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Abstract

Background: A major barrier to the practice of evidence-based medicine is efficiently finding scientifically sound studies on
a given clinical topic.

Objective: To investigate a deep learning approach to retrieve scientifically sound treatment studies from the biomedical
literature.

Methods: We trained a Convolutional Neural Network using a noisy dataset of 403,216 PubMed citations with title and abstract
as features. The deep learning model was compared with state-of-the-art search filters, such as PubMed’s Clinical Query Broad
treatment filter, McMaster’s textword search strategy (no Medical Subject Heading, MeSH, terms), and Clinical Query Balanced
treatment filter. A previously annotated dataset (Clinical Hedges) was used as the gold standard.

Results: The deep learning model obtained significantly lower recall than the Clinical Queries Broad treatment filter (96.9%
vs 98.4%; P<.001); and equivalent recall to McMaster’s textword search (96.9% vs 97.1%; P=.57) and Clinical Queries Balanced
filter (96.9% vs 97.0%; P=.63). Deep learning obtained significantly higher precision than the Clinical Queries Broad filter (34.6%
vs 22.4%; P<.001) and McMaster’s textword search (34.6% vs 11.8%; P<.001), but was significantly lower than the Clinical
Queries Balanced filter (34.6% vs 40.9%; P<.001).

Conclusions: Deep learning performed well compared to state-of-the-art search filters, especially when citations were not
indexed. Unlike previous machine learning approaches, the proposed deep learning model does not require feature engineering,
or time-sensitive or proprietary features, such as MeSH terms and bibliometrics. Deep learning is a promising approach to
identifying reports of scientifically rigorous clinical research. Further work is needed to optimize the deep learning model and to
assess generalizability to other areas, such as diagnosis, etiology, and prognosis.

(J Med Internet Res 2018;20(6):e10281) doi: 10.2196/10281
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Introduction

Background and Significance
With roughly 95 clinical trials published per day, the biomedical
literature is increasing at a very rapid pace, imposing a
significant challenge to the practice of evidence-based medicine.
However, only 1% of studies in the biomedical literature meet
minimum criteria for scientific quality [1] and most published
research findings are eventually shown to be false [2]. As a
result, a major barrier to the practice of evidence-based medicine
is efficiently finding the relatively small number of scientifically
sound studies on a given clinical topic. Systematic reviews and
meta-analyses attempt to summarize the available evidence on
a given clinical question aiming for near perfect recall. However,
systematic reviews are often not available and become quickly
outdated. Therefore, clinicians may benefit from access to the
latest evidence from high-quality clinical trials before they are
included in systematic reviews.

For over two decades, the Clinical Query filters have been the
state-of-the-art approach to retrieve scientifically sound clinical
studies from the primary literature, both for the development
of systematic reviews and point-of-care decision support [3,4].
The Clinical Query filters consist of Boolean search strategies
based on textwords and Medical Subject Headings (MeSH)
terms that have been developed and validated through a
systematic approach [5]. The search textwords and MeSH terms
used in the Clinical Query filters reflect widely accepted criteria
for scientifically sound clinical studies, such as “clinical trial,”
“random allocation,” and “randomized controlled trial
[Publication Type].” Although initially developed in the 1990s,
the Clinical Query filters have been updated over time and the
recall and precision of the filters developed in 2000 did not
significantly change a decade later [6]. Clinical Query filters
for several topics are available in PubMed and several other
bibliographic biomedical databases, with focuses on areas such
as therapy, diagnosis, etiology, and prognosis, and these are
tuned for precision or recall. A limitation of the Clinical Query
filters is their dependency on MeSH terms, which are added to
PubMed citations 23 to 177 days after an article is published
(according to a previous study [7]) and 17 to 328 days according
to our more recent analysis. In addition, there is room for
improvement, especially in terms of retrieval precision.

Previous studies investigated the use of machine learning
approaches to automate the retrieval of scientifically sound
studies [8-10]. Features used in those studies included
bibliometrics (eg, citation count, impact factor), words in the
article title and abstract, MeSH terms, Unified Medical
Language System (UMLS) concepts, and semantic predications.
Although the results of machine learning studies were promising,
they had important limitations that precluded wide adoption in
practice, such as a requirement for significant feature
engineering (eg, UMLS concepts, bibliometrics), reliance on
proprietary and time-dependent features (eg, MeSH index,
citation counts), and potential overfitting to a particular dataset.

In the present study, we investigated a deep learning approach
for the retrieval of scientifically sound treatment studies from
PubMed. To overcome limitations of previous methods, we

focused on an approach that requires very little feature
engineering and does not rely on proprietary or time-dependent
features. We then compared the performance of a deep learning
model with state-of-the-art PubMed search strategies against
Clinical Hedges, a rigorous gold standard of over 50,000 studies
that were systematically rated for scientific quality according
to rigorous criteria [5].

Deep Machine Learning
Recent advances in machine learning have led to dramatic
improvements in the abilities of computers to mimic human
activities. Many of these improvements leverage “deep
learning,” and embody neural-networks with many nodes that
are fully connected across layers of the network. In the context
of supervised deep learning, which we utilized here, such a
network is trained by providing many examples of the objective
to classify, as well as many counter examples.

Deep Neural Networks
A Deep Neural Network (DNN) is a fully connected set of
“layers,” each of which contains a node that encodes information
in the form of a weight associated with a particular feature of
the input data. By “connected” we mean that the nodes of each
layer connect with the nodes of the next. A DNN is considered
“deep” because it can contain many such connected nodes and/or
layers, thereby encoding a significant amount of information
in the weights applied to the input of each layer.

In the case of text categorization, the input to the network is a
set of words (or “word embeddings” described below). Each
successive layer of the DNN applies some transformation to
the words in the form of linear algebraic operations that
progressively encodes more granular features of the data [11,12].
A supervised DNN, such as our approach, requires that each
input (eg, set of words) is associated with a class such that the
DNN will learn how to associate the words with each class in
order to predict the class for newly unseen sets of words. As
with most machine learning approaches, the input text can be
transformed in a number of ways. In the case of text
classification, such transformations could include adding
extraneous information such as bibliographic and author
information. This process of designing and applying features
to optimize classification is known as feature engineering.

Although potentially useful, feature engineering is challenging:
it may require significant manual effort and introduces the risk
that certain features will be too specific to the training data or
may even be unavailable. As we discuss below, leveraging the
MeSH terms used to index articles in PubMed can certainly
help in a task such as ours, but there is no guarantee that such
information is available for an article in a timely manner.

Therefore, we opted for an “end-to-end” machine solution. In
end-to-end approaches, the DNN is trained solely on the inputs
and classes with minimal or no feature engineering. Minimal
features are those that are task- and domain-agnostic, such as
converting words to lower case, removing stopwords, and
stemming. Potential advantages of such an approach include:
(1) simpler design, therefore strong results are more likely
indicative that the DNN is detecting textual signal, rather than
an arcane feature; (2) no reliance on external factors, such as
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features that may not be timely available; and (3) mitigation of
concept drift, since the training features may misalign from
those available when a model is deployed. Therefore, end-to-end
systems provide a strong justification for a first approach in
classification tasks.

Recurrent Neural Networks and Convolutional Neural
Networks
In this study, we utilized a particular deep-learning
neural-network known as Convolutional Neural Network (CNN),
following the approach of Kim [13]. To some extent, Kim’s
CNN architecture has become a de facto standard for text
classification. CNNs analyze text using sliding word windows
of specified sizes. Each sliding word window generates a set of
real-valued vectors. Generally, each word or even character is
associated with a “word-embedding,” which is a low-dimension
real-valued vector that represents the semantic space for the
word [14]. Therefore, as each term is associated with a vector,
each sliding word window then represents a matrix. Each sliding
word window is then passed through an activation function, and
a “max pooling” is applied such that only the maximum value
is kept from the set of values produced by the activation
function, as applied to the window. That is, each window is
associated with its single, maximal value outputted by the
activation function. These maximal values are concatenated
together to form their own vector representing the set of
windows. This set of concatenated values forms the next layer,
which is then passed to the final layer, which includes the
decision-making activation function (such as Softmax, as
described below).

An example of a CNN is shown in Figure 1. From left to right,
we see one set of input words and their word embeddings, which
forms the initial input matrix. This network uses two sets of
sliding windows, one of size two and one of size three. These
sets of sliding windows produce the convolutional layer,
transforming the sliding window’s features into new feature
values, which are then pooled such that only the maximum value
is kept (the “max pooling”). Finally, the max-pooled values are
passed through the fully connected final (output) layer, which
uses Softmax to assign a probability of class membership (shown
as “yes” or “no” for binary class membership). While this
approach may appear “shallow,” it has been shown to be
effective, becoming one of the most popular architectural
choices for CNN [13].

Another popular approach for text-analysis tasks are Recurrent
Neural Networks (RNNs). In contrast to CNN’s
sliding-windows, which treat phrases somewhat independently,
RNNs are well suited for language tasks where the classification
of a particular piece of text depends on the surrounding text.
For instance, RNNs are well suited for part-of-speech tagging
or machine translation, which have a strong dependency on the
particular word order. However, because they must consider
order dependencies, they are not as appropriate for tasks such
as ours. In fact, in a head-to-head comparison between CNNs
and RNNs for natural language processing tasks, Yin et al [15]
found that CNNs are particularly well suited for so called

“keyphrase recognition” tasks such as text classifications or
sentiment analyses. Furthermore, CNNs were found to be up
to five times faster than RNNs [15], which is important in
real-world tasks such as ours where the goal is to classify an
extremely large corpus, such as PubMed, in a reasonable amount
of time.

Deep Neural Network Optimization (How It Learns)
The main learning for a neural network involves “forward
propagation” and “backward propagation.” In forward
propagation, inputs are translated into features by transforming
the inputs into real-valued vectors of fixed sizes. These vectors
(eg, “layers”) are combined with weights and passed through
an activation function that summarizes the contribution of each
feature of the vector and its weight. Layers are connected to
one another such that the values from the activation function
of the current layer become the inputs to the next layer.
Therefore, the “forward propagation” starts with input and
passes activation values from layer to layer until the final layer,
which outputs some decision vector. In our case, this final output
function is a sigmoid activation function, which can assign
probability to class membership. In “backward propagation”
the final classification decision is compared with the known
result from the training data and errors are propagated backward
through the network, from the output layer to the input layer.
Each weight is updated according to its contribution to the
decision accuracy via gradient descent.

In the context of CNN, one can interpret the various passes
through “forward” propagation as applying weights to different
“chunks” of the text input, and “backwards” propagation as
adjusting those weights to make the fewest errors in predicting
the class of the input text. Within the context of DNN, since
optimization is essentially a weight adjustment process, the
higher the number of nodes and layers, the more weights must
be adjusted to find the optimal classifier, which requires more
training data. Conversely, more weights and layers may improve
classification. Therefore, part of DNN design is to identify
optimal parameter choices and how to deal with overfitting. In
our case, we used a technique called dropout regularization,
which randomly prevents nodes from participating in a
classification decision for a given training input, so the model
does not overfit by learning to simply rely on a particular node.

Other optimizations include which mathematical operations to
choose for the propagation; this is called the “activation
function” (ie, how a node produces a score given the weight
and input). Different choices can result in different DNN
behavior; some activation functions are more robust than others,
while some can make the training process exceedingly long.
We chose the Rectified Linear Unit (ReLU) for our activation
function, as it provides an efficient mechanism to build robust
and accurate CNNs. The choice of ReLU is quite common in
tasks such as ours. Finally, within the context of CNN, it is
common to provide a down-sampling between layers, which
helps control overfitting and makes training more efficient. The
most common approach is max pooling, which we use in our
approach.
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Figure 1. Example of a Convolutional Neural Network.

Therefore, the training of a network involves multiple passes
of forward propagation followed by backward propagation. It
is common to call each iteration over all the training data an
“epoch.” The model generally stops this training process at a
fixed number of epochs or when the metric of success appears
to have reached some maximal value.

Clinical Hedges
Clinical Hedges is a database previously developed by the
Hedges Group at McMaster University, used to develop and
evaluate the Clinical Query filters [5] and previous machine
learning approaches [8] that retrieve scientifically sound clinical
studies from PubMed. The database has 50,594 articles
published in 170 clinical journals. All articles were manually
annotated by highly-calibrated information science experts
according to type (eg, etiology, prognosis, diagnosis, prevention,
therapy, clinical prediction) and whether or not each study met
prespecified and experimentally validated methodological
criteria for scientifically sound clinical research. The criteria
and process used to rate the articles in Clinical Hedges are
described elsewhere [5]. In summary, criteria for scientifically
sound studies on treatment interventions include random
allocation of study participants, clinically relevant outcomes,
and at least 80% follow-up of study participants.

Methods

Overview of the Approach
Overall, our approach consisted of (1) training and testing deep
learning models with a large and noisy dataset obtained

automatically through PubMed searches based on the Clinical
Query treatment filter, and (2) evaluating the performance of
the resulting model against Clinical Hedges as a gold standard.

Specifically, the study method consisted of the following steps,
which are described in more detail in the sections below: (1)
preparation of a dataset for training the deep learning models,
(2) training and tuning deep learning models, (3) comparison
of the deep learning approach with state-of-the-art search filters
and McMaster’s textword filter in terms of precision and recall,
and (4) analysis of deep learning performance in terms of
precision at several levels of K retrieved citations.

Preparation of Training Dataset
The training/testing dataset consisted of 403,216 positive and
negative citations retrieved from PubMed. To retrieve positive
studies (ie, scientifically sound), we used the Clinical Queries
treatment filter tuned for precision (“narrow” filter; Figure 2).
In previous studies, this filter yielded 93% recall and 54%
precision for scientifically sound treatment studies in the Clinical
Hedges gold standard [5]. Therefore, this search strategy was
used as a surrogate for retrieving a large dataset of scientifically
sound studies that are similar to the ones in the Clinical Hedges
gold standard. Although this approach produced a rather noisy
training set (close to half of the positive samples were
false-positives), the CNN approach is resilient to handle noisy
data as long as there is sufficient training data. To retrieve
negative studies (ie, not scientifically sound), we retrieved
studies conducted in humans which were not retrieved by the
“positive” search strategy above.
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Figure 2. Datasets used for training and testing the deep learning models. The PubMed Clinical Query “Narrow” treatment filter was used as a surrogate
to identify positive (scientifically sound) studies. The resulting dataset was split into training and development sets using a 90/10 ratio.

The strategies were limited to retrieve a maximum of 150,000
and 300,000 citations respectively to yield a dataset with one
third positive and two thirds negative citations. Both strategies
were limited to citations published between 2007 and 2017.
Citations without an abstract were removed. The search
strategies were executed with PubMed’s eUtils application
program interface. The resulting dataset contained 147,182
positive and 256,034 negative citations (Figure 2).

Training and Tuning Deep Learning Models
Deep learning models were trained using 90% of the citations
in the dataset, with the remaining 10% used as a “development”
set (Figure 2). As the training/development split was randomly
generated, the development set maintained a similar proportion
of positive to negative instances as the training set. To build
model inputs, we concatenated the title with the abstract,
removed stopwords, and kept the first 650 tokens of the
remaining words.

As mentioned in the Deep Machine Learning section, our model
follows the well-accepted approach of applying CNNs for text
classification. The first layer applies character embedding to
the words, so that words outside of the known vocabulary can
be included for prediction. The character embeddings are then
combined with word embeddings (built from the training data),
to capture semantic similarity. This input is passed into our
model, which contains two convolutional layers: one for sliding

word windows of size two and one for word windows of size
three. Each convolutional layer contains 512 filters associated
with it. We apply a ReLU unit to the convolutional layers and
pass them through a max pooling procedure. The resulting
max-pooled features are then concatenated into a single layer.
The max-pooled layer is passed to the next layer which consists
of 512 units (fully connected), to which we apply a Softmax
activation function to predict the probability of a citation
belonging to either class. We then take the Argmax of the
Softmax predictions as the predicted class. We ran this model
with dropout regularization of 0.5 (to prevent overfitting) for
30 epochs. Hyper-parameters were chosen experimentally based
on maximized precision on the training data.

Comparison of the Deep Learning Approach With
State-of-the-Art PubMed Search Strategies
We tested three hypotheses that reflect the requirements imposed
by different information retrieval scenarios. The first scenario
consisted of search strategies to support the development of
evidence-based syntheses, such as systematic reviews and
clinical guidelines [16]. In this scenario, there is a requirement
for near perfect recall. The hypothesis for this scenario was that
the deep learning approach would yield equivalent recall with
higher precision for scientifically sound treatment studies
compared with the PubMed Clinical Queries Broad filter, which
has almost perfect recall (Figure 3).
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Figure 3. Search strategies used to retrieve scientifically sound treatment studies in comparison with the deep learning model.

The second scenario reflects the need to retrieve recent studies,
such as in literature surveillance efforts to identify new evidence
to update existing systematic reviews and clinical guidelines
[17-19]. Since Clinical Query filters depend partially on MeSH
terms and publication type, they are less effective for literature
surveillance. Instead, search strategies based on terms in the
citation title and abstract are preferred. The hypothesis for this
scenario was that the deep learning approach would yield
equivalent recall but higher precision for scientifically sound
treatment studies compared with a textword search strategy
provided by the Clinical Hedges group from McMaster
University (Figure 3).

The third scenario represents clinicians searching the literature
for evidence to meet clinicians’ information needs that are raised
in the care of a specific patient [20]. In this scenario, trading a
small loss in recall for substantial gains in precision is
acceptable. We hypothesized that the deep learning approach
would yield equivalent recall but higher precision for
scientifically sound treatment studies compared with
McMaster’s Balanced Clinical Query filter, which uses a
combination of textwords, MeSH terms, and publication types
(Figure 3).

The Clinical Hedges gold standard was used to test the three
hypotheses. For positive citations, we retrieved 1524 original
scientifically sound studies, with a focus on treatment, from the
Clinical Hedges database. For negative citations, we retrieved
29,144 treatment studies from Clinical Hedges that were not in
the positive set. For statistical analyses, we split the resulting
dataset into 20 random subsamples, which were stratified to
ensure a balanced ratio of positive and negative citations in each
subsample. Measures of precision, recall, and F-measure were
obtained for the four approaches on each of the 20 subsamples
(Figure 4). Last, we ranked the output of the deep learning model
according to its probability score and obtained measures of
precision at several levels of top K citations (10, 20, 50, 100,
200, 300, and 500).

Statistical Analysis
Classification performance was measured according to the
average precision and recall across 20 data samples. We used
the paired Student t-test to test the significance of the differences
in recall and precision between the two approaches in each
experiment, with the significance level set at 0.05.
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Figure 4. Evaluation method, including comparisons between the deep learning approach and Boolean searches focused on three different information
retrieval scenarios.

Results

The results are organized according to the three information
retrieval scenarios and study hypotheses.

Scenario 1 - Development of Evidence-Based Syntheses
Table 1 shows the results of the comparisons for Scenario 1,
which requires near perfect recall. We tested the hypothesis that
the deep learning approach yields equivalent recall with higher
precision for scientifically sound treatment studies compared
with the PubMed Clinical Queries Broad filter. The Clinical
Queries Broad filter had statistically significantly higher recall
than the deep learning model (98.4% vs 96.9%; P=.002),
although the difference was small (-1.6%) and likely marginal
in practice, depending on the use case. The deep learning model
had significantly higher precision than the Clinical Queries
Broad filter, with a +12.2% absolute difference (34.6% vs
22.4%; P<.001).

Scenario 2 - Literature Surveillance
Table 2 shows the results of the comparisons for Scenario 2,
which requires retrieval of recent studies prior to MeSH
indexing. We tested the hypothesis that the deep learning
approach yields equivalent recall but higher precision for
scientifically sound treatment studies compared with a textword
search strategy. The deep learning model was equivalent to
McMaster’s textword search in terms of recall (97.1% vs 96.9%;
P=.57); and had significantly higher precision than the textword
search (34.6% vs 28.5%; P<.001).

Scenario 3 - Patient Care Decision Support
Table 3 shows the results of the comparisons for Scenario 3, in
which trading a small loss in recall for gains in precision is
acceptable. We tested the hypothesis that the deep learning
approach yields equivalent recall but higher precision for
scientifically sound treatment studies compared with
McMaster’s Balanced Clinical Query filter. Compared with the
McMaster Balanced treatment filter, the deep learning model
had similar recall (96.9% vs 97.0%; P=.63), but lower precision
(34.6% vs 40.9%; P<.001; Table 3).
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Precision at K
The precision at K curve for the ranked output of the deep
learning model showed that precision ranged from 75.5% to

61% among the top 10 to top 100 citations and only decreased
substantially after the top 200, 300, and 500 citations (Figure
5).

Table 1. Average recall, precision, and F-measure of the deep learning model and Clinical Query Broad filter according to the Clinical Hedges gold
standard (N=20).

P valueCQa broad (%)Deep learning (%)Parameter

<.00198.496.9Recall

<.00122.434.6Precision

<.00136.551.0F-measure

aCQ: PubMed Clinical Query Treatment filter

Table 2. Average recall, precision, and F-measure of the deep learning model and McMaster’s textword search according to the Clinical Hedges gold
standard (N=20).

P valueTextword search (%)Deep learning (%)Parameter

.5797.196.9Recall

<.00111.834.6Precision

<.00121.051.0F-measure

Table 3. Average recall, precision, and F-measure of the deep learning approach and McMaster’s Balanced Treatment filter according to the Clinical
Hedges gold standard (N=20).

P valueMcMaster’s CQa balanced filter (%)Deep learning (%)Measure

.6397.096.9Recall

<.00140.934.6Precision

<.00157.551.0F-measure

aCQ: PubMed Clinical Query Treatment filter

Figure 5. Average precision of the deep learning model at different levels of top K citations.
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Discussion

Significant Findings
To our knowledge, this is the first study to investigate the use
of deep learning techniques to identify reports of scientifically
sound studies in the biomedical literature in three different
information-seeking scenarios. The deep learning approach
performed reasonably well compared with state-of-the-art search
filters, especially for literature surveillance. For evidence
synthesis, the deep learning approach had slightly lower recall
(-1.6%), but significantly higher precision (+12.2%) than the
PubMed Clinical Query Broad treatment filter. For literature
surveillance, the deep learning approach had equivalent recall
to McMaster’s textword filter, but significantly higher precision
(+22.2%). For patient care decision-making, the deep learning
model had similar recall, but lower precision (-6.3%) than
McMaster’s Balanced filter. Strengths of the study methodology
include the use of a very large training set, comparison with
state-of-the-art search strategies, and evaluation with a rigorous
gold standard which was completely independent from the
training set.

The proposed deep learning approach has three main potential
benefits compared with previous approaches. First, unlike
previous machine learning approaches, which depend on features
that are not always openly and contemporaneously available
(eg, MeSH terms, citation counts, journal impact factors), the
proposed deep learning approach only uses citation title and
abstract, which are available as soon as citations are entered in
PubMed. Although full-text articles could be added as features
in an attempt to improve performance, obtaining access to the
full-text of all articles indexed in PubMed is impracticable since
most journals do not provide open access to full-text. To assess
the potential duration of delays for literature surveillance
strategies based on MeSH filters, we determined the time
between the date of creation of the article record in PubMed
(CRDT) and the date of posting of MeSH terms (MHDA) for
107 journals (55,237 articles) in the McMaster PLUS database,
from which the Clinical Hedges database was derived. The mean
delay in MeSH indexing per journal was 162 days (95% CI
157-167), with a range of 17 to 328 days. Indexing intervals for
journals were inversely correlated with journal impact factors
(for 2016), but the correlation was relatively weak (-0.38; CI
-0.199 to -0.517). As a second benefit, the deep learning model
provides a ranked output with 70% or higher precision among
the top 50 citations. This feature could be particularly useful
for clinicians in busy clinical settings who are less likely to look
beyond the top 20 citations that are displayed in PubMed
searches [20,21]. In addition, citation ranking could help with
systematic review development, since front-loading “eligible”
citations can be used to help train and calibrate citation screeners
and prioritize work [22]. Third, the deep learning model obtained
reasonable performance despite being trained on a noisy dataset
(an estimate of roughly 50% of the positive cases were
false-positives). This finding confirms the robustness of the
deep learning approach, which is known to be resilient to noisy
training data [23].

Comparison With Prior Work
Previous work applied deep learning to classification tasks in
the biomedical informatics domain. Lee [24] classified sentences
as belonging to papers that would be included in a systematic
review, or those that would not. However, because they did not
employ a large-scale training procedure, as we devised here,
their results were poor. It is also not clear whether the author
focused solely on sentence classification, or document
classification, as in our work [24]. Hughes et al [25] applied
CNNs to classify sentences according to one of 26 categories,
such as “Brain” or “Cancer,” using a similar approach (though
a different training procedure) to a different problem. Wang et
al [26] used word, dependency, and abstract meaning
representation embeddings to extract information on drug-drug
interactions from the biomedical literature. Both Nguyen et al
[27] and Che et al [28] utilized CNNs to predict risk outcomes,
such as hospital readmission, using electronic health record data
as an input. As with Hughes et al [25], although applied to
different problems, the latter studies demonstrated precedent
for using CNN in biomedical text classification.

A polynomial Support Vector Machine classifier based on
MeSH terms, publication type, and title/abstract words obtained
a recall of 96% and precision of 18% against a gold standard
of internal medicine articles included in the American College
of Physicians Journal Club [9]. A different study compared
Clinical Query filters, machine learning, and algorithms based
on citation count and the PageRank algorithm using a gold
standard of important literature on common problems in surgical
oncology [10]. The PageRank algorithm obtained a precision
at the top 10, 20, 50, and 100 citations of 7.8%, 13.0%, 19.9%,
and 26.3%, respectively [10]. Overall precision and recall were
not reported. More recently, a study by Kilicoglu et al [8]
investigated a set of classifiers using features such as MeSH
terms, title/abstract words, UMLS concepts, and semantic
predications. A Naïve Bayes classifier with these features
obtained a recall and precision of 91.4% and 52.5% for treatment
studies in the Clinical Hedges database [8]. As discussed above,
those previous approaches relied on substantial feature
engineering and/or proprietary and time-sensitive features,
compromising the use of those approaches in real-time
information retrieval systems. In a recent study investigating
an approach similar to ours, Marshall et al [29] developed CNN
and support vector machine classifiers based on article title and
abstract to identify reports of randomized controlled trials
(RCTs). The best classifier obtained a recall of 98.5% and
precision of 21% [29]. Although the authors also evaluated their
classifiers against the Clinical Hedges database, the results
cannot be directly compared with our study because their goal
was to identify RCTs versus scientifically sound studies (not
all RCTs are scientifically sound and not all scientifically sound
studies are RCTs). Another difference was that Marshall et al
[29] used a training set derived from RCTs identified in
Cochrane systematic reviews while we used a dataset obtained
using the Clinical Queries Treatment Narrow filter.

Error Analysis
We analyzed a random sample of 20 false-negatives and 20
false-positives identified by the deep learning model. The
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majority of the false-negatives (16/20) were likely due to the
lack of an explicit description of the study design in the article
abstract, which led the deep learning model to miss these
articles. Of the 20 false-negatives, the Clinical Query Broad
filter was able to correctly identify 14 articles based on MeSH
terms and publication type rather than words in the abstract or
title. Two approaches can be investigated in future studies to
address this problem. First, MeSH terms and publication type
could be included as deep learning features. The caveat is that
this approach would require feature engineering and would be
limited by the time lag of MeSH terms and publication type
described above. The second, and perhaps more promising
approach, is to include the methods section from the article
full-text as an input for deep learning. Since the methods section
has many more details on the study methodology than the article
abstract, it may lead to more accurate classification of
scientifically sound studies.

False-positives were due to two main error categories. First, 7
of 20 cases were marginal articles that partially met quality
criteria (eg, RCT without a clinical outcome) and therefore were
more difficult to rate (7/20). Second, in 11 of 20 cases the
abstract included terms related to high quality methodology but
stated these outside the context of the study method (eg, abstract
conclusion stating the need for future RCTs, editorial raising
the need for RCTs on a specific topic). Approaches to mitigate
both types of errors include using the full-text of the methods
section as input for the deep learning model and developing
separate subclassifiers to detect studies that meet partial quality
criteria, and nonoriginal studies (eg, editorials, letters, reviews).

Limitations
Our study has four important limitations. First, although we
focused on deep learning models and optimization strategies
that were most likely to produce the best results, we have not
exhausted all deep learning optimization possibilities. For
instance, new work on RNNs may prove more accurate in
document classification tasks [30,31]. We chose to focus our
efforts on CNNs because they run more efficiently, given the
large scale of our text data, but there is a valid investigation

into understanding the trade-offs between speed and accuracy
by comparing these methods. We also did not exhaustively
search the hyper-parameter space for our CNN. Many of our
choices were empirical, as this is the first study, and further
efforts might leverage more systematic approaches to
hyper-parameter tuning [32]. Second, our approach is meant to
be “end-to-end” (ie, text simply enters our pipeline and is
classified). This approach is preferable because it does not
require significant feature engineering or time-dependent
features such as MeSH terms. However, further studies can
explore adding richer features into our model to improve
performance. For example, since the McMaster’s textword filter
has equivalent recall as (but lower precision than) the Clinical
Query filters, it is possible that MeSH-based features could
improve the precision of our deep learning approach. Third, we
have made comparisons with only one textword filter and no
other machine learning approaches, since we did not have access
to those machine learning classifiers. Comparisons with two of
the three previous machine learning approaches are indirect,
since those studies did not use Clinical Hedges as a gold
standard. Last, we focused on identifying “treatment” studies;
further work is needed to verify whether our approach
generalizes to other areas, such as diagnosis, etiology, and
prognosis.

Conclusion
We compared deep learning with state-of-the-art search filters
to identify reports of scientifically sound studies in the
biomedical literature. Overall, the resulting deep learning model
compared well with other approaches, especially in scenarios
involving recent citations prior to MeSH indexing. Advantages
of the deep learning approach include low feature engineering
requirements, no dependency on proprietary and time-sensitive
features, and the use of a very large training set. Future work
is needed to investigate further optimization opportunities and
to adapt the deep learning approach to other clinical areas. Deep
learning is a promising approach to identifying scientifically
sound studies from the biomedical literature and warrants further
investigation as a potential alternative for, or supplement to,
current search filters.
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