning the input and output
variables interact over time. Within Just Walk, steps/day is
dynamic as it often fluctuates day to day for each person. The
factors that impact how many steps a person takes, such as
internal states such as stress, busyness, perceived self-efficacy
and external states such as weather, also change over time. Any
self-regulatory process that can be measured frequently, such
as blood pressure, weight, emotion regulation, or glucose
regulation within the body, are dynamic and thus, feasibly
appropriate for control engineering. Conversely, if the behavioral
or clinical target used to define the problem changes slowly (eg,
atherosclerotic plague formation, mortality), then control
engineering is not appropriate.

Second, interventions are available to foster movement from a
less desirable to a more desirable state. As part of this, there are
concrete decisions that can be made for each decision point.
Note that these decisions can include providing or not providing
an intervention or more continuous intervention options
(suggested daily step goal).

Within Just Walk, the two dynamic interventions are based on
Operant Theory [92,93] and the Social Cognitive Theory (SCT)
[94]; specifically, the logic of the feedback loop between
antecedents, behaviors, and consequences. Within Just Walk,
the antecedent is a suggested daily step goal, the behavior is
steps/day, and the consequence is daily points, which translate
into Amazon gift cards. We chose these two dynamic
interventions based on past research suggesting that they can
influence steps [95,96]. Conversely, if the behavioral or clinical
interventions are not particularly dynamic (eg, taking a vaccine
that only occurs once) or do not repeat frequently (eg, attempts
to facilitate taking a flu vaccine 1x per year), then control
engineering is not appropriate.

Third, the target outcome can be measured with sufficient
temporal density over an extended period. In the Just Walk
example, this requirement is met via the use of wearable sensors

to track steps. This requirement is available for many of the
processes listed above, such as blood pressure, weight, or
glucose regulation, along with behavioral targets such as sleep
and some forms of diet (eg, chewing as inferred from
accelerometry). When there is a lack of a variable that can be
measured repeatedly over time, then control engineering
methods become less relevant. For example, lack of quality
cancer risk metrics, at present, reduces the utility of control
engineering for cancer prevention, except for meaningful
proximal predictors such as weight or PA for some forms of
cancer (at least until more proximal markers of cancer risk can
be developed).

Finally, there is a need for definable desirable states for the
target outcome(s), which are called set-points in control
parlance. This is particularly important as it establishes a
within-person benchmark of success for the controller and, thus,
the optimization criteria for individualization (via tailoring
variable selection) and adaptation (via the decision rule). It is
important to note that multiple phases, which are labeled states
[97] in control engineering to acknowledge the movement
between states rather than to imply progression, can be defined,
and each state can have its own optimization criteria.
Furthermore, multiple levels of success can be defined.

Within Just Walk, there are two states: behavioral initiation and
maintenance. Our set-point for behavioral initiation is 7100 to
10,000 steps/day based on past work [56,57]. Just Walk strives
for either 10,000 steps/day per week or, if a person does not
seem capable of meeting that goal (ie, a person starts at low
steps/day and does not achieve 10,000 steps per day within 6
months), then 3000 steps/day above the person’s baseline
median steps is used as the set-point (which usually equates to
at least 7000 steps). Within the maintenance state, these
set-points are used but with added constraints. During initiation,
there is a bias toward providing support, unless a person appears
to be responding negatively to the intervention (eg, reduced
adherence). In maintenance, Just Walk switches toward reducing
the total number of interactions, with the ideal of no support
provided when not needed. Just Walk, thus, does not end but,
instead, adapts based on perpetual need, which, conceptually
could be a highly cost-efficient approach. With the optimization
criteria defined, it enables data-driven optimization for
individualization and adaptation.

Textbox 1. Required attributes of a problem that are well matched to control engineering.

• Dynamic, input-outputs

• Intervention options are available

• Outcome variables are measurable (or inferable) intensively

• A meaningful target or “state” exist

Textbox 2. Desirable attributes of a problem that are well matched to control engineering.

• Frequent decision points

• Previous theory available to guide model development

• Other feasibly important variables can be intensively measured

• Theorized dynamic interrelationships between inputs or outputs (eg, feedback)
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Beyond these requirements, there are several desirable attributes.
First, it is advantageous to have frequent decision points, such
as every hour, day, or week. Within Just Walk, we used a daily
timescale. These daily decision points enabled the design of an
efficient 12-week study (described below and [98]). Technically,
it is possible to develop dynamical models with less frequent
decision points; thus, control engineering can be used for
stepped care decision making [99]. This longer timescale,
however, establishes the need for longer system identification
studies. If, for example, we had used a weekly timescale in Just
Walk, the study would have needed to be 7-times longer.
Determination of the appropriate timescale and minimal number
of decision points or observations needed can be achieved using
simulation studies, such as the ones we conducted for our Just
Walk study [15,100].

Second, it is desirable if previous knowledge about the
phenomenon is available. Within our example, we used the SCT
to inform measurement selection, a model structure for defining
our dynamical model and the interrelationships between
variables, intervention selection, and the design of our study,
discussed below [100,101].

Finally, it is desirable that other variables that could impact the
outcome can be measured. Within Just Walk, we could infer
variables passively, such as weather, and ask participants to
complete surveys daily with minimal burden [21].

Finally, if there are strong theoretical reasons to hypothesize
feedback loops and lagged effects [102], then the suite of
methods used by control engineers might be beneficial. This is
because dynamical modeling can mathematically specify and
thus model and account for issues such as carryover effects,
lagged effects, delayed effects, or feedback loops via the use of
difference and differential equations [83]. As delineated by
SCT, there are multiple theorized feedback loops that can be
modeled via dynamical modeling.

Steps to Take When Using Control
Engineering for Adaptive Interventions

Overview
In this section, we highlight suggested steps that could be used
when using control engineering methods to optimize adaptive
interventions. A full review on exactly how to do each step is
beyond the scope of this introductory tutorial. Instead, for each
step, we define why the step is important, what specific tasks
are involved in the steps, and when to do the step vs possibly
skip the whole step or at least some tasks of the step. To provide
insights on how to do these steps, relevant references are
provided. Each step is grounded with the concrete example of
our Just Walk intervention.

Although the use of the word “step” may imply a linear process,
it often is not. For example, it can be highly advantageous to
select a general theoretical model (a task within step 1) and to
then define optimization criteria (a task in step 4) before moving
on to creating or selecting intervention options (step 2) or to
even start with optimization criteria as a definition of success,
which is advocated for in agile science [103]. In line with our

focus on optimizing elements of an adaptive intervention,
essential to this overall process is the use of the iterative process
and triangulation of methods to clarify one aspect of the adaptive
intervention and then examine its impact on other aspects (see
Discussion).

An important prestep is to make an initial decision on the type
of controller one is targeting. Although there are many
considerations involved in the selection of the appropriate
controller, at a high level, selection of one controller over
another largely hinges on the anticipated complexity of the
dynamical system, the degree to which a model can be generated
that is actually predictive or useful for making decisions based
on forecasted responses, and the degree to which the dynamics
can be inferred from the dynamics of one (or a relatively few
number) of variables (nonmodel-based), as opposed to the
response of multiple interrelated variables (model-based). If the
guiding theoretical model implies a complex dynamic system
that would not be well represented by monitoring only
intervention options and outcomes, then a model-driven
controller would likely be most appropriate. If, however, the
dynamics can be picked up adequately with intervention options
and outcomes, such as the direction a boat is pointed as
measured via a compass as used within a boat autopilot (a classic
PID controller), then a nonmodel-based controller is appropriate.
There is a lot more subtlety involved in selecting the right
controller (eg, the possibility of model-based PID controllers),
and interested readers can gain more insights on control options
here [39,40,104]. On the basis of the complexity of behavior,
we anticipate that it will almost always be best to use
model-based controllers. As such, the steps below are suited
for model-based controllers.

Suggested steps include the following: (1) derive a preliminary
dynamical model; (2) select intervention options (ie, type,
frequency, and dosages) and outcomes; (3) conduct system
identification (ie, theory testing); (4) design the controller; and
(5) conduct a control optimization trial (ie, intervention element
testing).

Step 1: Derive a Dynamical Model
This step is important for establishing a well-specified
framework for understanding the eventual adaptive intervention
and guiding all subsequent work. The tasks involve first
specifying a general theoretical model for guiding the work,
then translating that into a dynamical model, and finally, the
option of vetting this dynamical model either via simulation
studies, secondary data analyses, or both.

Like in MOST, a theoretical model is used to provide structure
and specification about key intervention options, outcome
measures, and other variables that impact the outcome measures.
It is strongly advised to almost always engage in this step as it
provides the foundation for understanding predictions and
decisions made within the eventual adaptive intervention. The
one caveat is when an adaptive intervention is being generated
when very little is known about the phenomenon, except that
it is highly dynamic. When this is the case, it is often more
appropriate to do noninterventional work such as conducting
more naturalistic studies such as ecological momentary
assessment or human-centered design work [105]. Nonetheless,
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we could imagine the small possibility of the need to use
experimentation to gain insights about a system that is not
known. This should only be done when the intervention can be
done safely.

Although there is not a single way to develop a theoretical
model, we suggest thinking clearly through three reference
points and using each to triangulate toward, first, a theoretical
model and then a dynamical model. These three references are
(1) prior theories, particularly those that have been
well-validated in the literature among the target group; (2) prior
empirical work about what works in general and other key
variables to be aware of for the target group; and (3) hands-on
experience and interactions with the target group in the form of
human-centered design methods such as interviews, observation,
codesign, or prototyping, to gain insights about your target
group that may not be well understood or encapsulated in prior
theories or evidence. For details on exactly how to create or
select an appropriate theoretical model, we suggested the
following references (see [22,37,106]).

Translation of a theoretical model into a dynamical model
requires far clearer specification of the prediction. For
model-based controllers, this task is required. Creating a
dynamical model involves clear specification of a variety of
issues such as model structure, anticipated directionality and
strength of relations between variables, and anticipated dynamics
of the interrelationships [97]. For more details on how to do
this step, see prior work [97,107,108].

The final optional task within this step is simulation studies or
analyses with secondary data to vet a dynamical model. As the
previous step highlights, dynamical models often require a high
degree of mathematical specification on predictions. The use
of simulations, such as changing one variable to see how the
other variables might respond within the system, is valuable to
gauge if the dynamical model is producing the sorts of effects
that would be anticipated. If the simulated changes in one
variable produce effects that are not anticipated, this can be
used to either check the math or check the assumptions about
the problem. Either way, it improves precision and
understanding on what is being hypothesized dynamically.
Secondary analyses can also be valuable as data can be used to
ground the predictions of the dynamical model, again, to see if
the dynamical model is working according to both expectations
and available evidence. For more details on how to create a
dynamical model and do preliminary vetting via simulation
studies and secondary analyses, see [15,97,100].

Within our Kust Walk example, we chose to use prior theories,
Operant Theory and SCT, as one foundation for our adaptive
intervention. This is based on extensive prior work illustrating
the value of these related theories for supporting robust
interventions among our target group. We also have ample
experience working with our target group for supporting PA
via interventions based on them [109] and thus have prior
evidence and user interactions. As such, we grounded our model
selection based on the three references of prior theory, evidence,

and insights from our target group. As this example also
suggests, we hypothesized that the dynamics for understanding
steps would be best understood using a model-based controller
as opposed to nonmodel-based controllers. On the basis of this,
we translated SCT into a dynamical model, with full steps and
details about this process described in Riley et al [15] and Martin
et al [100]. We identified key variables (eg, self-efficacy and
outcome expectancies), defined a model structure (Figure 2),
and then specified, mathematically, the anticipated
interrelationships between variables. After specifying these
attributes of the dynamical model, we then ran a series of
simulations of theoretical predictions to stress test the model
with known psychological concepts such as habituation [15].
We also conducted secondary analyses from prior available
evidence [110,111]. We decided on a simplified version of the
SCT as a dynamical model to guide the rest of the process, based
partially on the results of the simulation studies and secondary
analyses.

Step 2: Defining Interventions Options and Outcomes
Defining target intervention options and outcome metrics are
the defining features of an adaptive intervention and, thus, this
step is essential. The key tasks of this step include defining the
outcome metric(s) being targeted (which will be translated into
optimization criteria in step 4), defining the intervention options
and then, optionally, also specifying clear dynamic hypotheses
on how these intervention options will dynamically interact
with the person to produce desired changes to the outcome(s).

Clearly defining the outcomes is a logical follow-up step from
the theory and dynamical modeling work. This is because, within
the prior step, it is technically possible to do most of step 1,
save the secondary analyses, without any concrete outcome
measure defined (eg, steps/day or hours of sleep per night).
Defining outcome metrics to target is important as it establishes
a grounding on the purpose of the specific adaptive intervention.
As discussed in the previous section, outcome metrics are best
when they can be measured repeatedly over time to establish
the current state of the target person relative to the desired final
state. The intervention options can then be defined to impact
the outcome metrics dynamically. These intervention options
could be thought of as the essential levers the adaptive
intervention can use to make adjustments and thus, facilitate
movement from a less desirable to a more desirable state.

Although not required, it can be valuable to generate a dynamic
hypothesis about the interrelationship between an intervention
and an outcome to further ground thinking about the
intervention. Although there are many ways to think about
dynamic hypotheses, one way is to think in terms of outcome
responsivity to the intervention options when a person is in a
different state or context, including changing disease state or
changes in their readiness for change (eg, stages of change).
The Transtheoretical Model (TTM) establishes a basic (albeit
slow) dynamic hypothesis in that different processes of change
are hypothesized to be needed for different stages of change
[112,113].
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Figure 2. Simplified dynamical model version of Social Cognitive Theory.

Similarly, one might theorize that a person will respond
differently to an intervention if it is provided to them when they
are stressed vs not, or at home vs at work. These variations,
which are further described in detail elsewhere using the
modeling logic of state-spaces [97], provide a structure for
thinking through the dynamic interrelationships between
interventions, outcomes, and changes in the person and context
over time.

These dynamic hypotheses can take various forms. A relatively
simple dynamic hypothesis could be to specify if-then statements
for different states or contexts of the individual, which is the
implicit structure used in the TTM (eg, if stage of change=X
then process of change=Y). This could be useful for stepped
care interventions (eg, see [99,114-116]). As discussed earlier,
control engineering uses mathematical equations for prediction
to support dynamic decision making. On the basis of this,
dynamic hypotheses are not required to conform to if-then
statements, but instead can be defined more mathematically
related to predicted changes in key variables. This latter more
complex structure is what we use within Just Walk.

We chose to focus on individualized step goal suggestions and
provision of points as our two dynamic intervention components
(grounded in self-monitoring as the third, but we assumed that
to be a constant intervention component). Our key outcome
measure in Just Walk is steps per day, as measured via a

wearable device. To help define our eventual controller design
(step 4), we postulated a dynamic hypothesis that can be
specified mathematically but not as an if-then structure. A
common hallmark of goal setting includes strategies that help
a person define what might be called an ambitious but doable
target [117]. Within Just Walk, we have encapsulated this
mathematically as a dynamic hypothesis that is influenced by
suggested goals and points (see Figure 3). The figure is meant
to visualize the dynamic interrelationship between recommended
step goals (x-axis), actual steps taken (y-axis, left side), and the
impact on self-efficacy, on average (y-axis, right side). The
yellow circle is the hypothesized ambitious but doable
recommended step goal range that is hypothesized to be optimal
for fostering increases over time in self-efficacy. Below this
range, and any time a person meets their step goals, we
hypothesize will not impact their self-efficacy. Above this
dynamic range and we hypothesize that, on average, the person
will not attain goals as regularly and, thus, with particularly
high goals, will result in an, on average, reduction in
self-efficacy. For the person/day represented in Figure 3, if a
person’s goal is below 4500 steps, we hypothesize no change
in self-efficacy when the goal is attained. If the goal is too high,
we expect goal attainment to happen less frequently, on average,
which would result in an overall reduction in self-efficacy over
time.
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Figure 3. Dynamic hypothesis.

For example, if a goal of 9000 steps or greater is suggested for
our Figure 3 example, goal attainment will occur less often, on
average, resulting in a progressive reduction in self-efficacy as
a person reduces their confidence that they can meet challenging
step goals. Finally, as self-efficacy and individual and contextual
factors change (eg, stress and weather), along with available
points, so will the target range (eg, blue line moving up or
down). This dynamic hypothesis conforms with the SCT, the
rationale of graded goals, and with previous evidence suggesting
high goals (ie, 10,000 steps, arguably ambitious for sedentary
individuals) resulted in more variable steps [96].

Step 3: Conduct a System Identification Experiment
(That is, Theory Testing)
This step is most distinct from other forms of testing and
optimization within behavioral interventions. As such, we
include a great deal more information here to highlight the logic
and overall approach.

From a control systems perspective, the primary goal of this
step is to estimate and validate dynamical models. This is
valuable in and of itself, regardless of any subsequent controller,
because it is explicitly focused on understanding a “system” or
phenomena, such as, in this case, an individual human. To put
it in more behavioral terms, system identification is a form of
dynamic theory testing. System identification is also important
for later steps, if there is a desire to use model-based controllers.
Although not commonly the focus in control engineering, this
type of study can also be used to select tailoring variables for
individuals (ie, data-driven individualization), test dynamic
hypotheses, or develop a benchmark comparator for optimization
criteria when prior work provides limited insights on a
meaningful benchmark. It is also technically possible to conduct
a rigorous system identification experiment while also pilot
testing aspects of the intervention and other protocols to test
feasibility issues, if needed, because system identification is an
inherently n-of-1 or idiographic approach, though this last
strategy is not necessarily recommended.

As a reminder, within a system identification experiment,
excitation of variance (ie, providing different intervention
options) is provided to the system (in this case, a person) to test

what happens in different states and contexts of the system over
time. Dynamical systems modeling analyzes what occurred
following the intervention options over time during different
conditions to generate a dynamical model for each person in a
scalable fashion. System identification can occur using both
open loop and closed loop experimentation but, from the
perspective of system identification, these variations are used
to validate the dynamical models (ie, theory testing) as opposed
to testing the controller (ie, decision rule testing), which is the
emphasis in step 5.

Suggested tasks that could be included in this step include the
following: (1) design of the system identification experiment
and analytic plan and (2) data analyses. If pilot testing of the
technology is also needed, other optional tasks could include
the following: (1) human-centered design work [103,106,118]
to facilitate creation of a useful and usable intervention and (2)
creation or selection of the technology tools needed to conduct
the intervention (eg, digital health intervention platform). These
optional tasks should be conducted when no prior adaptive
intervention is available, but otherwise should be skipped as
this step is primarily focused on theory testing, not pilot testing.
If these optional tasks are conducted, current best practices for
human-centered design and feasibility testing should occur
[37,103,106,118,119]. The system identification experiment
should be conducted when there is inadequate secondary data
or theory (often thought of as first principles in control parlance)
available about the topic to generate robust dynamical models,
when the research question is clearly about dynamic
interrelationships within a person (ie, theory testing), or when
there is a clear dynamic hypothesis to test about the system or
person. The system identification experiment does not
necessarily need to be done if the targeted controller is not
model-based, such as some forms of PID (and their derivations)
controllers [39,40].

In terms of system identification, there is a rich literature,
including toolkits within MATLAB (MathWorks), on procedures
and best practices for the design of a system identification
experiment and analytic plans [47,48]. As a system identification
experiment excites variance within a system, the study design
involves carefully defining intervention options with a particular
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eye toward having variability of excitation. Excitation can occur
both by varying the amplitude of the differences between
intervention options and also the repeatability of intervention
options. For example, in our Just Walk study, we chose
meaningful ranges in terms of the “dosages,” from baseline
median steps to double a person’s baseline median steps for
step goals and providing between 100 to 500 points for the
reinforcement component, with 500=US $ 1. Note also that
system identification experiments can include binary
intervention options as well (eg, provision of support or not)
[120].

With a sense of the amplitude defined, the next task involves
designing for adequate excitation over time, which minimizes
error for model estimation. This involves the length of a “cycle”
and the number of cycles needed in a study to achieve sufficient
minimization of error in estimation and validation. A cycle is
a deterministic, repeatable pattern that defines provision of
intervention options to an individual. Intervention options can
be provisioned to mimic randomness via pseudorandom signals
that can achieve the valuable properties of randomness for causal
inference, while still being deterministic and, thus, repeatable
(for more details see [121]). The primary purpose of a cycle is
to enable both estimation and validation of dynamical models
in terms of their predictive capacity across cycles. Within our
Just Walk, it was determined that five 16-day cycles would
produce sufficient excitation over time to minimize error in
estimation and validation with our two interventions delivered
orthogonally (discussed in greater detail below on how this was
determined [121]). As a side note, it is possible to do estimation
and validation with purely random signals, but pseudorandom
cycles facilitate aspects of model validation [120,122,123]. The
design of a system identification experiment can be done with
a number of different toolkits that support simulation of
estimation and validation based on different sources of noise
or variance in the model [47].

Once data are collected, the process of data analyses takes place.
A central logic of dynamical systems modeling, as with other
aspects of control systems engineering, is triangulation. In
particular, system identification toolkits (eg, those available via
MATLAB) include a wide range of strategies to examine time
series data produced from system identification experiments,
such as different visualizations, step-response curves (ie, the
unique influence of each variable on the outcome, much like a
partial r2), or model fits for both estimation and validation. Each
one of these provides a different understanding on the overall
reliability and validity of the dynamical models produced. As
such, they are all used with the goal of defining dynamical
models that work according to expectations across these tests.

Beyond the criteria used to evaluate the models, there are also
different analytic techniques that can be used as part of
dynamical systems modeling. For the sake of simplicity, we
describe black-box dynamical modeling vs semiphysical or
grey-box modeling. Central to these different modeling efforts
is the degree to which prior theory and evidence is taken into
account when defining a dynamical model structure. On one
end are black box models from methods such as Auto-regressive
model with eXogenous Input (ARX) modeling, which are much
like generalized linear models. These models include no model

structure to define the interrelationships between structures
beyond ordinary linear regression accounting for repeated
measures. Semiphysical modeling, on the other hand, includes
theorized model structures, predicted dynamics, and other factors
that are either known or theorized to be true in terms of the
interrelationship between variables. One could think of
semiphysical modeling as a dynamical version of structural
equation modeling [22,89]. In brief, theorized model structures,
such as Figure 2, along with predicted dynamics (eg, feedback
loops are the ways in which the relationships occur dynamically)
are articulated within a mathematical model [97,124]. These
models can then be compared with the initial black box models
on a variety of criteria related to reliability and validity of the
models for each person, such as overall model fit, which
provides insights on the percentage of variance explained by
each dynamical model (for more details see Study Design). This
process, thus, enables a rigorous strategy for iteratively
developing models of progressively improved predictive
capacity for each person, while simultaneously enabling
incremental theory testing. Furthermore, particularly related to
theory testing, generic model structures can be defined if they
prove reliable across individuals, thus providing a structure for
translating insights drawn about an individual to be generalized
to other individuals and also more generic theory testing and
development that is grounded first in individuals rather than
starting first in the aggregate.

The final task is to define good enough predictive capacity to
establish an optimization criterion. If little to no information
about what is good enough is available, the above strategy of
comparing data-driven vs theory-driven models is a good start.
If, however, other parameters or benchmarks are available and
meaningful from the literature relevant for the problem domain,
then those can be used as starting benchmarks on factors such
as model fit. When good enough predictive capacity is reliably
being shown across individuals (or at least a large enough
portion of individuals, which also can and should be defined),
this establishes justification for the development (step 4) and
testing (step 5) of a model-driven controller. If not, a
nonmodel-based controller could be explored, or the team should
examine earlier steps in the process or other optimization trials
(eg, between-person factorial trials, SMART, or MRT).

With these tasks defined in abstract, we turn to the Just Walk
example. In our previous work [21,22,89], we conducted
human-centered design work to develop an app for adults who
are midlife and older, overweight, and sedentary. We then
conducted a 12-week system identification open loop
experiment, which is described below. In this context, because
we did not have a previous platform, we decided to do the
optional feasibility work. For the feasibility aim, this study
design could be thought of as a modified variation of a single
case experimental design, particularly an ABBBBB trial design
with the “A” representing the baseline phase and each “B”
representing an intervention cycle that was repeated five times
[21]. This design supports testing feasibility issues including
limited efficacy, which is defined as within-person changes in
steps. Our results suggest (1) our intervention increased steps;
(2) good demand, acceptability, implementation, and
practicality; and (3) our system identification experiment
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produces valuable data for dynamical models (for more details
see [21]).

To support the eventual controller, we chose to run an open
loop system identification experiment. This was because,
although we did conduct secondary data analyses to vet our
dynamical model [100], the secondary data analyses did not
enable us to do rigorous estimation and validation of our
dynamical model. On the basis of this, and our desire to develop
an eventual model-based controller, we conducted an open loop
system identification experiment [89,121,125].

In Just Walk, we devised our open loop system identification
experiment to estimate and validate our simplified SCT
dynamical model (Figure 2) and to test an approach for
individualized tailoring variable selection [15,22,100]. As
implied by our dynamic hypothesis (see step 2), from an
excitation standpoint, this hypothesis requires that we include
goals that are doable, ambitious but doable, and too ambitious
for individuals. Furthermore, as the hypothesis includes
specification that individual differences (eg, stress and busyness)
and context (eg, weekday or weekend and weather) that could
feasibly influence what is ambitious but doable on any given
day for a person, it also established the requirement of repeated
observations that are in the three broad category ranges within
different states of the individual (eg, high vs low stress) and
contexts (eg, weekdays vs weekends) for tailoring variable
selection purposes. As states and context cannot be randomized,
we instead chose to run the experiment over a 12-week period
to increase the likelihood of observing variations in these
individual and contextual factors in relation to different
suggested step goals and for excitation purposes [121]. Beyond
this, expected points was also hypothesized to interact with
these other factors and thus varied over time.

A full description on the design of the study is beyond the scope
of this paper but has been described elsewhere, which includes
concrete strategies for achieving the equivalent of “power”
calculations for an open loop system identification experiment
[89,121,125]. In brief, our study design involved the
pseudorandom suggestion of daily step goals and expected
points one could receive if they met their goals as defined in
repeated 16-day cycles (Figure 4). On the basis of analyses that
are akin to power calculations but for system identification, we
determined the need for a minimum of five cycles [121].
Furthermore, the use of 16-day cycles (Figure 4) minimized the
risk of possible aliasing with day of the week (which would
have occurred with 14-day cycles).

A full discussion on the analyses and results are beyond the
scope of this paper, but interested readers can find more
information at [22,89]. In brief, our preliminary analyses on
estimating and validating a dynamical model for each person
were encouraging both for preliminary dynamical models and
the selection of tailoring variables for each person [22,89]. These
models produce dynamic daily predictions of steps relative to
actual steps (see Figure 5, which visualizes this for one
participant). Specifically, Figure 5 visualizes the dynamic
interrelationship between the key variables that could be
valuable for predicting steps. In this context, this included goals;
available points, if points were provided (ie, goal attainment

the previous day); a person’s self-reported prediction on how
busy and stressed they will be; their prediction on how typical
their day will be; and if it is a weekend or weekday. The bottom
portion illustrates the predicted steps (pink line) relative to actual
steps (black) and suggested goals (dotted blue line). Light pink
zones represent cycles that were used for estimation in this
particular model, and blue represent validation cycles. Model
fit for this participant was 46%, which, based on Cohen’s
conventions for multiple regression, would represent a large
effect in terms of percent variance explained.

Using percentage model fit as a benchmark, we conducted
data-driven analyses to support optimization of the dynamical
model that conceptually maps on roughly to reliability and
validity. In this case, reliability and validity are estimated for
our dynamical models for predicting human behavior (as
indicated by model fit) and, by extension, the selection of
tailoring variables. For every individual, we conducted an
exhaustive search of potential variations of predictors (eg, only
our manipulated inputs or up to four additional endogenous or
exogenous variables as plausible tailoring variables) using an
ARX approach. In line with the leave-one-out approach
commonly used when cross-validating models such as PA
estimation via accelerometers [126], we carried out estimation
or validation using every cycle from our five-cycle system
identification study as both estimation and validation data.

For selection of the model and, thus, the tailoring variables to
use for each person, we chose to use multiple criteria with the
first three reflective of issues of reliability [22,89] and the last
more reflective of validity. We chose these criteria to increase
the likelihood of finding individualized models that are reliable
and, thus, are likely to remain true and appropriate outside of
the current data and valid, thus predictive and useful within an
eventual controller. We combined them into an approach that
penalized models that did not perform as well on these
dimensions. Different weights (w) were assigned to four
characteristics that affect model consistency and reliability: (1)
overall highest fit (w=2), with a higher penalty for lower fits;
(2) cross-correlations between inputs (w=2), with higher penalty
for inputs with high cross-correlation coefficients; (3) distance
of the overall highest fit from the mean fit (mean % fit for all
cycle combinations, for each input combination; w=1), with a
higher penalty for larger differences; and (4) SD across models
run for each participant (% fit for all cycle combinations, for
each input combination; w=1), with higher penalty for higher
variances. These weights were used to define and select models
that were the best estimate in terms of reliability and validity.

We then turned to good enough validity. As these analyses are
a variation of multiple linear regression, and the model fit

estimate is analogous to r2, we chose Cohen’s conventions of
explaining 3% of variance as a small effect, 13% as a medium
effect, and 26% as a large effect [127]. Although there is no
clear definition on good enough for individualization purposes,
as, to the best of our knowledge, we are the first to do this, we
chose to use the 13% medium effect as our a priori good enough
marker for our best model selected for each participant. We also
chose a minimum of 50% of our sample to meet this medium
effect explained marker as good enough across.
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Figure 4. System identification open loop experiment for Just Walk. These two signals were designed a priori using a pseudorandom signal design
strategy. This strategy enabled specification of repeated 16-day cycles (delineated as different colors), which allows for robust data for estimation and
validation of dynamical models.

Figure 5. Visualization from one participant from Auto-Regressive Dynamical Modeling.

Note, however, that further validity testing related to
individualization is possible and a core target of the more
definitive optimization trial, the closed loop experiment (see
below). Furthermore, we also fully acknowledge that our
approach is only one of many (see Discussion). The overall
average model fit (estimation and validation data) for all
participants combined was 19.2% (SD 9.25). The range was
6.3% to 46%. Using Cohen’s conventions, 20 out of 20
participants met the small effect threshold of explaining 3% of
variance, 16 out of 20 met the 13% medium effect level, and 2
out of 20 met the 26% large effect level. On the basis of this,
we achieved our good enough target of explained variance for

individuals, thus justifying subsequent steps. Although it is
unclear what the minimal levels are needed for establishing
robust individualization based solely on this, it does provide a
preliminary indication of the ability to make distinctions
between people in terms of tailoring variables. For example,
using the medium effect as a minimal threshold, our approach
produced meaningful individualized models for 80% of our
sample [22]. From the perspective of pilot testing, we contend
that this is likely an adequate target for accounting for individual
differences compared with current best practice, though future
work is needed to properly specify benchmarks for
individualization (see Discussion).
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In terms of tailoring variable selection, different tailoring
variables were identified for different people [22]. In particular,
the most common model included weekend or weekday as the
only tailoring variable for 25% of our 20 participants. This
model corresponds with the tailoring variable that would likely
have been selected when using an aggregate mixed model across
participants. Following this, perceived “typicality” of a day and
weekend or weekday were the combined tailoring variables
selected for 20% of our sample. The rest of participants had
different tailoring variables selected. Put differently, if the
aggregate model were used for tailoring variable selection,
which would be the norm for most methods currently used
related to optimizing adaptive interventions, it would have likely
selected the inappropriate tailoring variable(s) for 75% of our
sample with reliable models [22]. These results point both to
the potential for control engineering approaches in
individualized tailoring variable selection and for the need for
this type of approach.

As of this writing, the team is conducting semiphysical modeling
[128] to test our SCT structure (Figure 2). As stated before, the
initial models we have already produced use an ARX approach
that does not incorporate prior knowledge related to model
structure or theorized dynamics [22,89]. As of this writing, we
are using these models as our comparators for our SCT model.
On the basis of theory, we should get improved model fits when
we incorporate the elements of the model we specified, such as
model structure, theorized dynamics, etc. If model fits do not
improve, it is indicative that our theorized dynamical model
structure provides no additional benefit beyond what we would
have learned from the data alone for each individual. This is
important to highlight as this is a second mechanism for
supporting data-driven optimization related to individualization.
This time though, the optimization is focused on optimizing the
model structure and other theorized prior knowledge.

As this example illustrates, a great deal of valuable insights
about human behavior and outcomes can be gleaned from system
identification experiments. As this example also illustrates, this
step can generate meaningful scientific insights as a mechanism
for doing rigorous theory testing that is grounded in an
individual first and then can be generalized if similar model
structures are found, what we previously called data-driven case
studies [124].

Step 4: Design the Controller, Including Optimization
Criteria
The next step is to design the controller. This step is essential
as it is the mechanism whereby prior insights can be translated
into actionable dynamic decision rules (ie, the controller) for
guiding an adaptive intervention. The key steps in this process
include defining optimization criteria (eg, set-points), constraints
of the controller (eg, clinical constraints of the intervention),
and, for more complex controllers, alternative strategies the
controller could use to maintain robustness to factors such as a
person’s changing responsivity to an intervention. Creation of
these is often supported via all of the prior work done (eg,
dynamical model, intervention and outcome specification, and
system identification experiment), as well as additional
simulation studies specifically focused on the robustness of the

controller. These steps are done in any type of controller,
including those that are not model-based.

In terms of controller design, the central focus of controller
design is to define the targeted right balance between
performance and robustness. Within a controller, strategies for
supporting performance largely revolve around the quality of
the previous steps. In particular, performance is improved when
potent interventions and predictive models are available to be
used by the controller. The prior work provides a foundation
for anticipated performance of the intervention options and
value of the dynamical model for making predictions. Strategies
for maintaining robustness can be devised to help manage and
mitigate these risks, which tends to be the larger focus of the
controller design for this step. For interested readers, see our
more detailed papers formulating our controller [50,129,130]
and our strategies for facilitating robustness.

In terms of key tasks, the type of controller being targeted must
be defined (eg, model-based or nonmodel based); several
parameters for the controller must be defined, including the
optimization criteria, constraints, and strategies for achieving
robustness; and finally, simulation studies can be conducted to
examine anticipated issues of robustness. The optimization
criteria can be thought of as a definition of success that can be
operationalized based on a measurable outcome variable.
Constraints are the parameters that define what is feasible or
appropriate within a given domain, such as what is safe,
appropriate, or clinically viable. Finally, there are a wide range
of strategies for supporting robustness. These assertions can be
examined via simulation studies [129,130]. Specifically, control
engineering includes methods for simulating plausible responses
of controllers within different scenarios and contexts. This is
valuable as it enables stress testing assumptions about the
problem before recruiting participants.

Within the Just Walk example, the controller we chose to use
is a hybrid model-predictive controller [131] that can be
visualized in terms of its logic for decision making, as shown
in Figure 6. As the broad goal of Just Walk is to help individuals
meet and maintain national guidelines, we set our first
optimization criterion when a person is in a state of initiating
in more PA up to guidelines of 10,000 steps/day but then also
included a less stringent secondary criterion of +3000 steps/day
from their baseline step levels based on prior work on
anticipated performance of adaptive PA interventions [132].
Prior work has illustrated that +3000 steps corresponds to
approximately 30 min/day of moderate intensity activity and,
thus, is still a meaningful behavioral target that has the
likelihood of reducing disease risk [56,57]. We also included a
second optimization criterion for those that meet guidelines and,
thus, move to fostering maintenance. Once a person meets
guidelines, the system reduces the total number of interactions,
including goals suggested and points provided, with the target
of reducing interventions to 0 except continued monitoring via
the wearable device. We also established clinical constraints,
including not changing suggested goals drastically (eg, by more
than 4000 steps) from one day to the next. Finally, we have also
formulated a variety of secondary strategies the system could
take to maintain robustness in case known issues such as reduced
adherence are observed.
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Figure 6. Model-predictive controller “Receding Horizon” strategy. The model predictive controller visualized here is simplified to include only one
controlled variable (desired daily steps), one input (ie, goals), and one disturbance (ie, environmental context). Controller moves (ie, goals) are calculated
over a horizon, and only the first control move calculated is implemented. The entire procedure is repeated at the next assessment period and continues
until the end of intervention.

In terms of how our controller works, the model-predictive
controller forecasts changes in outcomes (ie, steps, intervention
adherence) over time to determine an error projection that
reflects current and expected deviations from the optimization
criterion of 10,000 steps/day or +3000 steps/day from baseline.
On the basis of this error projection, a real-time optimization
algorithm chooses the sequence of future control actions (eg,
adjusts step goal, points, and other factors) that minimizes the
difference between the set-point (eg, 10,000 steps) and current
steps.

The optimization problem is solved for each day considering a
prediction time to obtain a predicted optimal step goal
suggestion for each decision point. The first recommendation
is provided, and the process repeats at each decision point. The
model-predictive control strategy continually reevaluates the
quality of the previous day’s predictions on what was actually
observed. The information can be incorporated into the
model-predictive control algorithm, particularly if there are
alternative strategies the controller might take based on changing
observations for maintaining robustness.

We have conducted simulation studies to stress test the design
of our controller. Figure 7 is a visualization of one of the
simulations we ran for tests of robustness; in this case, the
controller’s responsivity to a person experiencing an external
disturbance (eg, getting sick). This figure represents a simulation

study examining how our controller may respond, in this context,
to a major unmeasured environment disturbance. As can be
seen, the controller facilitates a gradual increase in steps over
time using varying points. When the set-point levels have been
reached, the controller switches to a maintenance phase that
includes reduced suggestion of step goals (ie, last suggestion
would be to maintain 10,000 steps) and reduced use of expected
points for meeting the goals (ie, an expanding reinforcement
schedule). As the simulation illustrates, the system would strive
toward less interaction but be responsive to a person’s steps
falling below the set-point level to reactive initiate-phase
suggestions (see day 112). For more information on the
simulation work we have conducted for our controller see
[129,130].

Step 5: Conduct a Control Optimization Trial
This is the key step for unpacking complex adaptive
interventions via control systems engineering methods. This
step can provide insights about how, when, where, and for whom
each element functions to produce the desired effect and thus,
is the essential strategy for unpacking a complex adaptive
intervention and testing its elements. This step should thus, be
done whenever the goal is to optimize an adaptive intervention
via control systems engineering methods (as opposed to the
other plausible adaptive intervention optimization trials). As
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highlighted above, this is appropriate for the type of problem
that has the attributes described in Textboxes 1 and 2.

The key tasks of this step include clear definition of the elements
of the adaptive intervention, the design of subexperiments (eg,
open loop system identification and closed loop
experimentation) and data analysis plan to test the elements,
and conducting the trial and the analyses.

As already highlighted, the key elements of an adaptive
intervention include the decision points, tailoring variables (or,
in this case, dynamical models), decision rules (or, in this case,
the controllers), and, of course, the intervention options
themselves and the meaningful proximal outcomes the
intervention options target. In terms of decision points, these
are often defined based on clinical intuition, such as the case in
Just Walk, whereby our decision point was each morning. These
can be tested via control engineering methods as they can be
formulated, themselves, as decision rules for guiding just-in-time
adaptive interventions, but that point is beyond the scope of this
tutorial (and, arguably, MRT is likely more appropriate). As
highlighted in step 3, system identification, particularly open
loop experimentation, is a rigorous approach for optimizing the
tailoring variables or dynamical models for each person and
thus, a strategy for optimizing individualization. In terms of the
decision rules or controllers, closed loop experimentation is the
method to use to test them.

As highlighted in the introduction, it is common in control
systems engineering to include multiple experiments provided
sequentially, over time, to the same system (ie, person in this
context). The key, from a design standpoint of the
subexperiments, is to think through what is clinically appropriate
or feasible and also what the logical progression is in terms of
the likely changes that will occur within the target individual.
In terms of the data analytic plan, as with system identification,
there is a wealth of analytic strategies that are available, largely
within MATLAB, for conducting the analyses. Much of the
testing of controllers is actually built into the controllers
themselves as, ultimately, they are mathematical equations
seeking to minimize error while accounting for noise and other
unknown issues. Controllers, thus, engage in self-testing relative
to optimization criteria. The key advantage here of
self-correction is also arguably a weakness, as this work hinges
on the quality of the optimization criteria (a point we return to
in the Discussion). A full description of the type of analyses
that can be done and the many ways in which to design effective
exploration or exploitation is beyond the scope of this
introductory text, but interested readers should examine here
[104]. Similarly, a full description of analyses for robustness
testing is also beyond the scope, but readers can learn more here
[43].

Figure 7. Controller simulation.
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Figure 8. Control optimization trial for Just Walk.

Returning to our Just Walk example, we have designed a control
optimization trial with four phases specifically designed to test
key elements of our adaptive intervention (see Figure 8). The
figure is a simulated time series of one participant taking part
in our control optimization trial. Row 1 simulates “disturbances”
such as getting sick to illustrate how the controller might react
(eg, increase points or lower goals). There are four phases
divided by the red vertical lines. Phase 1 is an initial
measurement only, baseline period, which provides a grounding
of the person’s current activity. Phase 2 is an “open-loop”
system identification experiment, similar to the study in step 3,
whereby step goals (row 2) and points (row 3) are systematically
“excited” to enable generation of individualized dynamical
models. This phase enables estimating or validating our
dynamical model and individualized tailoring variable selection
as per our prior study. In phase 3, the model-predictive controller
uses those dynamical models to make intervention option
decisions to foster initiation of PA towards PA guidelines (row
5) and increased self-efficacy (row 4). During phase 3, the
model-predictive controller will strive for appropriate targets
for our at-risk group (ie, 10,000 steps/day on average or, if a
person does not achieve 10,000 steps/day during initiation, then
3000 steps/day above the person’s baseline median steps). Phase
4 focuses on testing the controller’s decision rules for
maintenance (eg, see reduced points provided in row 3).
Specifically, we will optimize our approach for providing as
minimal support as possible while a person maintains set-point
targets.

With this experiment completed, we will be able to
systematically test and optimize core elements of our adaptive
intervention. In particular, our open loop system identification
portion enables data-driven optimization for individualized
dynamical models and selecting individualized tailoring
variables as described above. Unlike the above work, the final
definition of success, which is a person maintaining targeted
step levels, will be available and, thus, can be used to define
percentage model fits that are, indeed, good enough for
individualization purposes. Our closed loop subexperiments
allow us to optimize our controller’s ability to achieve set-point
targets for each individual for each state, including initiation,
maintenance, and possible relapses. We can judge success or
failure relative to our optimization criteria (eg, 10,000
steps/day).

Furthermore, we can also produce aggregate (also called
nomothetic) information across the sample of participants.
Specifically, another optimization check involves comparison
of the percentage of our sample that achieves our maintenance
targets relative to current best practice PA interventions that
appear to produce maintenance targets for approximately 50%
of their samples [82,84]. Using previous work as a referent, we
can establish the plausibility that our approach is comparable
with current best practices if 50% of participants meet our
set-point target and exceed current best practices if a higher
percentage of our sample achieves our set-point targets. Thus,
the control optimization trial can enable both case-by-case (ie,
idiographic) optimization for individualization (ie, meeting
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minimal model fits) and adaptation (amount of time within the
desired set-point range across the intervention) and nomothetic
optimization (ie, percent of participants meeting target
thresholds). This multi-criteria optimization fits with the
multiple elements within an adaptive intervention. Furthermore,
the study is highly efficient as these elements can all be
systematically studied within a single study and, indeed for
most of our criteria, on a case-by-case basis.

Discussion

Summary
Control systems engineering is a rich discipline that has
strategies mHealth researchers and practitioners can use for
optimizing elements of adaptive interventions. It is particularly
well matched to problems that (1) are dynamic, (2) have useful
dynamic interventions available, (3) have an outcome measure
that can be measured with sufficient temporal density over an
extended time period, and (4) have desirable states for the target
outcomes that can be defined as the optimization criteria on a
case-by-case basis. There are five suggested (though not
necessarily all required) steps for optimizing an adaptive
intervention via control engineering: (1) derive a preliminary
dynamical model, (2) select intervention options, (3) conduct
a system identification open loop experiment, (4) design the
controller and optimization criteria, and (5) conduct a control
systems optimization trial. This approach holds great promise
for expanding the potential of adaptive interventions. This is
because control engineering provides a wide range of approaches
to systematically unpack and test or optimize the various
elements of adaptive interventions both on a case-by-case or
idiographic and an aggregate or nomothetic level.

Connections to Multiphase Optimization Strategy
These steps map on to the MOST framework [28]. Within the
preparation phase of MOST, the four suggested steps include
the following: (1) develop a conceptual model; (2) develop
intervention components; (3) if necessary, pilot test the
intervention components; and (4) define the optimization
criteria. These steps map on to steps 1 to 4 of the process we
delineate but with slight variations based on the requirements
for control engineering. An essential difference is step 3, because
system identification is valuable not only in preparation for an
adaptive intervention (and thus mimics the purpose of step 3 of
MOST) but also for theory testing. Thus, it should not
necessarily be thought of as pilot testing for the intervention
but instead as a valuable scientific pursuit in and of itself. Within
MOST, the optimization phase involves conducting an
optimization trial, such as a factorial design. One could view
system identification experiments, thus, as a form of an
optimization trial. That said, the control optimization trial (step
5 in our analogous process) is directly parallel to other
optimization trials, as the goal of the trial is primarily on
optimizing the intervention, whereas system identification is
more focused on theory testing and, thus, not as clearly similar
to the optimization trials. If there is interest in seeing if this
controller performs better than current standard of care, then
the final step of MOST, evaluation via an RCT, can occur.
Specifically, if the controller meets the threshold of the

optimization criteria, the evaluation phase can then proceed
whereby the control-driven intervention can be evaluated relative
to a meaningful comparator (eg, current standard of care
complex intervention [30]). If, however, the goal is to develop
modules that are repurposable, self-contained intervention
components (ie, components designed to function separately),
then another plausible approach would be to modularize this
work for other use cases, as delineated in agile science
[103,106].

Beyond the steps, there is also synergy between MOST and
control engineering principles. A central focus of MOST is
efficiency, including the use of efficient experimental designs
and grounding research in real-world constraints related to
implementation with the long-term goal of facilitating more
efficient and robust knowledge accumulation across studies.
Continuous optimization is the second common principle that
emphasizes the logic of a continual, iterative process related to
further improving and refining behavioral interventions. Control
engineering shares these principles of efficiency and continuous
optimization. Overall, our work fits well with MOST and current
trends in mHealth and the science of behavior change [133].

Added Considerations Within Control Systems
Engineering
As highlighted already, control engineering practices include
the principle of triangulation [134]. Unlike the concept of a
definitive trial [134], the logic of triangulation (sometimes also
called consilience [135]), involves the use of multiple methods
and approaches to synergistically study a problem. The basic
logic is that every method comes with inherent strengths and
weaknesses. When different methods with different strengths
and weaknesses point in a common direction, confidence in the
assertion increases. Just like how neuropsychologists look for
patterns across neurocognitive tests instead of relying on one
test, control engineers use a wide range of methods that each
have strengths and limitations for iteratively optimizing
dynamical models and controllers. This is illustrated in our
detailed discussion about a control optimization trial and the
many ways in which it can be defined and operationalized via
mixed use of open loop system identification experiments,
closed loop tests, and robustness testing. If multiple methods
and criteria point in a similar direction, then, one can have
increased confidence that the overall system is working.
Furthermore, if the different tests are not providing consistent
results, then the discrepancies can often be used to better
understand which elements of the complex intervention are
likely inadequate, thus supporting optimization.

These methods are designed to understand and support better
prediction and decision making for a given individual. Although
we have highlighted the strengths of this approach, there are
inherent weaknesses. For example, one potential trade-off exists
related to the optimization criteria. If the optimization criteria
that are chosen are not meaningful, then even if the controller
achieves success (ie, optimization criteria are met), then nothing
clinically meaningful has been achieved. This can be mitigated,
of course, with optimization criteria that are grounded in clear
evidence showing that they are clinically meaningful as is the
case within Just Walk. Note that this problem is not unique to
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control systems engineering. It exists within other methods
including RCTs, but with RCTs, it manifests via the control
condition chosen [136]. In brief, when a poor control condition
is chosen, a statistically significant difference may be found (ie,
success for this method), but that does not necessarily equate
to a meaningful result. To put it more colloquially, one could
compare a bad intervention and use a worse intervention as a
control, run a trial, and find that bad is better than worse.
Unfortunately, the end result is still a bad intervention.
Regardless of methods, it is essential to have clarity on what
success means, in terms of real-world utility, as is argued in
agile science [103,106].

A second major trade-off of control engineering and, indeed,
any idiographic approach, is the undervaluing of generalizability
to other individuals and contexts. This establishes the need for
other methods that are better at balancing this idiographic
emphasis with more of a nomothetic emphasis, such as RCTs.
With that said, generalization to other individuals and contexts
can feasibly occur via a different pathway toward
generalizability knowledge, namely, the generalizability concept
of causal explanatory models [137]. Shadish et al [137], in their
formulation on a theory of generalization, highlighted the
concept of causal explanatory models, which are mechanistic
models that not only define if there is causal effect (what they
called a causal descriptive model and what is produced by an
RCT) but how the effect occurs, mechanistically. Arguably,
dynamical modeling, particularly when robust semiphysical
models can be validated, move in the direction of causal
explanatory models and, thus, can feasibly aid in improving
mechanistic understanding of a phenomenon and, thus, produce
generalizable knowledge.

Returning to the concept of triangulation, an RCT can balance
out the weaknesses of control engineering methods. As
illustrated in the introduction and optimization section, RCTs
compromise on providing insights about how, when, where,
and for whom a given intervention element works, in the pursuit
of stronger internal validity at the intervention package level
and also increased external validity in terms of statistical claims
of generalizability to the population the sample is conceptually
drawn from. As the control optimization trial is an inherently
n-of-1 study design, it enables the possibility of it being
embedded within an RCT as the intervention arm. This
possibility enables a highly efficient way of conducting multiple
tests within a single trial that is squarely grounded in the
philosophical logic of triangulation, as one trial can test
intervention elements and also compare the package to another
package. Indeed, including a control condition as a comparison
with a control systems optimization trial is, arguably, a highly
efficiently rigorous approach to test an adaptive intervention
[103].

We emphasize triangulation as we see this as well matched to
the complexity of adaptive interventions and possibly behavioral
interventions more generally, even outside of the domain of
control systems engineering. It is the cornerstone of our key
thesis that adaptive interventions are more likely to succeed if
its elements can be iteratively improved via optimization. In
particular, the fact that there are so many elements within an
adaptive intervention (eg, intervention components, decision

points, tailoring variables, and decision rules) establishes the
need for triangulation. This fits with discussions in psychology,
such as the need for a pluralistic approach to causality [134].

Implications and Future Work
As articulated elsewhere, advancements in digital technologies
are rapidly converging to enable a new era in the understanding
of human behavior [13,18,138]. A central argument made
elsewhere is that the time is right for health and behavioral
sciences to reexamine their experimental and analytic strategies
[13,18,138]. Although there is great opportunity for a variety
of other methods, health and behavioral scientists should more
carefully consider control systems engineering. Not only is the
time right, from a technical standpoint, but very classic work
in psychological science engaged within control theory; thus
suggesting that this is really a return to classical roots in
psychological science [139-142]. Conceptually, there are many
reasons to believe that control systems engineering could be a
foundational class of methods behavioral and health scientists
could use to improve impact, particularly related to
individualized mHealth interventions. Of course, this requires
far more research and empirical work before any firm
conclusions can be drawn on the potential.

In terms of limitations and future work, more work is needed
to clearly evaluate the utility of this approach relative to other
methods. For example, the current method used in MOST for
optimizing a static intervention is a factorial trial, and SMART
and MRT are proposed for adaptive interventions. One valuable
test to be conducted is comparison of an optimized intervention
to an intervention that was not optimized using these methods.
This comparison can be made using an RCT. As the control
optimization trial is an inherently n-of-1 method, it is possible
to compare the control optimization trial, as a proxy of an
optimized intervention, with a control condition that lacks
control engineering features. A trial such as this would provide
insights on the plausible added value optimization via control
engineering may produce relative to more traditional approaches
for intervention development whereby the elements are not
optimized but, instead, the elements of the intervention are
defined based on prior aggregate evidence, user-centered
research, and theory.

Building on this point, future work should focus on providing
greater clarity on when to use which method for optimizing
static and adaptive interventions. As one possible formulation
on this, SMART appears useful when the goal is the selection
of a progression of decisions to make with relatively infrequent
adaptation (eg, once every few months) and with well-specified
if-then decision rules. As such, SMART might be particularly
valuable within clinical practice. MRT appears particularly
valuable for just-in-time adaptive interventions. We argue that
control systems engineering methods are likely particularly
valuable when the goal is to facilitate a more long-term
trajectory of change, such as gradually increasing a target
behavior whereby achievement of a desired state cannot happen
immediately (eg from 6000 steps/day to 10,000 steps/day or a
5% reduction in weight) but, instead, requires slow progression
and building up of skills. Similarly, control engineering methods
can also be valuable for facilitating maintenance of a targeted

J Med Internet Res 2018 | vol. 20 | iss. 6 | e214 | p. 19http://www.jmir.org/2018/6/e214/
(page number not for citation purposes)

Hekler et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


set-point by facilitating small adjustments and provision of
support in sort of stepped-care framework. Although we think
these general principles are correct conceptually, future
empirical work is needed to explore the strengths and limitations
of these approaches and the assertions made on when to use
which method.

More work related to establishing meaning optimization criteria
is needed. This work hinges on well-specified definitions of
success that are clinically and practically meaningful but that
is not necessarily always available for all elements of an
adaptive intervention. For example, we established our model
fit estimates as good enough for individualization based on
Cohen’s work [127]. We fully recognize that this is an extension
and thus may not be appropriate. Future work is needed to think
clearly through what good enough optimization is for elements
and the adaptive interventions overall.

Finally, future work should further explore if and, if so, how to
integrate the logic of triangulation more actively within the

development of mHealth interventions. As highlighted before,
there is already research starting in this domain but, future
research that provides scaffolding for health and behavioral
scientists to work through this more complex approach to the
design, optimization, and evaluation of interventions could be
valuable. We have started this process through the articulation
of agile science [103], but further work is needed. Finally, if
control engineering does prove valuable, there will be a need
for more interdisciplinary training between control engineers
and psychologists.

Conclusions
In sum, mHealth is well poised to take advantage of control
engineering methods for the optimization of adaptive
interventions. The time is now for health and behavioral
scientists to more closely examine control engineering methods.
If the approach proves valuable for health problems, new
partnerships should be forged between health and behavioral
sciences and control systems engineers in the design,
optimization, and evaluation of adaptive interventions.
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