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Abstract

Background: Measuring and predicting pain volatility (fluctuation or variability in pain scores over time) can help improve
pain management. Perceptions of pain and its consequent disabling effects are often heightened under the conditions of greater
uncertainty and unpredictability associated with pain volatility.

Objective: This study aimed to use data mining and machine learning methods to (1) define a new measure of pain volatility
and (2) predict future pain volatility levels from users of the pain management app, Manage My Pain, based on demographic,
clinical, and app use features.

Methods: Pain volatility was defined as the mean of absolute changes between 2 consecutive self-reported pain severity scores
within the observation periods. The k-means clustering algorithm was applied to users’ pain volatility scores at the first and sixth
month of app use to establish a threshold discriminating low from high volatility classes. Subsequently, we extracted 130
demographic, clinical, and app usage features from the first month of app use to predict these 2 volatility classes at the sixth
month of app use. Prediction models were developed using 4 methods: (1) logistic regression with ridge estimators; (2) logistic
regression with Least Absolute Shrinkage and Selection Operator; (3) Random Forests; and (4) Support Vector Machines. Overall
prediction accuracy and accuracy for both classes were calculated to compare the performance of the prediction models. Training
and testing were conducted using 5-fold cross validation. A class imbalance issue was addressed using a random subsampling of
the training dataset. Users with at least five pain records in both the predictor and outcome periods (N=782 users) are included
in the analysis.

Results: k-means clustering algorithm was applied to pain volatility scores to establish a threshold of 1.6 to differentiate between
low and high volatility classes. After validating the threshold using random subsamples, 2 classes were created: low volatility
(n=611) and high volatility (n=171). In this class-imbalanced dataset, all 4 prediction models achieved 78.1% (611/782) to 79.0%
(618/782) in overall accuracy. However, all models have a prediction accuracy of less than 18.7% (32/171) for the high volatility
class. After addressing the class imbalance issue using random subsampling, results improved across all models for the high
volatility class to greater than 59.6% (102/171). The prediction model based on Random Forests performs the best as it consistently
achieves approximately 70% accuracy for both classes across 3 random subsamples.

Conclusions: We propose a novel method for measuring pain volatility. Cluster analysis was applied to divide users into subsets
of low and high volatility classes. These classes were then predicted at the sixth month of app use with an acceptable degree of
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accuracy using machine learning methods based on the features extracted from demographic, clinical, and app use information
from the first month.

(J Med Internet Res 2018;20(11):e12001) doi: 10.2196/12001
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Introduction

Background
Digital health apps, both natively developed or Web based, are
transforming how people monitor, manage, and communicate
health-related information [1]. This trend has been documented
in medicine [2], nursing [3], psychology [4], kinesiology [5],
and nutrition [6], and multiple health concerns and diseases are
being addressed [1].

Pain is one of the most prevalent health-related concerns and
is among the top 3 most common reasons for seeking medical
help [7]. Scientific publications of data collected from pain
management apps add academic credibility to the value of digital
health tools and can help both consumers and health care
professionals select the right app to support their treatment
plans. In a previous study [8], we applied data mining
(clustering) methods to understand the engagement patterns of
users from a pain management app called Manage My Pain
(MMP). In that study, we divided users into 5 clusters based on
their level of engagement with the app and then applied
statistical methods to characterize each cluster using 6 different
user attributes (eg, gender, age, number of pain conditions,
number of medications, pain severity, and opioid use).

In an extension of previous work, our aim is to develop
prediction models that can be used to identify and predict groups
of users who report improvements or decrements in their pain
experience. An important question in this effort pertains to the
most appropriate statistics to use when measuring change in
pain severity over time. The use of average or mean pain
intensity or severity scores over time as an index of change in
chronic pain has been criticized on empirical and theoretical
grounds. Empirically, pain intensity among people with chronic
pain tends not to change appreciably over time, given that the
pain is, by definition, chronic. This is evident in treatment trials
where one would expect the largest magnitude of change. For
example, in a study of 1894 chronic pain patients enrolled in
the Quebec Pain Registry who received state-of-the-art
multidisciplinary pain treatment, a trajectory analysis showed
that three-quarters of patients with moderate to severe pain
intensity and pain interference scores at the start of treatment
showed little to no change over a 2-year period [9]. Their pain
remained relatively constant and severe (between 6/10 and 7/10)
across the 24-month period. Use of average pain scores has also
been criticized from a theoretical perspective in that such an
approach does not account for intra- and interindividual
differences over time [9,10]. To overcome these limitations,
one proposed solution is to adopt different data analytical
approaches such as growth mixture modeling for multivariate
latent classes [9]. However, as noted above in a study that used
such an approach under the ideal conditions for detecting change

(ie, multidisciplinary pain treatment), the vast majority of
patients did not show a change in mean pain intensity over time
[9]. Similarly, within our own evaluations of the MMP database,
the mean pain severity levels of most of the users did not change
significantly over a 6-month period in the dataset used in this
study [11]. It is important to note that the stability of mean pain
scores [9,11] does not preclude the possibility that there is
substantial daily intraindividual variability.

Another solution is to use a measure of change that captures
fluctuation or variability in pain scores over time rather than
the typical measures of central tendency (ie, mean and median)
that currently dominate the pain literature. Pain volatility is an
important contributor to pain experience for people with chronic
pain, particularly because of its linkage with the initiation of
opioid addiction [12,13]. Moreover, pain perception and
consequent disability are heightened under conditions of greater
uncertainty and unpredictability [14], and greater pain volatility
is one of the contributors to uncertainty and unpredictability.
However, as no standard definition for pain volatility exists,
studies are required to evaluate the best measure of volatility
and to determine the extent to which pain volatility can predict
chronic pain outcomes.

Objectives
Accordingly, this study has 2 main objectives. The first is to
define a new measure of pain volatility. We apply data mining
(clustering) methods on this newly defined measure to
differentiate between 2 levels of volatility: high and low. The
second objective is to predict users’ pain volatility level in the
future based on the information extracted from their profile and
the pain records created early in the app usage history. Logistic
regression with ridge estimations, logistic regression with Least
Absolute Shrinkage and Selection Operator (LASSO), Random
Forests and Support Vector Machines (SVM) are employed to
develop prediction models. The issue of class imbalance in the
dataset is addressed through subsampling. Training and testing
are conducted using standard 5-fold cross validation. Accuracy
for the low and high volatility classes and overall accuracy are
calculated to measure and compare the performance of
prediction models developed in our experiments.

Methods

Manage My Pain
MMP [15], developed by ManagingLife, helps people living
with pain to track their pain and functioning on a daily basis
using an Android mobile phone app. As MMP was launched in
2011, >28,900 people have created an account and recorded
their pain. In total, >810,000 pain episodes have been
documented by users.
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The central feature of MMP is the pain record that enables users
to enter details about their pain experience. Each record contains
only 1 mandatory item, a rating of pain severity using a slider
on a visual analogue scale. Users have the option of completing
7 more items to more comprehensively describe their pain
experience. The app issues daily reminders and prompts users
to reflect on their daily accomplishments through a daily
reflection. The completion of the daily reflection and a pain
record typically takes less than 1 min to complete. With regular
use, users are empowered and gain self-awareness through charts
and graphs that provide insight into their pain and functioning
and how it changes over time.

The information collected by the app can be summarized into
a report intended for clinical use. These reports present
information collected by the app in a concise fashion, primarily
focusing on changes in the self-reported outcome data between
clinical visits. Output is structured on a single page and tends
to be more accurate than a patient’s recollection of pain since
the last clinical visit, as it captures pain closer to the time of
experience and is less influenced by recency and recall biases
that plague existing methods for capturing pain information [9].
To supplement the information presented in the reports, users
can add pain conditions, gender, age, and medications to their
profile in the app. Users have the ability to use MMP without
creating an account in which case data do not leave the device
and are, therefore, not accessible for research such as this study.

Procedure
This study was reviewed and approved by the research ethics
board at York University (Human Participants Review
Committee, Certificate #e2015-160). The users’ database was
accessed and downloaded in 2 separate files (using plain text
format): (1) user information and (2) pain records. The user
information file contains the following fields: user ID, age at
date of registration, gender, self-reported pain conditions, and
self-reported medications. The pain record file contains the
following fields: user ID of creator, date, severity, locations,
other associated symptoms, characteristics, effective factors,
ineffective factors, aggravating factors, environments, pain type,
and pain duration. All fields in the text files are delimited using
special characters. The files used in this study were downloaded
on July 19, 2018. This study covers pain records entered by
users between January 01, 2013 and July 19, 2018.

Data
The primary dataset includes 812,548 pain records from 28,952
users. The outcome period for predicting pain volatility is the
sixth month of app usage. The sixth month was chosen as the
outcome period as pain lasting at least 6 months meets most
generally accepted definitions of chronic pain [16]. In this study,
we used the first month as the predictor period, and thus, we
collected features from the first month of engagement with
MMP to predict pain volatility during the sixth month of
engagement with MMP. The mathematical minimum for
calculating pain volatility is 2 pain records with severity ratings.
However, to increase the reliability of prediction results, users
with at least five pain records in both the predictor and outcome
periods were considered for prediction experiments in this study.

The number of users in the primary dataset that meet this
criterion is 795. However, 13 users who reported other as their
gender were excluded because of the small sample size. Thus,
782 users are selected for this study, and they have 329,070
pain records in the dataset.

Pain Volatility
The most intuitive definition of pain volatility is the SD of pain
severity ratings over time. We propose a new definition of pain
volatility in this study. We define pain volatility as the mean of
absolute changes between 2 consecutive pain severity ratings
within each of the 2 observation periods regardless of elapsed
time between pain ratings. Therefore, for a series of pain severity
ratings R=<R1, R2,…, Rn>, volatility, V(R) is defined as:

V(R) = (|R2-R1|+|R3-R2|+…+|Rn-Rn-1|) / n [1]

The differences between the mean of absolute changes as a
measure of volatility and the SD measure of volatility are
demonstrated in Figure 1 and Table 1 using 4 different pain
scenarios. We expect the measure of volatility to demonstrate
reductions (of volatility) in the following order: sample 1 (big
changes), sample 2 (small changes), sample 3 (steady upward),
and sample 4 (consistent and unchanging). Pain volatility
defined as the mean of absolute changes conforms to this order.
However, when pain volatility is defined using the SD, sample
3 (steady upward) has a higher value than that of sample 2 (small
changes). From a conceptual perspective, a steady upward
pattern, although conceivably distressing for a person in pain,
does not conform to what we mean by pain volatility, which,
by definition, involves fluctuations in pain whether from a
consistent baseline (sample 1 and sample 2) or superimposed
on an upward or downward trend.

Volatility can be experienced as particularly troublesome when
pain severity fluctuates over time and the mean of absolute
changes approximates a saw-tooth pattern of volatility. This
pattern has previously been identified as significant in illness
conditions such as atrial flutter, where hemodynamic instability
can progress to ventricular fibrillation (when the heart quivers
irregularly leading to an elevated risk of potentially
life-threatening cardiac events) [17]. Although it remains unclear
whether a saw-tooth pattern of pain volatility is more debilitating
than a steady upward pattern, researchers require measurement
methods elucidating both patterns to better explore associated
effects on functionality and quality of life.

The next step in testing this volatility measure was to divide
users into 2 distinct classes: high volatility and low volatility
using a threshold on the pain volatility measure. We applied a
clustering method to identify this threshold. Clustering involves
partitioning a set of objects or members of a defined population
into 2 or more subgroups such that the members of 1 subgroup
are similar to each other but dissimilar to members of the other
subgroup(s). Each object or subgroup member is represented
using 1 or more variables for the purpose of clustering, which
are typically referred to as features or attributes. The similarity
or dissimilarity between pairs of objects (or subgroup members)
is measured as the distance between the feature vectors
representing them.
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Figure 1. Demonstration of 4 different patterns of pain severity over time.

Table 1. Comparing SD of severity ratings and mean of absolute changes as pain volatility measures.

Mean of absolute changesSD of severity ratingsVolatility trajectory

105.48Sample 1 (Big changes)

42.19Sample 2 (Small changes)

23.16Sample 3 (Steady upward)

00.00Sample 4 (Consistent and unchanging)

The output of a successful clustering process is a set of clusters
where each object is assigned membership in one of the
candidate clusters. We used the method known as k-means [18]
as our primary data analytic approach to clustering users. Under
the k-means clustering method, the number of clusters is set a
priori to some constant k, and the dataset is partitioned into k
clusters. In the initialization stage, the k-means are selected at
random. Each item in the dataset is assigned to the mean closest
to it. In each subsequent iteration, for each cluster, the mean is
calculated based on the current members of that cluster. Each
data point is then reassigned to the cluster whose mean is the
closest. The iterative process stops when the cluster membership
does not change between iterations.

In our experiments, the feature for clustering users is the pain
volatility measure (ie, the mean of absolute changes in pain
severity). We clustered the users into 2 clusters, and the
volatility measure that divides the 2 groups of users was used
as the threshold for defining 2 distinct classes of users: high
volatility and low volatility.

Features for Prediction Model
To develop the prediction model, we extracted the following
130 features from each of 782 users:

1. Gender (1 feature): The options for entering gender in the
app are male, female, or other. Users who did not include
their gender information were coded as unknown. In all,
25% of users belong to this category. There were only 13
users who reported other as the gender. They were excluded

from further analysis because of small sample size, as
mentioned before in the Data subsection.

2. Age (1 feature): The age (in years) recorded is the age of
the user on the date of the first record and not as of the date
of the analysis. We categorized the age values to facilitate
the analysis and added a category to account for users with
missing information. Moreover, 31% of users did not
provide their date of birth. The age values are divided into
8 categories: (1) unknown, (2) >0 and ≤20, (3) >20 and
≤30, (4) >30 and ≤40, (5) >40 and ≤50, (5) >50 and ≤60,
(6) >60 and ≤70, and (7) >70.

3. Number of self-reported pain conditions (1 feature): Users
can add 1 or more pain conditions to their profile from a
centralized list of over 2500 pain conditions. They can also
choose to define their own pain condition if they are unable
to find one from the centralized list. Some users did not
choose to add a pain condition to their profile. The number
of self-reported pain conditions was divided into 5
categories: (1) unknown, (2) 1 condition, (3) 2 conditions,
(4) 3 conditions, and (5) more than 3 conditions.

4. Categories of self-reported pain conditions (5 features):
Many of the self-reported pain conditions fit into 1 of the
following 5 categories: fibromyalgia, headaches, back pain,
arthritis, and depression-anxiety. Each self-reported pain
condition was mapped to the appropriate category as
applicable, and the mapping was reviewed for clinical
correctness. For each of these 5 categories, a flag feature
was created to indicate if the user has self-reported a pain
condition in their profile that corresponds to the category.
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5. Pain record entries (2 features): A total of 2 features were
used to record number of pain records in the predictor
period and the number of days in the predictor period when
a user has recorded at least one pain record.

6. Pain severity rating (3 features): The app user must choose
a pain severity rating (0-10) for each pain record created.
For each user, we calculated the mean and SD of pain
severity ratings from the user’s records in their predictor
period. All users were also assigned to 1 of the following
3 groups based on their mean pain ratings: mild (average
pain rating <4), moderate (average pain rating ≥4 to ≤7),
or severe (average pain rating >7) [11]. The mean and SD
of severity ratings and the severity level grouping (mild or
moderate or Severe) were used as features.

7. Change in pain trend (1 feature): A trend line was fitted
through the pain severity ratings using linear regression.
The difference in pain severity ratings between the end
point and the starting point of this trend line was used as a
feature.

8. Pain volatility (2 features): Pain volatility in the predictor
period, that is, the mean of the absolute changes between
each 2 consecutive pain ratings, was used as a feature. Each
user was also assigned a level of pain volatility (low or
high) based on the threshold established using the clustering
approach described in the previous section. This volatility
level in the predictor period was used as a feature.

9. Pain descriptors (64 features): For each pain record created
in the app, users can report pain locations (eg, the head,
abdomen, and back), associated symptoms (eg, dizziness
and fever), pain characteristics (eg, burning and cramping),
and environment (eg, home and school). Users can choose
from a list of default values in each section: 24 pain
locations, 20 associated symptoms, 13 characteristics, and
7 environments. For each of these default values, we created
a flag feature indicating its presence in any of the pain
records in the predictor period. Thus, there are total 64
features in this category. Only 2% of users did not report
any of these pain descriptors.

10. Factors impacting pain (43 features): Users in the app can
report factors that may have an impact on their pain
experience. A total of 3 types of factors are listed in the
app: aggravating (eg, sitting and exercise), alleviating (eg,
rest and sleep), and ineffective (eg, rest and sleep). Users
can choose from a list of default factors in each section: 15
aggravating, 14 alleviating, and 14 ineffective. For each of
these default factors, we created a flag feature indicating
its presence in any of the pain records in the predictor
period, resulting in 43 features in this category. In our
dataset, 8% of users did not include any factor impacting
their pain.

11. Medication (5 features): Users can add medications to their
profile from a standardized list of over 1130. Any
medication in a user’s profile can be added to a pain record
as an aggravating, effective, or ineffective factor. A total
of 5 common categories of pain medication are identified:
opioids, tricyclic antidepressants, anticonvulsants,
cannabinoids, and serotonin-norepinephrine reuptake
inhibitors. Medications from the standardized list are
mapped to the appropriate categories. For each of these 5

categories, we created a flag feature indicating the presence
of any medication that belongs to the category in any of the
pain records in the predictor period. Thus, 5 features are
added from the medication category.

12. Neuropathic pain (1 feature): We added a flag feature as
the indicator of neuropathic pain. Neuropathic pain is
indicated if a user has at least two of the following in a pain
record’s characteristics: pins and needles or tingling,
burning, numbness, electric shocks, and light touch or
clothing (aggravating factor).

13. Mental health issues (1 feature): Mental health issues are
indicated if a user has reported at least one of the following
symptoms in a pain record: anxiety or depression
(associated symptom) or negative mood or stress
(aggravating factors) [19]. A flag feature was created to
indicate if at least one pain record in the predictor period
meets this criterion.

Prediction Models
We first developed a logistic regression model with ridge
estimators for prediction [20]. We then modified the model
using LASSO [21]. These 2 logistic regression methods aim to
shrink large regression coefficients to avoid overfitting. By
constraining the sum of the absolute values of the coefficients,
LASSO forces some coefficients to be 0 and, as such, the
number of features used in the model reduces. The R package
glmnet was used for training and testing logistic regression
models [22,23].

We then employed 2 machine learning classifiers to build
prediction models for pain volatility: Random Forests [24] and
SVM [25]. Random Forests and SVM have been widely used
in biomedicine for classification and prediction [26-29]. Random
Forests forms an ensemble classifier based on a collection of
decision trees learned from multiple random samples taken from
the training set. Decision tree classifiers are constructed using
the information content of each attribute; thus, the decision tree
learning algorithms first select the most informative attributes
for classification. Random samples from the training dataset
are selected uniformly, with replacement, such that the total
size of each random sample is the same as the size of the whole
training set. To predict the class of a new instance, each decision
tree is applied to the instance, and the final classification
decision is made by taking a majority vote over all the decision
trees. We applied the standard Random Forests classification
package in Weka [30] using 100 trees in the Random Forests
implementation. The number of features selected at random at
each tree node was set to 2 √n, where n is the total number of
features.

The other method, SVM, is primarily a binary linear classifier.
A hyperplane is learned from the training dataset in the feature
space to separate the training instances for classification. The
hyperplane is constructed such that the margin, that is, the
distance between the hyperplane and the data points nearest to
it, is maximized. If the training instances are not linearly
separable, these can be mapped into a high-dimensional space
to find a suitable separating hyperplane. In our experiments, we
used the Weka libsvm, employing the Gaussian radial basis
function kernel.
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Measuring Prediction Performance
We used the stratified 5-fold cross-validation procedure for
training the models and then testing the prediction performance.
In this procedure, both low and high pain volatility users are
partitioned into 5 equal-sized groups. One of these groups is
used as a test set, whereas the other 4 were used to train the
models and classifiers. This is repeated for each of these 5
groups. Thus, we conducted the prediction experiments 5 times,
and each time, the training and test sets were completely
separate. Through this cross-validation procedure, each user’s
pain volatility class is tested exactly once. We measure the
prediction performance of the methods used in this study by the
following 3 measures:

Accuracy of the low volatility class = (Number of
correctly predicted low volatility users/Total number
of low volatility users) × 100% [2]

Accuracy of the high volatility class = (Number of
correctly predicted high volatility users/Total number
of high volatility users) × 100% [3]

Overall accuracy = (Number of correctly predicted
low and high volatility users/Total number of users)
× 100% [4]

Class Imbalance
After defining the low and high volatility classes using the
clustering approach, the number of low volatility users is much
higher (almost 3 times) than that of high volatility users, as
discussed in the Results section. This class imbalance in the
dataset produces high accuracy for the majority class (low
volatility) in the prediction experiments, whereas the accuracy
of the minority class (high volatility) remains very low. We

used the procedure of subsampling from the majority class to
create a balanced dataset for training prediction models. Under
the subsampling method, instances are chosen at random from
the majority class to make the size of the 2 classes equal. We
repeated the subsampling procedure 3 times to ensure stability
of the results. We conducted prediction experiments both on
the original and the balanced dataset.

Results

Pain Volatility Classes
We combined the pain volatility measures of all users from the
predictor period (ie, the first month of app usage) and the
outcome period (ie, the sixth month of app usage) and then
divided these data into 2 clusters using the k-means algorithm.
Figure 2 shows the clustering output. There are a total of 1564
data points as each user has 2 values: 1 from the predictor and
1 from the outcome period. The first 782 data points (indices
1-782) are volatility values from the predictor period and the
next 782 are from the outcome period. The black and red colors
indicate 2 distinct classes (low and high volatility, respectively),
and the numerical threshold dividing these 2 volatility classes
is approximately 1.6.

To further validate this threshold, we randomly chose
subsamples of 782 values from the total of 1564 and reapplied
the clustering algorithm. We repeated this procedure 4 times.
Figure 3 shows these 4 clustering results. The threshold of 1.6
is consistent across all these 4 random subsamples. Hence, users
having a volatility measure greater than 1.6 are assigned the
class of high in our prediction experiments. All other users
belong to the volatility class of low.

Figure 2. Clustering pain volatility measures. Total number of data points is 1564. Each user has 2 data points, 1 each from the predictor and outcome
periods. Data points with index (x-axis) 1 to 782 are volatility values from the predictor period and 783 to 1564 are from the outcome period. Black
and red colors indicate low and high volatility levels, respectively.

J Med Internet Res 2018 | vol. 20 | iss. 11 | e12001 | p. 6http://www.jmir.org/2018/11/e12001/
(page number not for citation purposes)

Rahman et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Clustering randomly selected subsets of pain volatility measures.

Prediction Results
Using the pain volatility threshold of 1.6 resulted in the
following division of users in the outcome period: 611 had low
volatility and 171 had high volatility. There is an obvious class
imbalance in the dataset as the number of low volatility users
is more than 3 times the number of high volatility users. We
first applied logistic regression with ridge estimators and
LASSO, Random Forests, and SVM on the original dataset of
782 users. The prediction performance of 4 methods using 5-fold
cross validation is presented in Table 2.

All 4 methods achieved 78.1% (611/782) to 79.0% (618/782)
overall accuracy. However, in all methods, the accuracy of the
high volatility class is significantly low. Although the accuracy
for the majority class (low volatility) is more than 95.9%
(586/611) across the methods, the accuracy for the minority
class (high volatility) is less than 18.7(32/171). We hypothesize
that the lower accuracy in the high volatility class is a result of
the class imbalance. To address this, as discussed in the Methods
section, we randomly subsampled the low volatility class to
create training sets such that the number of instances from both
classes is the same. We conducted the random subsampling 3
times and reapplied all 4 methods for prediction. The results
are shown in Table 3 and Figure 4.

Table 2. Prediction performance using the original dataset of 782 users.

SVMb, n (%)Random Forests, n (%)Logistic regression

(LASSOa), n (%)

Logistic regression
(ridge), n (%)

Performance measure

605 (99.0)587 (96.1)607 (99.3)610 (99.8)Accuracy (low volatility class; N=611)

2 (1.2)31 (18.1)10 (5.3)1(0.6)Accuracy (high volatility class; N=171)

607 (77.6)618 (79.0)617 (79.0)611 (78.1)Overall accuracy (N=782)

aLASSO: Least Absolute Shrinkage and Selection Operator.
bSVM: Support Vector Machines.
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Table 3. Prediction performance using the balanced dataset where random subsampling of the majority class (low volatility) was applied to make class
sizes equal in the training dataset.

SVMb
, n (%)Random Forests, n (%)Logistic regression

(LASSOa), n (%)

Logistic regression
(ridge), n (%)

Performance Measure

Accuracy (low volatility class; N=611)

391 (64.0)428 (70.0)455 (74.5)433 (70.9)Subsampling 1

391 (64.0)424 (69.4)460 (75.3)442 (72.3)Subsampling 2

379 (62.0)440 (72.0)456 (74.6)424 (69.4)Subsampling 3

Accuracy (high volatility class; N=171)

103 (60.2)121 (70.8)116 (67.8)115 (67.3)Subsampling 1

103 (63.2)120 (70.2)106 (62.0)116 (67.8)Subsampling 2

111 (64.9)127 (74.3)105 (61.4)111 (64.9)Subsampling 3

Overall accuracy (N=782)

494 (63.2)549 (70.2)571 (73.0)548 (70.1)Subsampling 1

499 (63.8)544 (69.6)566 (72.4)558 (71.4)Subsampling 2

490 (62.7)567 (72.5)561 (71.7)535 (68.4)Subsampling 3

aLASSO: Least Absolute Shrinkage and Selection Operator.
bSVM: Support Vector Machines.

Figure 4. Prediction performance using the balanced dataset. LASSO: Least Absolute Shrinkage and Selection Operator; SVM: Support Vector
Machines.

The overall accuracy is between 68.4% (535/782) and 73%
(571/782) for Random Forests and logistic regression models.
These 3 methods perform much better than SVM. Although the
overall accuracy of the prediction model is reduced to some
extent after balancing the dataset (Table 2 vs Table 3), the
accuracy for the high volatility class is significantly improved.
All methods have less than 18.7% (32/171) accuracy for the
high volatility class using the original class imbalanced dataset.
However, after random subsampling of the majority class, this

improves to at least 60.2% (103/171). All 3 accuracy measures
are approximately 70% across 3 subsamples using Random
Forests. Although logistic regression models perform slightly
better than Random Forests for the low volatility class, Random
Forests performs better for the high volatility class. This is the
only method that achieves approximately 70% accuracy
consistently for both volatility classes across different
subsamples. Thus, Random Forests performs the best in
predicting the level of pain volatility of MMP users at the sixth
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month of usage based on the features collected from profile
information and pain records in the first month of usage.

Discussion

Principal Findings
In this study, we defined a new pain volatility measure. We
employed clustering methods on this measure to distinguish
between low and high levels of pain volatility. Subsequently,
we predicted pain volatility levels in users of MMP, a digital
health app for recording pain experiences. We extracted 130
features from the users’ profile information and pain history in
the first month of their app usage. These features were used to
build prediction models where the outcome was the level of
pain volatility in the sixth month. A total of 4 methods were
used to develop prediction models: logistic regression with ridge
estimators, logistic regression with LASSO, Random Forests,
and SVM. We addressed the issue of class imbalance by random
subsampling of the training dataset and repeated this procedure
3 times. The prediction model developed using Random Forests
performs the best, and the accuracy level achieved for both low
and high volatility classes is approximately 70%.

Major Contributions
Although recent years have seen increased interest in applying
machine learning methodologies in the study of chronic pain
[31,32], this is the first study of its kind that aims to define and
predict chronic pain volatility using data mining and machine
learning methods. The results of our study are important for
several reasons. First, the study involved the use of a large
dataset based on real-world data from people with pain who
autonomously use the app. This contrasts with the typical ways
in which data are gathered by pain researchers, namely, through
randomized clinical trials, surveys, and prospective trials, during
which the researchers actively seek out participants. Data
gathered from real-world sources have an important and
complementary role to play in outcomes research and health
care delivery [33]. Second, use of data from MMP, a digital
health app for monitoring and tracking pain, is consistent with

a recent trend in mobile health showing that similar apps are
transforming how people monitor, manage, and communicate
health-related information [1,2]. Third, and perhaps the most
important, results from this study show that by using features
of the dataset extracted over a 1-month period, we could predict
pain volatility 6 months later, with a reasonably high degree of
accuracy. Although the typical approach of using average pain
scores may seem adequate for evaluating patterns of
incrementally increasing or decreasing pain, these methods are
not useful for evaluating a saw-tooth-like volatility pattern. In
this study, we have explored a method that appears to reflect
the quantitative levels of an important volatility pattern.

There are clinical implications to this study. Should this study
on pain volatility be corroborated and shown to be a valid and
reliable concept, we will be in a position to begin to identify
risk factors for heightened volatility and, therefore, to potentially
prevent the development of high pain volatility through effective
interventions. That is, we will be able to predict patients at high
risk of developing high pain volatility and the downstream
negative consequences of such volatility (eg, poorer quality of
life, psychosocial distress, and increased pain disability). At
present, the MMP app is used for tracking and monitoring pain,
and users are able to plot their pain scores as a function of time.
Should pain volatility be shown to be an important, valid, and
reliable construct, the app might be modified to allow users to
track and plot pain volatility.

Future Work
In future, we shall focus on selecting a subset of features that
are significant predictors of pain volatility. Reducing the size
of the feature set will make the prediction model easier to
interpret. Furthermore, in consultation with pain experts on our
team and in the broader pain community, we will validate this
reduced feature set. This validated subset of features may lead
to an improvement in the accuracy of prediction models as
redundant features are removed. The remaining set of predictors
of heightened pain volatility will be evaluated for modifiability
and causality and targeted through clinical trials aimed at
reducing pain volatility.
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