
Original Paper

Automated Extraction of Diagnostic Criteria From Electronic Health
Records for Autism Spectrum Disorders: Development, Evaluation,
and Application

Gondy Leroy, PhD; Yang Gu, BComm; Sydney Pettygrove, PhD; Maureen K Galindo, RN, MS; Ananyaa Arora,
MS; Margaret Kurzius-Spencer, PhD
University of Arizona, Tucson, AZ, United States

Corresponding Author:
Gondy Leroy, PhD
University of Arizona
1130 E Helen Street
McClelland Hall
Tucson, AZ, 85721
United States
Phone: 1 5206214106
Email: gondyleroy@email.arizona.edu

Abstract

Background: Electronic health records (EHRs) bring many opportunities for information utilization. One such use is the
surveillance conducted by the Centers for Disease Control and Prevention to track cases of autism spectrum disorder (ASD). This
process currently comprises manual collection and review of EHRs of 4- and 8-year old children in 11 US states for the presence
of ASD criteria. The work is time-consuming and expensive.

Objective: Our objective was to automatically extract from EHRs the description of behaviors noted by the clinicians in evidence
of the diagnostic criteria in the Diagnostic and Statistical Manual of Mental Disorders (DSM). Previously, we reported on the
classification of entire EHRs as ASD or not. In this work, we focus on the extraction of individual expressions of the different
ASD criteria in the text. We intend to facilitate large-scale surveillance efforts for ASD and support analysis of changes over
time as well as enable integration with other relevant data.

Methods: We developed a natural language processing (NLP) parser to extract expressions of 12 DSM criteria using 104 patterns
and 92 lexicons (1787 terms). The parser is rule-based to enable precise extraction of the entities from the text. The entities
themselves are encompassed in the EHRs as very diverse expressions of the diagnostic criteria written by different people at
different times (clinicians, speech pathologists, among others). Due to the sparsity of the data, a rule-based approach is best suited
until larger datasets can be generated for machine learning algorithms.

Results: We evaluated our rule-based parser and compared it with a machine learning baseline (decision tree). Using a test set
of 6636 sentences (50 EHRs), we found that our parser achieved 76% precision, 43% recall (ie, sensitivity), and >99% specificity
for criterion extraction. The performance was better for the rule-based approach than for the machine learning baseline (60%
precision and 30% recall). For some individual criteria, precision was as high as 97% and recall 57%. Since precision was very
high, we were assured that criteria were rarely assigned incorrectly, and our numbers presented a lower bound of their presence
in EHRs. We then conducted a case study and parsed 4480 new EHRs covering 10 years of surveillance records from the Arizona
Developmental Disabilities Surveillance Program. The social criteria (A1 criteria) showed the biggest change over the years. The
communication criteria (A2 criteria) did not distinguish the ASD from the non-ASD records. Among behaviors and interests
criteria (A3 criteria), 1 (A3b) was present with much greater frequency in the ASD than in the non-ASD EHRs.

Conclusions: Our results demonstrate that NLP can support large-scale analysis useful for ASD surveillance and research. In
the future, we intend to facilitate detailed analysis and integration of national datasets.

(J Med Internet Res 2018;20(11):e10497) doi: 10.2196/10497
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Introduction

Based on data from autism spectrum disorder (ASD)
surveillance, it is estimated that the prevalence of ASD is

approximately 1.5% [1]. In the second half of the 20th century,
it was estimated at slightly more than 5 cases per 10,000 people.
Since the 1990s, however, measured prevalence has increased
[2]. In 2000, prevalence estimates ranged from 4.5 to 9.9 cases
per 1000 children and increased to 1 in 110 children in 2006
[3] and 1 in 59 in 2014 [4]. The reasons for this trend are
uncertain, but the following factors have been proposed:
increased public awareness, changing diagnostic criteria, and
substitution of ASD eligibility for other special education
eligibilities as well as the possibility that the true prevalence of
ASD is increasing [3,4].

Data on long-term trends, symptoms, diagnoses, evaluations,
and treatments are critical for planning interventions and
educational and health services. To understand and act upon
such trends, large-scale studies are needed that can evaluate
trends over time, integrate different types of data, and review
large datasets. In recent years, data have been increasingly
electronically encoded in electronic health records (EHRs) in
structured fields and free text. Collection of such EHRs enables
analyses that compare and contrast ASD prevalence in relation
to other variables and over time.

Much of the published work on ASD leverages information in
the structured fields of the EHRs such as gender, medication
taken by the mother, birth complications, scores on a variety of
tests, and others. The structured data portions are relatively easy
to extract and are useful for large-scale studies. However, the
results of the analysis are commonly limited to reviews and
counts of the presence of conditions in certain populations [5].
For example, Clements et al [6] evaluated the relationship
between autism and maternal use of prenatal antidepressants
using EHRs.

EHR of people with ASD contain extensive free text fields with
important information that is often complementary to and more
detailed and explanatory than the structured data. This is because
in the absence of any biological laboratory test, diagnosis is
generally made in person using specific test instruments, history,
and differential diagnosis, and much of this information is
recorded as narrative. Automatically extracting this information
from the EHRs requires natural language processing (NLP). So
far, a few NLP approaches have been used to analyze language
generated by people on the spectrum [7,8], but there has been
little focus on the text in EHRs.

The existing projects that focus on the text in EHRs fall into
two groups. The first group focuses on using all the free text
combined with structured fields to automatically assign case
status (classification of patients as cases of autism or not) to an
entire record. A variety of machine learning algorithms are
useful for this task. Using a subset of the EHRs for training,
these algorithms create a model that can be applied to future
EHRs to assign case status. These models can be
human-interpretable, such as decision trees, or can be black box
approaches, such as neural networks. In our own work [9], we
compared decision trees (C5.0) and a feedforward

backpropagation artificial neural network using only the
information contained in the free text. Our best approach used
the decision tree and was 87% accurate in case assignment.
Similarly, promising results (86% accuracy) were achieved by
Maenner et al [10] using a random forest algorithm. Lingren et
al [11] used International Classification of Diseases (ICD)-9
codes combined with concepts extracted from the free text and
compared rule-based and machine learning algorithms with
similarly good results.

In addition to case status assignment, more detailed use of the
information contained in the free text would be helpful for
large-scale analysis, for example, cultural comparisons as
suggested by Mandy et al [12], and for combination with other
data. To extract this information automatically, a comprehensive
set of tools is needed [13,14] for standard NLP tasks, such as
part-of-speech (POS) tagging and grammatical parsing. For
more specialized tasks, such as concept detection, entity and
relation extraction, and coreference resolution, we work on
entity extraction algorithms. In medicine, existing entity
extraction algorithms focus on different types of text (eg,
published research abstracts or clinical narrative) and can be
rule-based or use machine learning techniques. The entities
themselves have been predominantly single terms or
relationships composed of single terms. For example, several
projects focus on annotating diseases or genes and proteins
[15-18] and the biomedical relationships between them [19,20].
When working with free text from EHRs, a variety of entities
have been the focus. For example, NLP for safety surveillance
by extracting information on postoperative complications [21]
and adverse drug effects from psychiatric records [22], clinical
event detection (eg, fever, change in output) for transcriptions
of the handoff communication between nurses during shift
changes [23,24], and even the creation of new data such as
veterans’ employment information [25].

In this project, we aimed to extract the expressions of the
behaviors indicative of individual diagnostic criteria as described
in the Diagnostic and Statistical Manual of Mental Disorders,
Fourth Edition, Text Revision (DSM-IV-TR) [26]. Such
expressions are more complex than single terms, and each
diagnostic criterion can be expressed by a variety of different
behaviors described in a diverse manner in the text. We envision
that our parser will be useful for two types of work. First, it will
enable autism surveillance to speed up and increase the scope
when processing school and health records. Currently, the
Centers for Disease Control and Prevention (CDC) surveillance
effort is limited to 11 states and a subset of schools, the
catchment area, in these states. By automating the review of
records, an efficient approach will allow all records to be
reviewed, many case decisions will be automated, and only a
subset of records will require review by experienced clinicians.
A second important use that we foresee is in the creation of
large sets of structured data from the information available in
the EHRs. This will facilitate secondary analysis of data on its
own and in combination with other data sources at a previously
unseen scale.

We first describe the development and evaluation of the parser,
including important decisions on using off-the-shelf tools and
machine learning algorithms. Then, we present a case study
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where we applied our parser to almost 5000 EHRs to
demonstrate usefulness for detailed analysis over time.

Methods

Overview
Our parser uses human-interpretable rules to match complex
patterns that represent the DSM diagnostic criteria. These
rule-based algorithms rely on the creation of patterns of terms,
grammatical relationships, and the surrounding text to recognize
the entities of interest in text.

Records and the Diagnostic and Statistical Manual of
Mental Disorders Criteria
We work with EHRs created by the Arizona Developmental
Disabilities Surveillance Program (ADDSP) as part of the CDC
multicenter Autism and Developmental Disability Monitoring
Network surveillance. Our ADDSP records are collected from
educational and clinical data sources in 11-15 school districts
for 8-year olds. From 2000 to 2010, a total of 27,515 records
were reviewed and 6176 records were abstracted that included
any of the 32 social behavioral triggers consistent with ASD as
listed in the Abstraction Manual developed by the CDC. These
records referred to 4491 children. The identified records for

each child were further evaluated by trained clinical reviewers
who applied standardized criteria to highlight criteria and
determine ASD case status. This yielded 2312 confirmed cases.

We have access to the records and the case status of each child
as determined through expert review of the information. For
this study, we leveraged a subset of these records (n=93) that
have been printed and have the diagnostics criteria annotated
on this paper version. The electronic version does not include
markings indicating the criteria. Therefore, we first created an
electronic gold standard with all information combined. Records
were loaded using WebAnno [27], and the annotations made
by clinicians on the paper versions were added to the electronic
versions. In 1 hour, 1-3 records could be annotated depending
on the length of the record.

We intend to automate the extraction of the DSM-IV-TR [26]
criteria for ASD. Textbox 1 shows example criteria rules. The
DSM specifies the combination of criteria needed to assign
ASD case status. While other instruments exist for diagnosing
autism, as well as different versions of the DSM, we focus on
matching to the DSM-IV-TR because this is an approach that
is used worldwide and that is sometimes used for matching to
billing codes (ICD-9 and ICD-10). It is also available with a
large set of records for training and testing. Later, we will work
with the DSM-V, the newest version.

Textbox 1. Example rules in Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision, to diagnose autistic disorder.

Rules

A: A total of 6 or more items from (1), (2), and (3), with at least 2 from (1) and 1 each from (2) and (3):

• 1: Qualitative impairment in social interaction, as manifested by at least 2 of the following:

• A1a: Marked impairment in the use of multiple nonverbal behaviors such as eye-to-eye gaze, facial expression, body postures, and gestures
to regulate social interaction

• A1b: Failure to develop peer relationships appropriate to developmental level

• A1c: A lack of spontaneous seeking to share enjoyment, interests, or achievements with other people

• A1d: Lack of social or emotional reciprocity

• 2: Qualitative impairments in communication as manifested by at least 1 of the following:

• A2a: Delay in, or total lack of, the development of spoken language (not accompanied by an attempt to compensate through alternative
modes of communication such as gesture or mime)

• A2b: In individuals with adequate speech, marked impairment in the ability to initiate or sustain a conversation with others

• A2c: Stereotyped and repetitive use of language or idiosyncratic language

• A2d: Lack of varied, spontaneous make-believe play or social imitative play appropriate to developmental level

• 3: Restrictive, repetitive, and stereotyped patterns of behaviors, interests, and activities, as manifested by at least 1 of the following:

• A3a: Encompassing preoccupation with 1 or more stereotyped and restricted patterns of interest that is abnormal either in intensity or focus

• A3b: Apparently inflexible adherence to specific, nonfunctional routines or rituals

• A3c: Stereotyped and repetitive motor mannerisms

• A3d: Persistent preoccupation with parts of objects
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Design Choices

Component Selection Rationale
To our knowledge, no parsers exist that identify DSM criteria
in EHRs. As part of our development, we evaluated MetaMap
[28,29] for use as an off-the-shelf building block. MetaMap
maps terms to the Unified Medical Language System (UMLS)
Metathesaurus concepts and semantic types.

Using 2 EHRs from our development set, we analyzed
MetaMap’s outcome in the context of ASD. From the 2 EHRs,
a total of 259 phrases were extracted and mapped to 632 UMLS
concepts. Overall, 46.5% (294/632) of all candidate mappings
for those phrases were correct and useful for our domain; 55.2%
(143/259) of phrases were given a single candidate mapping to
UMLS concepts, and for those single matches, the accuracy
was high, with 81.1% (116/143) correct and useful matches for
our domain. However, when the number of matched semantic
types increases, it becomes increasingly complicated to identify
the correct concept and associated semantic type. Furthermore,
the majority of semantic types do not apply to our domain.
Using a very lenient approach, we consider approximately 31
semantic types useful to match to DSM criteria (eg, Activity,
Anatomical Structure, Behavior, Body Part, Organ or Organ
Component, Body Substance, Clinical Attribute, Conceptual
Entity, and Daily or Recreational Activity, among others).
Although the 259 phrases we analyzed are restricted to 31
relevant semantic types, this is not enough to distinguish ASD
diagnostic criteria from rest of the text: only 27.0% (70/259)
phrases intersect with ASD diagnostic criteria. Because the
number of types that are immediately useful is small and this
MetaMap outcome would require significant development to
adjust for our purpose, building an extraction system on top of
this is impractical. Therefore, we decided to build all the
components in-house.

Rule-based Versus Machine Learning Rationale
When developing a new entity extraction artifact, a rule-based
or machine learning approach is chosen as the starting point.
Both can be combined in ensemble methods later. We performed
a baseline test using a decision tree, which was chosen because
it is a human-interpretable machine learning algorithm.

We formulated the problem as a multiclass sentence
classification problem (12 diagnostic labels or null label). We
used Stanford CoreNLP (version 3.7.0) for NLP processing.
We used a standard bag-of-words approach with and trained
the algorithm on 120 records containing 19,428 sentences.
Because our records contain approximately 0.5%-5% sentences
describing a DSM criterion, we undersampled negative examples
during training to improve recall: for each positive example,
we sampled 30 negative samples (except criteria A2a and A2b,
which occurred frequently enough to use on the entire training
data). Our features were lemmas, as determined by CoreNLP,
which appeared more than 5 times in the training data (2913
terms). We used a pruned decision tree (Weka version 3.8.0)
with a pruning confidence threshold of 0.25. Size of the
vocabulary, undersampling ratio, and pruning threshold were
determined based on the best values we found during
exploration.

Table 1 shows the results for classification at the sentence level.
For comparison, we applied the model to the same EHR test set
(not used during decision tree training) used in our parser
evaluation below. Overall, F-score was <0.5. Neither precision
nor recall was high using this approach.

This machine learning approach will require significant work
to improve performance. We believe this cannot be attained
with simple changes in the input, such as word embedding, or
by changing algorithms. It will require more sophisticated
features and a much larger dataset. We, therefore, first created
a rule-based parser, which may provide better results overall as
well as insights related to lexicons and features useful for future
combinations with machine learning in a classifier ensemble.

Table 1. Decision tree evaluation for sentence classification.

SpecificityF-scoreRecallPrecision% positive cases (of all sentences)Count of positive casesRule

0.990.590.520.700.021120A1a

0.990.450.420.500.01691A1b

0.990.170.170.160.00635A1c

1.000.220.140.540.029160A1d

1.000.500.390.710.069388A2a

0.990.480.370.690.057321A2b

0.990.510.470.540.021120A2c

1.000.250.190.340.01162A2d

1.000.130.090.200.01164A3a

1.000.590.470.810.022123A3b

1.000.440.320.700.01266A3c

1.000.280.300.270.00527A3d

0.990.450.350.600.0241577Microaverage
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Table 2. Lexicon overview.

Example termsExample lexiconNumber of termsLexiconsPattern use of lexicons

arm, eye, hair, teeth, toe, tongue, finger, fingers, noseBody_parts34511All rules

interact, interactions, communicate, relationshipA1_interact1057Group A1

severe, significant, pervasive, markedA2_positive723Group A2

door, toys, vacuum, blocks, book, television, lightsA3_object722Group A3

eye contact, eye-to-eye gaze, gestures, nonverbal cuesA1a_nonVerbalBehavior424A1a

good, consistent, appropriately, satisfactoryA1b_consistent112A1b

excitement, feelings, satisfaction, concernsA1c_affect615A1c

recognize, recognizes, reacts, respond, regard, attendA1d_engage15912A1d

gained, used, had, obtained, said, spokeA2a_gained1174A2a

direction, instructions, questions, conversationsA2b_recepLang2408A2b

breathy, echolalia, jargon, neologism, reducedA2c_idiosyncratic1457A2c

actions, routines, play, signs, gestures, movementsA2d_actions837A2d

obsessed, obsessive, perseverates, preoccupationA3a_obsess1067A3a

stack, stacks, lines, lined, nonfunctional, arrangeA3b_nonFunctionalPlay1197A3b

grind, grinds, rocks, twirls, spin, tap, clap, flapA3c_abnormal673A3c

defensiveness, sensitivity, hypersensitivitiesA3d_sensitive433A3d

N/AN/Aa178792Total

aN/A: not applicable.

Parser Development
We developed a rule-based parser to extract all A1, A2, and A3
rules as listed in the DSM. Each DSM group contains 4 specific
rules that are representative of the criterion (A1a-d, A2a-d, and
A3a-d). Our tool comprises 2 components: (1) annotation of
relevant ASD trigger words in free text and (2) recognition of
diagnostic criteria based on a pattern of trigger words.

The parser was developed through collaboration between NLP
experts and clinicians. Annotations from EHRs were translated
into patterns by NLP experts. Then, extensions, abstractions,
and generalizations were discussed and the patterns augmented
and expanded. This iterative process was continued until changes
in patterns provided little or no improvement but increased error
rates. Several development rounds were completed, and the
EHRs were taken from the 2002 to 2010 surveillance years,
with 53% of records having an ASD case status. The ASD label
itself is of little consequence because both development and
testing are done at the sentence level (not the record level). For
testing, new EHRs were used that were not seen in previous
development rounds. EHRs were selected randomly from those
available to us.

Lexicons
Identifying ASD diagnostic criteria in text requires recognizing
important trigger words (ie, words describing typical behaviors
of ASD). We capture these words, as well as synonyms and
singular or plural variants, in lexicons. Approximately 90
lexicons with about 20 terms each were manually created. Table
2 provides an overview with the examples of lexicons and the
terms they contain. We used a lexical lookup for each term

found in the text and annotated it with the lexicon’s label. These
labels form part of the patterns used to describe DSM criteria
(see the following text). Multiple patterns are needed to capture
the different free text expressions for each DSM criterion.

The lexicons are optimized for patterns for each DSM criterion,
so the same terms may appear in multiple lexicons. However,
a few lexicons are shared by all patterns and used for different
DSM criteria. Currently, there are 11 lexicons shared by all
patterns (eg, the lexicons containing body parts). In addition,
the patterns for the A1, A2, and A3 criteria share, respectively,
7, 3, and 2 lexicons. For example, DSM rules A1a, A1b, A1c,
and A1d all require identification of “impairment in social
interaction,” and the relevant terms for this trigger are combined
in the lexicon “A1_interact.” In addition to these shared patterns,
each DSM pattern requires additional individual lexicons
optimized for that pattern.

Pattern Extraction
We used the General Architecture for Text Engineering (GATE)
[30,31], a Java-based developer environment, to process the
free text from EHRs. We chose GATE because it includes
several standard NLP tools as well as the availability of its Java
Annotation Pattern Engine (JAPE) to efficiently annotate
patterns over text. First, standard processing is applied to all
text:

• Tokenizer: recognize individual tokens in the text.
• Sentence splitter: set boundaries on sentences so that parts

of speech can be deduced for each word in a sentence.
• POS tagger [32]: assign POS to each word, eg, noun, verb,

and adjective. We used the Stanford Tagger.
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Figure 1. Visualization of 2 (of 7 existing) patterns for Diagnostic Manual of Mental Disorders criteria A2c.

After processing all free text, terms are annotated using gazetteer
lookup. Using the term’s POS tags and lexical labels from the
92 lexicons, the annotated text is processed to identify matching
patterns. POS tags help narrow down candidate terms, for
example, “object” fits in our lexicons when it is a noun but not
when it is a verb. Using 43 annotated records from the ADDSP
containing 4732 sentences, we developed 12 sets of patterns
(total 104 patterns) for the 12 DSM criteria (see Textbox 1).

Figure 1 shows two example finite state automata visualizing
patterns for criterion A2c. Because we have many patterns of
varying complexity, these examples are included to convey the
general principle. A pattern starts in the q0 state, and when an
appropriate input is presented, it proceeds to the next state. It
is completed when a final state is reached. If no progress is
possible, a sink state is reached and the process discarded. Each
label on an arc (eg, A2c_speech) represents the lexicon of terms
(terms indicating “speak” as relevant to rule A2c). For example,
Pattern 1 would match the text “[often]A2c_frequent [speaks]word

token [with]word token [reduced]A2c_idiosyncratic [volume]A2c_speech.”
The word “often” matches the lexicon “A2c_frequent,” along
with words such as “frequently,” to indicate that this behavior
is a regular occurrence. This match enables the transition from
q0 to q1. The phrase “speaks with” is accepted in state q1, which
accepts up to 5 word tokens that do not match other arcs
transitioning out of this state. We empirically decided to allow
5 intervening terms to avoid the patterns becoming too specific
while ensuring that elements in a pattern are still related in one
underlying sentence. Then, “reduced” is accepted in the
transition from q1 to q2 because it is included in
“A2c_idiosyncratic” as one of the words to indicate abnormally
low volume. (Lexicon “A2c_idiosyncratic” includes words that
suggest atypical or idiosyncratic patterns of speech.) Finally,
the word “volume” is accepted in q2 because it is one of the
words related to speech that is included in lexicon
“A2c_speech.”

All patterns are specified in a JAPE file. A JAPE file is a file
where patterns to be annotated in the text can be described using
GATE-specific formatting. GATE “reads” the JAPE files and
applies them to text. When a pattern in the JAPE is recognized
in the text, the text matching the pattern is annotated with the
labels specified in the JAPE file.

Results

Parser Evaluation

Testbed
Our testbed consists of the 50 new EHRs, not used during
development, containing 6634 sentences. The EHRs were
randomly sampled from the 2000-2008 surveillance years, with
68% of records having positive ASD case status. Because
evaluation is done at the sentence level and does not take
record-level information into account, the case label itself is of
little consequence. These are records that were annotated by
the clinical experts and the text and annotation stored by us in
electronic format. Of the entire set, 20.45% (1357/6634)
sentences contained annotations, with some sentences containing
more than 1 annotation.

A human-created gold standard, such as our testbed, is seldom
completely perfect and consistent: entities may have been missed
by the human annotators. We noticed such inconsistencies in
prior work by us [33] and by others [21]. In this testbed, we
encountered a few omissions, that is, annotations that were
identified by our parser but not by the human annotators. This
may be an oversight, or it may reflect the annotator’s intention
not to annotate all phrases when they are almost identical and
represent the same DSM criterion. While this may suffice for
manual review, a complete gold standard is needed for
automated evaluation of an algorithm. Therefore, we ensured
that in our test phase, we could rely on a complete gold standard.
In addition to the phrases annotated, we requested additional
expert evaluation to verify whether patterns discovered by the
parser but not annotated (false positives) should be part of the
gold standard. Of the 366 plausible patterns identified by our
system, 277 were identified by the experts as part of the gold
standard. We added these missed annotations to our gold
standard. Table 3 provides an overview of the number of
annotations in the gold standard.

Metrics
Similar to evaluation standards by others [34], we accept partial
matches, defined as machine annotations that are considered
correct if they contain any part of a gold standard annotation.
For example, in the sentence “He also exhibited poor eye contact
with the examiner,” our tool annotated “exhibited poor eye
contact,” while the human expert annotated “poor eye contact
with the examiner.” We accepted these annotations because this
region of text can identify meaningful information relevant to
criterion A1a (nonverbal behaviors). These adjustments in our
evaluation criteria reflect the high variety in expert annotations,
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which tend to be inconsistent in their inclusion of subjects and
verbs within the boundaries of the annotations.

For our evaluation, we calculated 4 metrics. Precision provides
an indication of how correct the annotations made by the parser
are; in other words, if the parser annotates sentences with a
DSM label, this refers to the percentage of the labels that are
correct. Recall (also referred to as sensitivity) provides an
indication of how many of the annotations the parser is able to
capture; in other words, of all the sentences that received a DSM
label by the human annotators, what percentage does the parser
also label correctly. We also calculate the F-measure, which is
the harmonic mean of recall and precision. The scores for the
F-measure indicate how balanced an approach is: when recall
and precision are similarly high, the F-measure will be high;
however, if one of them is low, the F-measure will reflect this
with a low F-score. Finally, we also calculate specificity, which
indicates how well our parser can ignore sentences that are not
an expression of DSM criteria.

Precision (or PPV) = (True Positive) ∕ (True Positive
+ False Positive)

Recall (or Sensitivity) = (True Positive) ∕ (True
Positive + False Negatives)

F-measure = 2 × (Precision × Recall) ∕ (Precision +
Recall)

Specificity = (True Negatives) ∕ (True Negatives +
False Positive)

We calculate these metrics at the annotation and at the sentence
level. A true positive at the annotation level means that the
system identified a criterion-specific annotation within a
sentence also present in the gold standard. If a record or sentence
contains 2 annotations for the same criterion, both should be
identified individually. This is a stringent evaluation. For
example, the sentence “He makes minimal eye contact with
adults and struggles with turn-taking in conversations” is
evaluated separately for criteria A1a (minimal eye contact) and
criteria A2b (turn-taking in conversations).

We also apply the sentence-level evaluation for information
extraction. In this case, a true positive is defined as identifying
the sentence that contains gold standard annotations for a
criterion, and the system has identified at least 1 annotation for
the same rule. This evaluation can be more forgiving when a
sentence contains more than 1 annotation.

Results of Parser Evaluation
Table 4 shows the results. At the annotation level, we achieved
74% precision and 42% recall on average. We took the
microaverage, which combines the true and false positive counts
across all rules. For individual criteria, precision was higher
(≥75%) for most except two (criterion A1d and A3d). Recall
was also particularly low for these two criteria, along with A1b
and A1c. The best precision and recall were achieved for
criterion A1a, with more than half of the annotations (57%
recall) identified and with very few errors (96% precision).

Table 3. Gold standard overview.

Gold standardDiagnostic and Statistical Manual of Mental Disorders diagnostic criteria

Average per recordTotal in recordsThemeRule

2.52126Nonverbal behaviorsA1a

1.8291Peer relationshipsA1b

0.7437Seeking to shareA1c

3.3165Emotional reciprocityA1d

8.12406Spoken languageA2a

6.66333Initiate or sustain conversationA2b

2.54127Stereotyped or idiosyncratic languageA2c

1.3266Social imitative playA2d

1.2462Restricted patterns of interestA3a

2.7135Adherence to routinesA3b

1.3668Stereotyped motor mannerismsA3c

0.5628Preoccupation with parts of objectsA3d

32.881644N/AaTotal

aN/A: not applicable.
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Table 4. Annotation-level results.

EvaluationTotal in gold standard (number of annotationsb)Annotationsa

F-measureRecallPrecision

0.720.570.96126A1a

0.380.270.6391A1b

0.300.190.7837A1c

0.370.270.62165A1d

0.530.440.69406A2a

0.570.440.79333A2b

0.470.360.68127A2c

0.650.560.7966A2d

0.540.400.8362A3a

0.610.510.75135A3b

0.550.410.8268A3c

0.370.290.5328A3d

0.530.420.74N/AcMicroaverage

aBased on 6634 sentences.
bTotal annotations=1644.
cN/A: not applicable.

Table 5. Sentence-level results.

EvaluationTotal in gold standard

(number of sentences)b
Sentencesa

SpecificityF-measureRecallPrecision

1.000.740.590.97120A1a

1.000.420.300.6890A1b

1.000.320.200.7835A1c

1.000.390.280.63158A1d

0.990.550.450.71391A2a

1.000.600.470.83329A2b

1.000.480.370.67121A2c

1.000.680.580.8365A2d

1.000.480.360.7361A3a

1.000.610.520.74123A3b

1.000.560.420.8264A3c

1.000.370.290.5328A3d

1.000.550.430.761585Microaverage

0.970.590.460.821357Any Rule

aBased on 6634 sentences.
bSentences with annotations =1357.

The results are very similar to those for the sentence-level
evaluation (Table 5). Both metrics are slightly higher, with
average precision at 76% and average recall at 43%. For the
A1a criterion, more than half of the required sentences were
identified (recall 59%) with minimal errors (97% precision).
Using a sentence as a unit of analysis, it is also possible to

compute specificity, or true negative rate, which was not
possible with annotation-level evaluation because we would
have to predefine in advance how many possible annotations
(ie, sentence segments) there are in the EHRs. However,
specificity is not a very interesting metric for this task. We
achieve nearly perfect specificity because only 0.5%-5% of all
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sentences contain true annotations for each rule, and our system
reports very few false positives (high precision).

We conducted a final, more lenient approach by evaluating
whether the system can identify the relevant sentences for DSM
criteria, regardless of which criterion they represent. In this
case, we found that our parser achieves 82% precision and 46%
recall in identifying the 1357 sentences that were annotated for
autism-like behavior (Table 5, last line “Any rule”).

Discussion

Principal Findings
Overall, the rule-based approach resulted in a better performance
than the machine learning approach. Some criteria, such as A1c
and A3d, showed very large differences in precision between
the two approaches, while others, like A1d and A3a, showed a
large difference in recall. This may be due to the sparsity of the
examples available for training. Furthermore, we chose to
evaluate decision trees because of their interpretability. More
sophisticated algorithms will be tested when larger datasets
become available, and these may provide better results.

As is expected with the development of a rule-based extraction
system, the results for precision are higher than those for recall.
False negatives represent the annotations that were missed by
our algorithm and lowered recall. We noticed 3 types of false
negatives due to annotations not seen in the training data. First,
there are new examples of behaviors; for example, “being a
picky eater” is an A1a criterion, but it did not appear in our
training data. To solve this, we will write additional JAPE rules.
Second, there are sometimes different lexical variants of
behaviors (ie, synonyms or related terms) used to describe
behaviors. To solve this, we will look into expanding our
lexicons, for example, through using word embeddings. Third,
sometimes complex language or longer interstitial text is used
that is not captured by our patterns. For example, “Eye contact,
while it was also present, was limited at times.” The solution
will require further augmenting the patterns. In addition, some
false negatives are the results of localized patterns. The criteria
annotated in the EHR are sometimes determined by the
clinicians using information in the EHR context or the
surrounding text. This is not covered by JAPE patterns because
it does not appear in the same sentence or neighboring text.

False positives usually occur for either of two reasons: accidental
matches to nonsensical sentence fragments or plausible phrases
with insufficient context. For example, Pattern 1 in Figure 1
also incorrectly matches to “[frequently]A2c_frequent [will]word

token [exhibit]word token [difficulty]word token [handling]word token

[loud]A2c_idiosyncratic,” a fragment in our training dataset (while
not part of the DSM criteria, the phrase is commonly found in
the records) that obviously cannot be a correct annotation.
Meanwhile, the machine annotation “difficulty communicating
with the teacher and peers” appears to indicate a failure to
develop peer relationships as described in criterion A1b, but it
is not accepted by domain experts because the criterion refers
to challenges in social interactions, while this text fragment
focuses on verbal communication.

We see large differences between the various DSM-IV criteria.
For example, criterion A1c, which refers to “a lack of
spontaneous seeking to share enjoyment, interests, or
achievements with other people,” is expressed completely
differently in the test set and was not captured by our rules. This
is not surprising because A1c is the criterion for which we have
the least amount of training data (averaging 0.5 annotations per
record). Additionally, the criterion covers a wide range of
behaviors that can be expressed in many different ways. The
variations and lack of data make describing patterns very
difficult. Criterion A1a, which is related to nonverbal
communication, obtained relatively high precision and recall.
This is because clinicians tend to describe nonverbal
communication in unambiguous, self-contained phrases, such
as “eye contact” and “nonverbal communication,” for which
we can create precise patterns. For a similar reason, we also
obtained good results for criteria A3a, A3c, and A3d, which are
about abnormal interests, stereotypical actions, and tactile
sensitivities, respectively. Some of the criteria (eg, A3c) have
precision near 90%. Criteria A2a and A2b, which describe
expressive and receptive language issues, are most prevalent
among the rules. Combined, they account for >40% of the gold
standard annotations. Taking advantage of the large sample of
gold standard annotations, we were able to develop many and
obtain relatively stable performance from development to
testing.

In our case, we believe lower recall does not preclude useful
applications of the parser. While some particular expression of
a DSM criterion may be missed, it will be rare that all
expressions of that particular DSM criterion in one record would
be missed and, so, the detected DSM criterion would be taken
into account for case assignment. Moreover, because of the high
precision of the parser, when an expression of a DSM criterion
is flagged, it is unlikely to be a false positive. As a result,
large-scale analyses that focus on patterns of different criteria
can be performed.

Parser Application: Case Study

Testbed
Given the high precision of our parser, we conducted a case
study that shows insights into and the potential of the parser for
future work. Our goal is to provide a broad overview of DSM
criteria patterns found in existing EHRs over a 10-year span.

For our case study, we analyzed 4480 records available
electronically from the ADDSP. These records have not been
used during the development of the parser and contain a
minimum of text (40 characters was empirically determined as
the cutoff in this set; this represented about 10 words or a
complete sentence, which is required for a complete annotation).
We focus only on the free text fields and the results from
applying our parser. Figure 2 shows the descriptive statistics.
Records were collected every 2 years, starting in 2000 and
ending (for our analysis) in 2010. In the first 3 collection
periods, fewer records were collected; however, in each of the
last 3 collection periods, around 1000 records were collected.
The prevalence of autism in the records was lower in the first
year (39%). This is associated with the relative inexperience of
the data collection team who abstracted more records than
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necessary to avoid missing cases. In subsequent years, data
collection was more efficiently focused on records that included
information consistent with an autism diagnosis, and the
proportion of children abstracted who were determined to have
met the case definition was commonly between 50% and 60%.

Abstractor training has been consistent over the years with the
goal to enter only the necessary information to meet the project
deadlines. Even so, the average length of the free text has
increased over the years: the average number of words before
2006 was 1427 and has increased to 2450 from 2006 until 2010,
nearly double the number.

Results
The records contained on average 5.76 different DSM criteria.
We performed our analysis separately for records of children
with ASD and of those labeled as non-ASD. All counts are
normalized by record length: the number of criteria found is
divided by the number of words in the document. This
normalization avoids increasing the count of criteria solely due
to having longer records, for example, when a child is seen
multiple times for evaluation and the resulting EHR is longer,
but the diversity of criteria may remain the same. Figure 3 shows
the word count for the EHRs used in this evaluation. The word
counts for ASD and non-ASD cases follow a similar trend. After
2004, there has been an increase in the length of records, which
levels off the next year.

We first focus on the A1 DSM criteria. These criteria describe
impairments in social interaction. For children with ASD (Figure
4, left graph), the A1d criterion (social or emotional reciprocity)
is the most common criterion found in the records. The least

commonly found criterion was the A1c criterion (shared
interest). In the last 4 years, the average number of A1a, A1b,
and A1d criteria described in the records has increased, but no
similar increase in the average number of records containing
A1c was observed.

We performed the same analysis for children without ASD
(Figure 4, right graph). The results show, as expected, that fewer
criteria are recorded in their records; the patterns are also
different. The number of criteria recorded shows a decreasing
trend over the last 4 years of records.

We repeat the same analysis for A2 DSM criteria (Figure 5),
which focus on impairments in communication. The changes
for A2 criteria are very small over the years. The most
commonly found criterion is A2a (spoken language), and the
least commonly found criteria are A2c (stereotyped or repetitive
or idiosyncratic language) and A2d (imaginative play). There
is a slight increase in 2002 and 2004 for the records of children
with ASD, but few changes over the collection years. The total
number of these criteria is higher than that of A1 criteria (see
y-axis). Interestingly, there is little difference between the
number of criteria found in EHRs labeled as ASD versus
non-ASD.

Finally, we show the analysis for A3 DSM criteria (Figure 6),
which focus on restricted, repetitive, and stereotyped behavior
patterns. For the records labeled as ASD, the most commonly
found criterion is A3b (adherence to routines), with the other
three criteria being less common and comparable to each other.
Overall, fewer criteria are found in the non-ASD-labeled
records.

Figure 2. Descriptive information on 4480 records available electronically from the Arizona Developmental Disabilities Surveillance Program.

Figure 3. Electronic health record word count for autism spectrum disorder (ASD) and non-ASD cases.
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Figure 4. Average A1 criteria per record. ASD: autism spectrum disorder; EHR: electronic health record.

Figure 5. Average A2 criteria per record. ASD: autism spectrum disorder; EHR: electronic health record.

Figure 6. Average A3 criteria per record. ASD: autism spectrum disorder; EHR: electronic health record.

Discussion
The presence of a criterion in a record depends first on its
presence in the child, second on whether the evaluator notes
that criterion in the child, and third on whether the evaluator
notes it in the record. The criteria that we identified with the
greatest frequency were A2a (spoken language) and A2b (initiate
or sustain conversation). Issues with language acquisition are
the most frequently noted first cause of parental concern [35-39].
It is standard to make a note of the reason for the evaluation,

and this would be expected to typically capture the first parental
concern. Furthermore, these A2 criteria are frequent in all
records because most children evaluated for ASD exhibit some
type of impairment in communication. Criteria that we found
least frequently include A2c (stereotyped or repetitive or
idiosyncratic language) and A2d (imaginative play). While these
are classic characteristics of ASD, they are less well noted by
parents.
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The frequencies of criteria in the ASD case records were not as
different from the non-ASD records as may be expected.
However, all children whose records were included in data
collection had some type of diagnosis or special education
qualification; no typically developing children are included in
these data [40]. Individual criteria for ASD may be seen in
children with other developmental disabilities, but it is the
constellation of criteria that defines ASD.

Some changes across the years of data collection were observed.
The first was an increase in the number of words per record.
This increase is likely to reflect a true increase in the words
rather than any changes in data collection procedures, as
increasing numbers of records to review have motivated efforts
to improve efficiency and eliminate the collection of superfluous
text. An increase in the number of criteria included will
necessarily mean that more words are collected. Next was an
increase in the frequency of some specific criteria among the
ASD cases. Changes through time in the frequency of a specific
criterion may reflect more children who exhibit the criterion or
that evaluators may have a heightened awareness of the criterion
and are, therefore, more likely to note it. Criteria that were
increasing in frequency included A1a (nonverbal behaviors),
A1d (social or emotional reciprocity), and A3b (adherence to
routine), but the increase in A3b was noted only in the most
recent year.

The increases in the frequencies of some criteria in this dataset
contrast with results from a study in Sweden, which found fewer
autism symptoms among children diagnosed in 2014 than among
those diagnosed in 2004 [41]. Arvidsson et al have suggested
that clinical diagnoses of autism are being made in the year
2014 for cases that are less severe and would not have been
given that diagnosis in 2004. They further suggested that this
may explain some of the increase in the estimated prevalence
of ASD. Increases in the estimated prevalence in the ADDSP
dataset, from 6.5 per 1000 in 2000 to 15.7 per 1000 in 2010,
are not susceptible to this decrease in severity as our criteria for
determining case status has been consistent over the time period.
In fact, we observe an increased proportion of cases with certain
criteria and an increase in the average number of criteria over
time. The increased prevalence that we have estimated would
reflect a decrease in the severity of the condition only if
evaluators in the recent years are making a notation of symptoms
that are so mild they would not have noted them earlier.

The trend of increasing frequency of criteria A1a (nonverbal
behaviors) and A1d (social or emotional reciprocity) in
ASD-labeled records and the decreasing trend in those same
criteria in non-ASD-labeled records may represent
improvements in evaluators’ awareness of these as symptoms

of ASD and the importance of documenting these criteria for
children who have the characteristics of ASD cases.

Conclusion
We described the design and development of a rule-based NLP
tool that can identify DSM criteria in text. In comparison to a
baseline machine learning approach that used decision trees,
the rule-based approach performed better. We evaluated our
approach at the annotation level (ie, matching to each rule within
a sentence) and at the sentence level (ie, matching to the correct
sentence). The system performed reasonably well in identifying
individual DSM rule matches, with approximately half of all
individual criteria-specific annotations discovered (44% recall)
with few errors (79% precision). As expected with manually
developed rules, precision was high, while recall was lower. In
future work, we intend to increase both lexicons and patterns
using machine learning approaches while retaining
human-interpretable rules. This will increase the recall of our
system. Furthermore, we intend to add negation as an explicit
feature, which we believe will be necessary to maintain high
precision.

We demonstrated our parser on almost 5000 records and
compared the presence of different DSM criteria across several
years. Changes in document length as well as in the presence
of different DSM criteria are clear. Our analysis also showed
that some DSM criteria are almost equally present in both ASD
and non-ASD cases. In the future, we intend to increase the size
of our records and combine the information extracted (ie, the
DSM criteria matches) with other data from the structured fields
in those EHRs as well as combine the information with external
databases containing environmental and other types of data.

Our future work will be 2-fold. First, we will investigate the
integration of our system into the surveillance workflow. For
maximum usefulness, we will aim at extreme precision or
extreme recall (while both are desirable, there tends to be a
trade-off). With extremely high precision, the extracted
diagnostic criteria can be used to make case decisions with high
precision. Labeling a case as ASD can be automated for a large
set of EHRs; only the set where no ASD label is assigned would
require human review (due to low recall). In contrast, with
extremely high recall, cases where diagnostic criteria are not
extracted can be labeled as non-ASD with high confidence and
only the cases where a label of ASD is assigned would need
review (due to low precision). Second, because the development
time of a rule-based system is substantial and application to a
new domain would require starting over, we will investigate
leveraging lessons learned from the parser to a machine learning
approach that can transfer to different domains in mental health.
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