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Abstract

The debate on the use and misuse of P values has risen and fallen throughout their almost century-long existence in scientific
discovery. Over the past few years, the debate has again received front-page attention, particularly through the public reminder
by the American Statistical Association on how P values should be used and interpreted. At the core of the issue lies a fault in
the way that scientific evidence is dichotomized and research is subsequently reported, and this fault is exacerbated by researchers
giving license to statistical models to do scientific inference. This paper highlights a different approach to handling the evidence
collected during a randomized controlled trial, one that does not dichotomize, but rather reports the evidence collected. Through
the use of a coin flipping experiment and reanalysis of real-world data, the traditional approach of testing null hypothesis
significance is contrasted with a Bayesian approach. This paper is meant to be understood by those who rely on statistical models
to draw conclusions from data, but are not statisticians and may therefore not be able to grasp the debate that is primarily led by
statisticians.

(J Med Internet Res 2018;20(10):e10873) doi: 10.2196/10873

KEYWORDS

null hypothesis testing; Bayesian analysis; randomized controlled trials; Bayes theorem; randomized controlled trials as topic

Introduction

Background
In response to a growing concern that claims of new discoveries
as a result of scientific studies are becoming less and less
credible, Benjamin et al [1] (signed by 71 authors) recommended
that the threshold used to determine statistical significance
should be reduced from the conventional .05 to .005. To do so,
they claim, would immediately improve the reproducibility of
scientific research in many fields. The authors acknowledge
that any choice of threshold is arbitrary and that it incorporates
a trade-off between false-positive and false-negative findings,
yet they partially justified their choice of .005 by saying that it
would reduce the false-positive rate to levels that they judge to
be reasonable. In their concluding remarks, the authors pointed
out that the proposed threshold should not be used to reject

findings with P values between .005 and .05, but they should
rather be labelled as suggestive evidence. Regarding this
recommendation, Amrhein and Greenland [2] commented that,
while this trichotomization may be better than the prevailing
dichotomization into what is significant or not, it does not solve
the issues of P hacking, selective reporting, and publication
bias. Rather, the authors argued, it will only inflate these
problems. Scientific conclusions should be based on multiple
studies, and to allow for an unbiased and valid synthesis of the
literature, all results must be published, regardless of P values.
Furthermore, Amrhein and Greenland [2] pointed out that
inference from a mathematical model cannot become “the truth”
just because it passes some predefined threshold, and thus the
authors suggested removing statistical significance completely.

Not only does the conventional null hypothesis testing using a
threshold value of .05 constitute a requirement for publication,
but as McShane et al [3] pointed out, it also constitutes a
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requirement for the results to be taken seriously. If the null
hypothesis is not rejected, then researchers are stuck between
two conditions in terms of conclusions, and are often far too
eager to make a misinterpretation of no effect, since the null
hypothesis was not rejected. Due to this, McShane et al [3]
argued, considerations of the study design and quality of the
data collected, prior and related evidence, plausibility of the
mechanism that is investigated, novelty of the finding,
real-world benefits and costs, etc, are only considered after P
values have been checked, and if the threshold is broken, then
little concern is given to these other factors. In this sense,
whether or not statistical significance has been achieved has
been given a superior standing over other equally important
factors, and, since P values’ main purpose has been to check
for such significance, they too have been given elevated status.
McShane et al [3] proposed putting P values on the same level
as all other factors, thus abandoning statistical significance as
an arbiter of truth, and treating P values as a continuous
measure. The authors further argued that letting null hypothesis
testing guide scientific discovery does not make sense, since
the hypothesis tested is exactly no effect, which can never
happen in an experimental setting and is in general very
implausible (that an intervention has exactly no effect, whether
it be positive or negative, is in most cases impossible). Thus, it
is often forgotten that P values are calculated assuming a world
in which the intervention has exactly no effect, but the
probability of this world occurring is essentially zero. It should
be emphasized that a P value is a mathematically correct and
good answer to how likely a result is given a particular null
hypothesis and may in some cases be a good enough
approximation, but this in and of itself should not be a crucial
factor for publication. McShane et al [3] support a holistic view
of the evidence, in which all relevant factors are taken into
consideration when interpreting statistical analyses, and this
holistic view should also be adopted by journal editors and
reviewers.

Voices have been raised over the past few years against the use
and misuse of P values, perhaps most notably in a formal
statement from the American Statistical Association clarifying
widely agreed-upon principles underlying the proper use of P
values [4], the banning of P values from the journal Basic and
Applied Social Psychology [5], and Nuzzo’s splendid summary
in Nature [6]. McShane and Gal’s [7] article is a fascinating
read regarding the alarmingly widespread misinterpretation of
P values and null hypothesis testing among both researchers
who are not primarily statisticians and those who are. The
ensuing discussion also gives an interesting insight into this
problem and potential solutions [8-12].

Objective
This paper does not repeat the evidence put forward regarding
the misinterpretation of P values, but instead contrasts the
conventional null hypothesis and P value approach with that of
a Bayesian analysis approach. The Bayesian approach taken is
not in any sense novel, but has rather been proposed and used
before; see Browne et al [13], Goodman and Sladky [14],
Krushke [15], Morris et al [16], Spiegelhalter et al [17], and
Wijeysundera et al [18]. However, as has been pointed out
before [18], it is necessary to include nonstatisticians in the

process of moving to a Bayesian approach. Therefore, this paper
aims to inform those who routinely use null hypothesis testing
and P values in the reporting of their research results, but who
may not be responsible for running the analysis and may
therefore find the discussion led by statisticians hard to grasp.
Throughout, we attempt to give just enough understanding of
the involved concepts so as to avoid too much technical detail,
but at the same time we do not trivialize to the point where the
discussion again becomes abstract. We begin by refreshing the
reader’s memory regarding probability distributions, since they
play such a crucial role in statistical analyses, and then we use
a coin flipping experiment to describe and contrast the
conventional approach and the Bayesian approach. At this point,
we turn our attention to real-world data, reanalyzing 2
randomized controlled trials. Finally, with a better understanding
of the two approaches, we revisit the discussion outlined here.

Probability Distributions

As mentioned in the introduction, we do not attempt to offer an
exhaustive discussion about the finer details of any mathematical
aspects unless absolutely necessary. There is, however, no
escaping the fact that it is necessary to understand, at least at a
conceptual level, the notion of a probability distribution.

If we randomly pick a person from the general population, then
we cannot, before we make our pick, possibly know their height.
But we can do better than just saying that we know nothing
about this person’s height, since we do have an idea about
people’s heights in general. For instance, we know that the
height cannot be negative and that it is unlikely to be more than
250 cm. Science requires us to reason in a systematic fashion,
and for us to do so we need to express our knowledge about
people’s heights mathematically. Commonly this is done by
assigning a probability distribution to our random person’s
height. A probability distribution is a purely mathematical
construct that can tell us how likely different heights are relative
to one another. So, it could tell us how likely it is that the person
we pick will be between 160 and 180 cm tall, or how likely it
is that the person will be taller than 150 cm. There are infinitely
many probability distributions to pick from, and which one we
use is our choice: we pick one that encodes our knowledge about
people’s heights. It should not be forgotten that probability
distributions are mathematical constructs that help us create a
systematic picture of the real world, but they make no claim to
represent any truth about the real world.

For our purposes, we can think of probability distributions as
shapes rather than mathematical equations. For instance, Figure
1 (part a) depicts a probability distribution for the height of a
randomly picked person from the general population. We are
here assuming that the distribution of heights can be represented
using a normal distribution with a mean value of 165 cm and a
standard deviation of 4 cm (this may not map perfectly to the
real world; however, it is the choice that we have made). The
mean and standard deviation are parameters of the normal
distribution that tell us where we should center the distribution
and how wide it is. Think of parameters as fine-tuning our
choice of probability distribution—that is, we first picked the
normal distribution and then we fined-tuned it using the
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parameters mean and standard deviation. Looking at Figure 1
(part a), we can see that values close to 165 cm are more likely
than values further away, since the shape is higher around 165
cm. Figure 1 (part b) depicts a different distribution, known as
the beta distribution. The beta distribution assigns probabilities
only to values between 0 and 1; it would not be a good choice
for modelling height, since we do not expect a person’s height
to be confined between 0 and 1, but the beta distribution can be
used to model uncertainty about other problems. The beta has
two parameters known as shape, so we can also fine-tune the
beta distribution for our purposes.

In some cases, we have a finite number of outcomes. For
instance, in a randomized controlled trial, we may have
responses from participants to a yes-or-no question (eg, “Have
you smoked any cigarettes the past week: yes or no”). In such
cases, we can use a Bernoulli distribution that works over only
two possible outcomes (a normal or beta distribution would not
make sense here). A Bernoulli distribution has a parameter that
we call q that tells us how likely it is that a participant will
respond “no.” Figure 1 (part c) depicts a Bernoulli distribution
with the q parameter set to 0.6 (ie, we are encoding that there
is a 60% chance that a participant answered “no”). As we can

see, the shape is no longer a curve, but rather consists of bars
that show how likely the outcomes are relative to one another.
If we were investigating the number of whole standard units of
alcohol consumed per week by a population, then we would
have more than two possible outcomes, all greater than or equal
to 0. In such cases, we could potentially use a negative binomial
distribution, depicted in Figure 1 (part d), where we can see that
there are more than two outcomes over which the distribution
is defined.

The point to remember is that probability distributions allow
us to encode uncertainty about quantities that we do not know
the exact value of. For instance, if somebody asks what the
height is of a randomly picked person off the street, we do not
have to say “I do not know,” but might instead answer “The
height will follow a normal distribution with mean 165 cm and
standard deviation 4 cm.” There is a myriad of different
probability distributions to pick from, and they all have different
parameters that we can fine-tune to make sure that they encode
our knowledge correctly. To understand most of this paper, we
can think of probability distributions as shapes, just like the
ones depicted in Figure 1 (a through d).

Figure 1. (a) A normal distribution with a mean value of 165 cm and standard deviation of 4 cm. (b) A beta distribution with shape parameters 8 and
3. (c) A Bernoulli distribution with q=0.6. (d) A negative binomial distribution with parameters 8 and 0.5 (failures and success probability).
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Null Hypothesis Significance Testing and
Bayesian Analysis of a Coin Flipping
Experiment

We contrast the prevalent approach of null hypothesis
significance testing (NHST) with a Bayesian analysis approach.
For this comparison to be as simple as possible, in this section
we use a classic experiment that we are all familiar with: flipping
a coin and recording whether it lands heads or tails. Later, we
compare the two approaches by reanalyzing 2 randomized
controlled trials. However, to understand how the two
approaches fundamentally differ, we begin by using a simple
experiment and model.

Data and Model
Our experiment consists of flipping a coin 1000 times. We shall
assume that the coin landed with heads up 540 times out of
these 1000 flips. These are the data that we have collected: 540
heads and 460 tails. We would like to know whether the coin
that we have used is fair—that is, whether the coin was
manufactured in such a way that it is equally likely to get heads
or tails when we flip it.

To encode and communicate the uncertainty about the outcome
of flipping a coin, it is common to say that the outcome follows
a Bernoulli distribution. We recall from the previous section on
probability distributions that the Bernoulli distribution works
over two possible outcomes (here we have heads or tails) and
that it has a parameter q that in this experiment represents the
probability of heads. We formally state our model as Equation
1:

coin flip ~ Bernoulli(q)

q = ?

The squiggly line should be read as “follows,” so that the model
expresses the story “a coin flip follows a Bernoulli distribution
with parameter q and the value of q is unknown.” Do not
overanalyze Equation 1, as all it does is communicate to others
that we believe that when we flip our coin there are two possible
outcomes (Bernoulli) and that there is a probability q that our
coin will land with heads up (but we do not know the value of
q yet). It should be stressed that this is just a mathematical model
of a coin flip, and there is nothing true about it. In fact, the
model is actually wrong, since there is at least theoretically a
third outcome, that the coin lands on edge standing straight up.
A further infinite number of outcomes can be generated by
considering the rotation of the coin.

We have our data (540 heads over 1000 flips) and our model
in Equation 1, and our analysis should now revolve around the
value of q. We therefore in the next two sections employ first

an NHST approach and then a Bayesian approach to the analysis
of q.

Null Hypothesis Significance Testing
When taking the NHST approach, we believe that there exists
a fixed population value for q in Equation 1. In the coin flip
experiment, it is easy to think of this population value as tied
to some physical property of the coin. While one should avoid
the word true when it comes to statistics, since all our inferences
are based on a model that we have picked, we may think of this
population value as the true value of q. In experiments involving
a human study population, such as university students or office
employees, the population value can be thought of as the value
of q for the entire population. In most studies, we have only a
sample of the entire population, in which case we cannot
possibly know the population value for q. Note that it is not
always clear what we mean by the population value, since study
populations are often large to infinite in size, and sometimes
the population is not very well defined (university students is
a quite loosely defined group that changes from year to year).
Nevertheless, the population value has a central role in the
NHST approach.

Maximum Likelihood Estimator
We begin by considering the maximum likelihood estimator for
q. This estimator is the value of q for which the likelihood of
the data that we have collected is maximized. To decrypt what
we mean by this, we can intuitively think of the maximum
likelihood estimator as outlined in Textbox 1.

Returning to our original experiment, the maximum likelihood
estimator for q would therefore be 540/1000=0.54 (recall that
we had recorded 540 heads). It should, however, not come as
a surprise that, if we went back and restarted the experiment
and flipped the same coin 1000 times again, we would get a
different outcome, for instance, 525 heads. This would then
imply a different maximum likelihood estimate of
525/1000=0.525. In this way, we can see the maximum
likelihood estimator as a proxy for the data that we have
collected, a single number that summarizes information about
the data with respect to the model.

As a side note, because of the rather simple model that we are
employing (Equation 1), the maximum likelihood estimator was
easy to calculate. It is, however, not always so, and for other
models it may be necessary to apply optimization techniques
to identify the maximum likelihood estimator. Most of us need
not to worry about these details; we can assume that we can get
a maximum likelihood estimator for most models.

Having calculated the maximum likelihood estimator, the next
step is to consider a sampling distribution.

Textbox 1. Calculating the maximum likelihood estimator for q.

Assume that we had recorded only 10 heads out of 1000 coin flips and that somebody suggests that the value of q should be 0.9, or a 90% probability
of heads. Most of us would disagree and say that if q=0.9 then recording only 10 heads out of 1000 coin flips would be very unlikely. Another value
might then be suggested, such as q=0.4, but we would still object, saying that 10 heads out of 1000 coin flips with a coin that is supposed to give 40%
heads seems unlikely. So for which value of q would 10 heads in 1000 coin flips be most likely? It turns out that in this case it is trivial to calculate:
10/1000=0.01. So the value for q that makes 10 heads out of 1000 coin flips most likely is 1%, and this is the maximum likelihood estimator.
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Sampling Distribution
From the discussion about maximum likelihood estimators, we
concluded that, if we were to restart the coin flipping
experiment, we could (even if we used the same coin) get a
different number of heads. This would also then result in a
different maximum likelihood estimator. Let us extend this line
of thought and consider redoing the experiment thousands and
thousands of times. What could we say about the maximum
likelihood estimators that we would calculate for each one of
these experiments? Just like we cannot know the exact height
of a randomly picked person off the street before we actually
pick and measure them, we cannot know which maximum
likelihood estimator we will get next time we run the
experiment. But this does not mean that we are totally
unknowledgeable about the outcome: just like there is a
distribution of heights, there is a distribution of maximum
likelihood estimators. Theory tells us that this distribution is
centered at the population value, and that it can be approximated
by a normal distribution (at least when sample sizes are big
enough). It is this distribution that is referred to as the sampling
distribution. Each time we redo our coin flipping experiment,
we get a maximum likelihood estimate that follows the sampling
distribution (just like picking a person from the general
population gives us a measurement of their height that follows
the height distribution).

In our discussion about probability distributions, we mentioned
that a normal distribution has two parameters: mean and standard
deviation. The mean decides where the distribution is centered
and the standard deviation decides how wide it is. We have
established that the sampling distribution can be approximated
by a normal distribution and that its mean (ie, its center) is the
population value. Using our original data (540 heads over 1000
flips), we can use theoretical results to calculate an
approximation of the standard deviation of the sampling
distribution (often referred to as the standard error). In our case
this value is approximately 0.0158.

Let us recapitulate. Given the data that we have collected (540
heads over 1000 flips), and the model that we have chosen
(Equation 1), we can calculate a maximum likelihood estimate
for q (540/1000=0.54), which follows a normal sampling
distribution that is centered at the population value for q and
has a standard deviation of 0.0158. Using this information, we
can return to our original question: is the coin that we have
flipped fair? To answer this, we turn to the practice of using
hypothesis testing and P values.

Hypothesis Testing and P Values
We have previously stated that we wish to investigate whether
the coin that we flipped was fair, and therefore our null
hypothesis states that the population value for q is 0.5 (a q value
of 0.5 means that there is a 50% probability of heads). If the
null hypothesis fails to hold, we will instead accept an alternative
hypothesis, which states that the population value for q is not
0.5 (ie, the coin is not fair).

We now enter a hypothetical world in which we assume that
the null hypothesis is true. This is a key concept: we are going
to analyze our data in a world in which we know that the null
hypothesis is true, and therefore the population value for q is
known to be 0.5. Now recall that the sampling distribution that
we defined previously was centered at the population value of
q, but back then we did not know the population value. Now
we know the mean and standard deviation of the sampling
distribution and we can draw a representation of it. In Figure 2
we can see the sampling distribution for our maximum
likelihood estimates (remember, just like people’s heights have
a distribution, so do maximum likelihood estimates).
Additionally, in Figure 2 we have marked the maximum
likelihood estimate that we calculated using the data that we
collected in our experiment (540 heads over 1000 flips). Our
maximum likelihood estimate is quite far out to the right, and
such a value seems unlikely under this specific sampling
distribution (the curve is low). Now recall that we said that the
maximum likelihood estimate is a proxy for our data, a summary
that we can use instead of the 1000 flips. This therefore tells us
that the data that we have collected are quite unlikely, given
that the population value is 0.5. But how unlikely? Enter P
values. You sometimes hear people explain P values as “the
probability of seeing these data or more extreme.” It is
sometimes hard to understand what is meant by more extreme
data. What they are actually trying to say is “seeing this
maximum likelihood estimate or higher” (or lower depending
on which side of the center we are looking at).

Because we have approximated the sampling distribution using
a normal distribution, it is easy to calculate the probability of a
maximum likelihood estimator of 0.54 or more extreme given
a mean value of 0.5 and a standard deviation of 0.0158. It turns
out that this probability is approximately 0.0057, and we must
multiply this value by 2 because we wish to do 2-sided tests
(this has to do with the fact that we arbitrarily decided to do our
calculations based on heads rather than tails). Therefore, our
final P value is .0114.

Since this P value is less than the conventional threshold of .05,
we say that the data that we have collected are so unlikely given
the null hypothesis that we reject the null hypothesis and accept
the alternative hypothesis. This is referred to as statistical
significance. However, given the .005 threshold proposed by
Benjamin et al [1], we cannot reject the null hypothesis and we
would therefore not be able to say anything about the fairness
of the coin.

To summarize, we enter a hypothetical world in which our null
hypothesis is true, and if the data that we have collected seem
unlikely or absurd in this world, then we reject the hypothesized
world. But it does not say much about which world is the true
world—that is, it does not say much about the population value.
To narrow in on the population value, it is common to also
report confidence intervals, which we turn to next.
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Figure 2. Sampling distribution of q under the null hypothesis that the population value is 0.5. The X marks the maximum likelihood estimate of the
coin flip experiment (540 heads over 1000 flips).

Confidence Intervals
Our maximum likelihood estimate is only 1 draw from the
sampling distribution, so it does not tell us what the population
value of q is. Recall that we are assuming that the population
value of q is a fixed value, something that represents the entire
population. One way of informing us about the location of the
population value is to create what is known as confidence
intervals.

Using a threshold of .05, we have already concluded that we
will reject the null hypothesis that q=0.5, since the P value
(.0114) was less than this threshold. We could increase our null
hypothesis a bit, say to 0.501 rather than 0.5, and redo our
hypothesis test as before. We would get a new P value of .0136,
which would also lead to a rejection at the .05 threshold. But if
we continue to increase the value of our null hypothesis, we
would end up with a hypothesis that we cannot reject. This value
is the lower limit of the confidence interval. Likewise, we can
start from above our maximum likelihood estimate of 0.54 and
find the largest value for our null hypothesis that cannot be
rejected. The lowest and highest values that cannot be rejected
are the confidence limits, and any hypothesis between these 2
limits cannot be rejected using the data that we have collected
at the .05 threshold. In our coin flipping experiment, these limits
are 0.509 and 0.571; thus, no hypotheses between these 2 values
could be rejected given our data (540 heads over 1000 flips).
Because we have chosen a threshold value of .05, these
confidence intervals are known as 95% confidence intervals.

It would be nice if we could say that the population value of q
lies within these 2 limits with 95% probability. But we cannot
do so, unfortunately. Recall that if we could go back in time
and redo the experiment, we would get a different maximum
likelihood estimate; this means that we would also get a different
set of confidence limits. What we can say, although it is very
cumbersome, is that out of all the 95% confidence intervals that
would be created by redoing the experiment, the population
value for q will lie within them in 95% of the cases. If this
sounds confusing, then you are in good company; most
researchers tend to forget or misunderstand this.

Summary
This ends our introduction to the NHST approach. While we
have attempted a high-level overview, we have nevertheless
covered some central concepts that are necessary to keep in
mind when applying this approach:

• The population value is a fixed value that we want to
investigate.

• We collect data and compute maximum likelihood estimates
for our model’s parameters.

• We construct a sampling distribution (a distribution over
maximum likelihood estimates).

• We hypothesize a population value, entering a world in
which we assume that we know its true value.

• If, in the hypothesized world, the data are unlikely given
some threshold, then we reject the null hypothesis—that is,
we reject this world.

• We create confidence intervals, which tell us which
hypotheses we cannot reject, and enable us to say something
about the location of the population value (although this
information might be very vague).

Bayesian
We have seen how the NHST approach focuses on
understanding how likely the data gathered are given a sampling
distribution and different hypothesized population values of q.
The outcome of the analysis is information about which
hypotheses we can and cannot refute given a predefined
threshold. The Bayesian approach, however, asks the more
direct question “How probable is every value of q?” There are
an infinite number of q ’s that we could pick, and the Bayesian
wants to know how probable each one of them is, given the data
that we have. The Bayesian approach does not rely on repeated
experimentation to create a sampling distribution, but rather
looks only at the probability for every q given the data that we
have collected. What we receive by requesting this information
is not a single value, such as the maximum likelihood estimate,
but an entire distribution over all possible values of q.

The Bayesian philosophy is to begin with a belief about the
quantity of interest (in our case, q), and then look at the data
that have been collected and revise one’s belief in light of the
data. This is why words such as updating or learning are often
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used to describe the Bayesian approach, as we update our beliefs
given the data, or alternatively learn something new from the
data. To make this philosophy more formal, we rely on three
concepts: prior distributions, data likelihood, and posterior
distributions. We discuss these three in order, using the same
coin flipping experiment as before.

Prior Distributions
When a quantity is unknown to us, such as q has been when we
have been flipping coins, the Bayesian approach is to assign to
this quantity a prior distribution. This prior distribution encodes
our uncertainty about q before we analyze the data that we have
collected. The keyword here is before (ie, prior). Just like the
outcome of flipping a coin is unknown to us, so is the value of
q. Our solution for describing the uncertainty about the coin
flip was to say that it follows a Bernoulli distribution, and our
solution for describing our uncertainty about q is to say that it
also follows some distribution. There is a bit of harmony here,
as we are not treating unknown quantities differently: as soon
as the value of something is unknown to us, we say that it
follows a distribution, regardless of whether it is data or
parameters.

Recall that we have at our disposal many distributions that we
can use to describe uncertainty: we have already encountered
the normal, beta, Bernoulli, and negative binomial distributions.
We also have the option of saying that we think that each value
of q is equally likely before we analyze the data: we then say
that q follows a uniform distribution. This is sometimes referred
to as a flat prior, since the shape of the probability distribution
is a flat line. Figure 3 (parts a through part c) presents three
examples of different priors that we could choose: Figure 3 (part
a) depicts a flat prior—that is, it assigns the same probability
to every possible value of q. Figure 3 (part b) depicts a prior
that says that we believe the coin to be fair before we start
flipping it, so we assign more probability to q values around
0.5, but we are still assigning quite a bit of probability to all
other values (the shape is wide). Finally, Figure 3 (part c) says
that we believe the coin to be biased, assigning almost all
probability to q values around 0.75 (the shape is very narrow).

When starting out with Bayesian analysis, it may seem like one
would always want to pick a flat prior, like the one depicted in
Figure 3 (part a). At first glance, this might seem like an
objective choice, as there is no bias toward any specific value,
and the NHST approach essentially takes this stance. However,

this is not as objective as one might first think, and we shall
return to this point in our discussion. Sometimes it may be
beneficial to pick priors that enable analysis, for instance, if the
number of potential participants in a study is very low, expert
information may be encoded into the prior allowing for the
analysis to still output useful results; please see Goodman and
Sladky [14] and Morris et al [16] for examples. Another case
is when we have many covariates to choose from, but we wish
to include only the relevant ones for the outcome in our model
[19,20].

If we decide to use a flat prior for our coin flipping experiment,
then we extend our model to express that before we collect any
data we believe all values for q to be equally likely (Equation
2):

coin flip ~ Bernoulli(q)

q ~ uniform(0,1)

The equation now reads “We believe that coin flips follow a
Bernoulli distribution and that the probability of heads is q. We
also believe that q is equally likely to take on any value between
0 and 1.” Recall that only values between 0 and 1 make sense
for q, since it represents the probability for heads, so we cannot
have negative probabilities, nor probabilities above 1. Compare
this with our original model in Equation 1, where we said that
q was completely unknown; using priors forces us to be more
specific and explicit about what we mean when we say that
something is unknown.

That is all we need to say about priors for the moment. They
make sure that we express the uncertainty about all unknown
values up front before we start the analysis.

Data Likelihood
Akin to what we were calculating before, during the NHST
discussion, the data likelihood tells us how remarkable the data
that we have collected are given different values of q. If we
propose that q=0.5, then we can calculate the probability that
we would collect 540 heads over 1000 flips with this proposed
value. We can make this calculation because we have chosen a
model for our experiment (we chose a Bernoulli distribution);
if we had no model, then we could not make any of these
calculations. Intuitively, we would expect that if we had instead
proposed that q=0.1, then the data should be less likely than
when q=0.5, since we have collected 540 heads over 1000 flips.

Figure 3. (a) Uniform prior distribution (flat prior). (b) A prior distribution that encodes that fair coins are more likely. (c) A prior distribution that
encodes that biased coins are more likely.
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Figure 4. Data likelihood for different values of q in the coin flipping experiment.

If we continued this reasoning for every possible value of q,
then we could draw a shape that tells us how likely the data that
we have collected are for different values of q. Such a shape is
drawn in Figure 4 for our coin flipping experiment. As we can
see, this follows our intuition that the data are more likely given
values for q around 0.5 compared with values around 0.1.

The shape in Figure 4 can be thought of as the data likelihood
given our model. It tells us how remarkable the data that we
have collected are given different values for q.

Posterior Distributions
The prior distribution encodes what we believe about q before
we take into consideration any data, and the data likelihood tells
us how remarkable the data that we have collected are given
different values of q. But what we really care about is what we
believe about q after we have taken into consideration the data.
This is encoded in the posterior distribution, and it is the
posterior distribution that is the answer to the Bayesian question
“How probable is every value of q?”

The posterior distribution is a distribution just like all the others
we have seen in this paper. It is calculated using Bayes’ theorem.
This theorem is a consequence of basic probability theory and
named after famous statistician Reverend Thomas Bayes.
Equation 3 is the simplified version. The theorem states that
the posterior distribution can be computed by multiplying the
data likelihood by the prior distribution.

posterior ∝ likelihood × prior

Rather than discussing this in terms of numbers, let us instead
do this graphically, as we have been thinking of distributions
as shapes rather than as equations. What we will be doing is
essentially multiplying the priors that we depicted in Figure 3
a through 3c by the data likelihood depicted in Figure 4. In
Figure 5, we can see Bayes’ theorem in action for our coin
flipping experiment. In each row we have a single use of the
theorem. The top row shows us the result when using a flat
prior, which is multiplied by the data likelihood to get a
posterior. The second row shows us the use of the theorem with
a prior that assigns more probability of the coin being fair, but
does still allow for the entire range of possible q values

(sometimes known as a weakly informative prior). The third
and final row shows us the use of the theorem when we have a
prior that very strongly believes that the coin is biased, using a
very narrow prior around the value of 0.75 (note that this prior
does not say that it is impossible that q can be 0.2, for instance;
it just assigns a very small prior to this value of q). It is the
column marked Posterior that is of interest at the moment. As
we can see, the first 2 rows seem to have the same posterior: q
values between 0.5 and 0.6 seem to be most probable according
to these 2 rows. This is not a mistake; a common theme in
Bayesian analysis is that once we have enough data the prior
gets overwhelmed by the sheer amount of data. The prior that
we picked for row number 2 assigned enough probability to all
values of q that the data could easily overwhelm it, but not so
for row number 3. In row number 3, we can see that the posterior
distribution is shifted to the right; here values above 0.6 and
less than 0.7 are more probable. The prior in the third row so
strongly believed that the coin was biased that the data could
not overwhelm it; thus, the entire posterior distribution is shifted
toward the prior.

What we are saying is that the posterior probability of a value
of q should take into consideration how likely this value was
before we collected the data (the prior) but also how remarkable
the data that we collected are under this value of q. So, for
instance, if we were to collect 540 heads over 1000 flips and
propose a q value of 0.01 (ie, a 1% chance of heads), then the
posterior distribution for q=0.01 would be very low, since
collecting 540 heads over 1000 flips when the probability of
heads is only 1% is very unlikely. But proposing values around
q=0.5 and q=0.6 should generate higher posterior probabilities,
since 540 heads over 1000 flips is a lot more likely for such
values.

We need not worry about the details of exactly how these
calculations are done, but remember that Bayes’ theorem is
remarkably simple: the posterior is computed by multiplying
the data likelihood by the prior distribution. Also note that the
output of the Bayesian analysis is the posterior distribution—that
is, a distribution over the parameter of interest (in this case q)
after we have taken into consideration the data that we collected.
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Figure 5. Three examples of the use of Bayes’ theorem for the coin flipping experiment. Top row: posterior distribution when using a uniform prior
distribution (flat prior). Middle row: posterior distribution when using a weak prior distribution that makes fair coins more likely. Bottom row: posterior
distribution when using a strong prior distribution that makes biased coins more likely.

Analysis of the Coin Flipping Experiment
Figure 6 (part a) depicts the posterior distribution over q for our
coin flipping experiment using a flat prior (this is the same as
the top row in Figure 5). We have zoomed in on q values
between 0.45 and 0.6 in Figure 6 (part b). What does the
posterior distribution tell us? Just by looking at it, we can see
that it is quite unlikely that q=0.2. However, it is important to
note that we are not ruling out this case; it is still entirely
possible that q=0.2, but given the coin flips that we have made
it is logically less likely that q=0.2 compared with, say, 0.5. It
seems that the most likely value of q relative to all others is
around 0.54 (see the zoomed-in distribution in Figure 6, part
b). It is, however, crucial to note that the result of the Bayesian
analysis is not a single value such as 0.2, 0.5, 0.54, or 0.6, but
rather the entire posterior distribution over q.

Once we have a posterior distribution over our parameter q, we
can ask scientific questions about how probable different values
of q are. We initially stated that we wished to investigate
whether the coin was fair or not. A coin that is biased to
resulting in more heads than tails would imply a q value greater
than 0.5 (ie, there is a greater than 50% chance of heads), so we
may ask “What is the probability that q is greater than 0.5?”
The answer is given by the posterior distribution, and in this
case it is approximately 99%. To see this, look at Figure 6 (part
b) again and color the entire area underneath the curve above
0.5. As you can see, the area that you have colored far outweighs
the area you have not. The story that we tell is, therefore, that
“We flipped a coin 1000 times and 540 times it landed heads.
There is a 99% probability that the coin is biased toward
showing more heads than tails.”
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Figure 6. (a) Posterior distribution of q after observing 540 heads given 1000 flips (0≤q ≤1). (b) Posterior distribution of q after observing 540 heads
given 1000 flips (0.45≤q ≤0.6).

In this case, it is hard to argue against the coin being biased
because there was a 99% probability of it being so, but what is
the conclusion if the probability was 60%? In the real-world
data analysis that we will conduct, we shall encounter such a
case and we shall therefore defer this discussion. Essentially,
it ties into what McShane et al [3] referenced as neglected
factors; that is, what are the real-world costs and benefits of the
finding, how novel is this finding, given previous studies what
does this finding tell us, etc. Definitive dichotomous conclusions
belong to the NHST approach, not the Bayesian.

Summary
The Bayesian approach begins by assigning prior probability
distributions to unknown quantities, extending our models to
also encode uncertainty about the parameters. Using the
likelihood of the data, the prior is updated using Bayes’ theorem,
resulting in a posterior distribution. The posterior distribution
encodes the uncertainty about the model’s parameters after we
have taken the data into consideration.

We will now leave the fictitious coin flipping experiment that
we have been treating here and instead focus on real-world data
collected during randomized controlled trials. We will defer
any contrasting between the NHST approach and the Bayesian
approach described here to the general discussion section.

Analysis of Real-World Data

So far we have been using a rather trivial coin flipping example
to illustrate the differences between the NHST and the Bayesian
approaches. In this section, we instead look at data that were
collected during 2 randomized controlled trials and complete a
Bayesian analysis of the 2 trials in order to compare with the
NHST analyses that have been published previously [21,22].
We shall look at the evaluation of a smoking cessation program
and an alcohol consumption reduction program, both targeted
at university students in Sweden and consisting of text messages
sent to participants’ mobile phones. We shall not delve into the

details of the interventions, but will rather refer to them as the
NEXit (for smoking) and AMADEUS (for alcohol) trials.

We begin by analyzing the NEXit trial: first, we describe the
statistical model; second, we account for the NHST analysis
already conducted; third, we conduct the new Bayesian analysis;
and fourth, we discuss the outcome. We shall follow the same
structure for the AMADEUS trial.

NEXit Trial
The NEXit trial was a single-blind, 2-arm, randomized
controlled trial conducted between October 2014 and April
2015. Participants were daily or weekly smokers willing to set
a quit date within 1 month of enrollment. Almost all college
and university students in Sweden were contacted via email and
invited to participate. Willing participants who fulfilled the
inclusion criteria were randomly allocated to 2 groups: an
intervention group that received the novel intervention and a
control group that were asked to quit smoking on their own.
The primary outcome measure was prolonged abstinence,
defined as not having smoked more than 5 cigarettes during the
past 8 weeks, and a 4-week point prevalence of complete
smoking cessation (ie, no cigarettes smoked during the past 4
weeks). We shall not reanalyze any secondary outcomes.

Statistical Model
Both primary outcome measures in the NEXit trial were binary:
participants responded either yes or no to the questions regarding
prolonged abstinence and point prevalence. Just like in the coin
flipping experiment, we are faced with two possible outcomes,
and we do not know which outcome we will get if we randomly
pick a NEXit participant. To reason systematically, we can say
that the primary outcome measures in the NEXit trial follow a
Bernoulli distribution with parameter q, where q represents the
probability of a participant responding that they have not smoked
(we treat each outcome measure separately). However, we would
like to go a bit further and define a model that allows for
different q values depending on whether a participant belongs
to the control group or the intervention group, allowing us to
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contrast the difference between these q values. In a sense we
wish to find 2 coins, 1 for each group, and compare whether
one coin is more or less biased than the other.

The canonical way of modelling the narrative just given is to
use what is known as logistic regression. We will avoid delving
deeper into the details of this model, since the analysis here can
be understood without them. What is important to note is that
the quantity that is normally investigated is the odds ratio
between the intervention group and the control group. The odds
ratio is the odds of not smoking in the intervention group divided
by the odds of not smoking in the control group. This quantity
is convenient because it tells us by how much we should
multiply the odds in the control group to get the odds in the
intervention group. Thus, if the odds ratio is 1, then there is no
effect, since you would take the control group’s odds and
multiply by 1, which gives the same result. If the odds ratio is
greater than 1, for instance 2, then the intervention group has
twice the odds of the control group of not smoking.

Do not overthink this. Before, we had a parameter q that
described the probability of heads, and this was the parameter
that we wished to investigate. Now we have the odds ratio,
which is the quantity that we wish to investigate because we
are comparing 2 coins. It is still just an unknown quantity that
we wish to learn more about.

We begin by accounting for the original analysis that was done
for the NEXit trial using the NHST approach, and then we shall
account for a new Bayesian analysis of the data.

Null Hypothesis Significance Testing of the NEXit Trial
Of the 1590 participants randomly allocated into the NEXit
trial, 1502 responded to follow-up regarding primary outcomes.
Table 1 gives the maximum likelihood estimates for the odds
ratios determined using logistic regression for the two primary
outcome measures: the 95% confidence intervals and P values.
Before the analysis, the researchers decided to perform 2-tailed
tests at the .05 threshold. As Table 1 shows, the null hypothesis
that the odds ratio is 1 (ie, no effect) was rejected (P values are
<.05). Now recall that in the NHST approach, we use the
maximum likelihood to estimate the fixed population odds ratio,
and that the confidence interval should be interpreted such that
the true population odds ratio lies within these limits for 95%
of all the 95% confidence intervals that could be created if we
were to redo the NEXit trial.

Bayesian Analysis of the NEXit Trial
The Bayesian approach begins by assigning prior probabilities
to unknown quantities. We used flat priors for all unknown
quantities, assigning equal probability to all values before seeing
any data. This actually goes against our general
recommendation, but we stick to flat priors so that we can defer

any discussion about nonflat priors. Using Bayes’ theorem, we
computed posterior distributions over the unknown quantities
and then use these posterior distributions to answer questions
about the quantity of interest. In this case, we care about the
odds ratio comparing the intervention group with the control
group.

Figure 7 (part a) depicts the posterior distribution of the odds
ratio of prolonged abstinence when comparing intervention
versus control. Figure 7 (part b) similarly depicts the posterior
distribution of the odds ratio of point prevalence when
comparing intervention versus control.

The statistical model has done the statistical inference, and now
it is up to the researcher to do the scientific inference. We have
two outcome measures, which we have analyzed in terms of
odds ratios. If the odds ratio is 1, then the intervention has no
effect; if it is less than 1, then it has a negative effect; and if it
is greater than 1, than it has a positive effect. We may therefore
set up a series of questions to support our decision-making
process. What is the probability that the odds ratios are greater
than 1.0, 1.5, 2.0, and 2.5? The answers to these questions are
given by the posterior distributions (this is why the outcome of
a Bayesian analysis is the full distribution and not just a single
value; we want to use the entire distribution to make a scientific
inference). Table 2 summarizes the answers to these questions.
As we can see, the posterior distribution tells us that it is very
likely that the intervention had a positive effect on both
prolonged and point prevalence outcome measures, since the
posterior assigns more than 99% to these cases. It also seems
more likely than not that the odds ratios for these outcomes
were greater than 1.5. The odds ratio for prolonged abstinence
is further more likely to be above 2.0 and, while the probability
is severely lower at the 2.5 odds ratio, there is still 7.05%
probability that the odds ratio is greater than 2.5.

The NEXit intervention is a fully automated intervention that
does not require any interaction from health professionals. It is
therefore cheap to offer and scales to large populations instantly.
Participants are not put at harm and can stop the intervention
at any time. It seems justifiable to offer the intervention to
university students who want to quit smoking, given what the
posterior distributions regarding prolonged and point prevalence
abstinence tell us about the effect of NEXit. These posterior
probabilities are of course calculated using a mathematical
model that may or may not be a good approximation of the real
world, so there is no escaping that one must assess the model
chosen along with other factors. While we would like to confirm
these results, and good research practice dictates that we should
not blindly trust the results of a single study, if we assume that
these are the only data available to us then the justification
stands.
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Table 1. Original analysis of the NEXit trial. Odds ratios compare intervention with control, given by logistic regression.

P valuea95% CIOdds ratioOutcome

≤.0011.58-2.662.05Prolonged abstinence

.0011.19-2.051.57Point prevalence

a2-tailed.

Figure 7. (a) NEXit trial prolonged abstinence: an approximation of the density of the posterior distribution of the odds ratio comparing intervention
versus control. (b) NEXit trial point prevalence: an approximation of the density of the posterior distribution of the odds ratio comparing intervention
versus control.

Table 2. Posterior probability of odds ratios at certain thresholds.

Odds ratioOutcome

>2.5>2.0>1.5>1.0

7.05%57.37%99.05%>99.99%Prolonged abstinence

0.054%4.19%62.50%99.96%Point prevalence

Comparing Null Hypothesis Significance Testing Versus
the Bayesian Approach
It is actually not very easy or straightforward to compare the
quantities that the NHST and the Bayesian approach produce.
The numbers in Table 1 are in terms of the likelihood of the
data—that is, whether the data are extreme given a hypothesized
world. The numbers in Table 2 tell us the relative probability
among the different worlds directly, given the data that we have
collected. While the two approaches may seem to come to the
same conclusion in this case—they both agree that the
intervention has an effect—it is important to note that the NHST
approach only says that the population effect is not 0 and has
based this judgment on an arbitrarily chosen threshold, while
at the same time imagining that the experiment could be repeated
many times. The Bayesian approach says nothing about
statistical significance, but rather communicates what we know
about the NEXit intervention given the data at hand; it is the
researcher’s job to transfer the statistical analysis to the real
world. It is also the researcher’s job to judge the data in light
of the model that was chosen, the way the data were collected,
existing scientific knowledge, and the novelty of the result.
Such things are not meant to be answered by statistical models.

AMADEUS Trial
Much like the NEXit trial, the AMADEUS trial invited college
and university students in Sweden to partake in the evaluation
of a novel text-based alcohol intervention. The goal was to show
that the intervention would reduce alcohol consumption in the
group that was given access to the intervention as compared
with the control group, who were referred to a website on which
they could answer questions about their alcohol consumption
and get feedback. The trial ran during the spring of 2016 and
included participants who had at least two heavy episodic
drinking occasions per month, defined as drinking more than 4
(women) or 5 (men) standard drinks on 1 occasion. The primary
outcome measure was the total number of standard drinks
consumed per week.

Statistical Model
The outcome measure in the AMADEUS trial was not a coin
flip, as there are more than two possible outcomes when asking
an individual how many standard drinks they consume per week.
Rather, the outcome is a count variable: a variable that can take
on values of 0, 1, 2, and so on (participants were not allowed
to answer in partial standard drinks). To model this type of data,
the researchers decided to use a negative binomial regression
model. Just like the logistic regression model used for NEXit
has an important quantity known as the odds ratio, the negative
binomial regression has a quantity known as the incident rate
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ratio (IRR). This quantity should be interpreted as follows: take
the number of standard drinks that the control group drinks on
average and multiply by the IRR to get the number of standard
drinks that the intervention group drinks on average. Therefore,
an IRR of 1 would mean that there was no difference between
the groups, less than 1 would mean that the intervention group
drank less, and greater than 1 would mean that the intervention
group drank more than the control group.

Null Hypothesis Significance Testing of the AMADEUS
Trial
From the 896 randomly allocated participants, 816 responses
to the primary outcome measure were collected. The IRR was
determined using negative binomial regression, and a predefined
threshold of .05 was used to determine statistical significance.
Table 3 presents the maximum likelihood estimate of IRR, 95%
confidence interval, and P value. The null hypothesis that the
2 groups consumed the same amount of alcohol after the
intervention could not be rejected, since the IRR could not be
shown to be significantly different from 1. The population value
falls within 95% of all the 95% confidence intervals that can
be computed.

Bayesian Analysis of the AMADEUS Trial
As we know by now, the Bayesian approach begins by assigning
prior distributions to unknown quantities, and we used flat priors
as before (assigning equal probability to all values of the
unknown quantities before taking into account the data). Using
Bayes’ theorem, we computed the posterior distribution over
the IRR, depicted in Figure 8 (comparing the total weekly
consumption of the intervention group with that of the control
group). This is the outcome of the Bayesian analysis, and we
can now use this posterior distribution to answer a series of
scientific questions.

The AMADEUS trial tested a novel text-based intervention
delivered to mobile phones versus referral to a website with a
questionnaire and feedback. Let us assume that it was decided
that there are certain levels of effect that have real-world
implications. For instance, we may define a major preference

for the novel intervention if the IRR is less than 0.9 (IRR<0.9),
a minor preference if the IRR is between 0.9 and 1.0
(0.9<IRR<1.0), a minor preference for referring to the
questionnaire and feedback if the IRR is between 1.0 and 1.1
(1.0<IRR<1.1), and a major preference if the IRR is above 1.1
(IRR>1.1). Table 4 presents these cases as questions, along with
their answers. There is a small probability of a major preference
for the novel intervention (the posterior probability that IRR
was <0.9 is 3.3%). There is a 55.4% probability of a minor
preference for the novel intervention, and a 39.6% probability
of a minor preference for referring to the questionnaire. Finally,
there is a 1.8% probability that referring to the questionnaire
should be majorly preferred.

The routine practice at colleges and universities in Sweden is
to email all students each year and refer them to the
questionnaire and feedback that the control group was offered
in the AMADEUS study. Should the novel intervention under
trial be considered helpful and replace the questionnaire? It is
interesting to note that the original publication [22] discussed
potential issues with the study being underpowered and
nonsignificance of the hypothesis tests, while the Bayesian
approach that we have taken here allows us to discuss the
real-world ramifications of the data collected. Based on the data
that were collected during the trial and the model that we have
chosen, we can say that it is more likely than not that the
intervention had a more positive effect in the trial than referral
to the questionnaire, but the difference in probability is small.
We must therefore assess other factors, including an
investigation into the uptake of the two different approaches:
an intervention with a small effect that is used by many could
be preferred to an intervention with great effect used by few.
There are more information technology costs involved in the
novel intervention, yet there is less administration from the
student health care centers. This type of reasoning must be
guided by researchers and experts, and made available to
potential users and practitioners so that they take this into
account before deciding whether the novel intervention is
suitable.

Table 3. Original null hypotheses significance testing of the AMADEUS trial. Incident rate ratio (IRR) is given comparing intervention with control,
as per negative binomial regression.

P valuea95% CIIRROutcome

.830.90-1.090.99Weekly alcohol consumption

a2-tailed.
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Figure 8. Approximation of the density of the posterior distribution of the incident rate ratio, comparing intervention versus control in the AMADEUS
trial.

Table 4. Posterior probability of incident rate ratio (IRR) for predefined effect levels.

IRR>1.11.0<IRR<1.10.9<IRR<1.0IRR<0.9Outcome

1.8%39.6%55.4%3.3%Weekly alcohol consumption

Comparing Null Hypothesis Significance Testing Versus
the Bayesian Approach
The NHST analysis presented in Table 3 does not reject the null
hypothesis; thus, the analysis cannot say anything about the
effect of the novel intervention. Crucially, it does not tell us
what the probability of the intervention having a positive or
negative effect is, but rather the maximum likelihood estimate
is just a sample from a sampling distribution for which we do
not know the mean (the population value). It is unfortunate that,
due to a conventionally decided threshold of .05 and a test
against a very strict null hypothesis, the analysis leads us to a
dead end from where we cannot express much more about the
intervention.

The Bayesian analysis gives us a posterior distribution, and then
the scientific inference can begin. Scientific inference cannot
rely on conventional thresholds applied across all research fields,
but rather scientific inference must be based on the real-world
context and study parameters. The levels we choose to assess
the effect can be understood by readers because these chosen
levels have direct real-world implications—no such connection
can be made to a .05 P value threshold.

Discussion

Null Hypothesis Significance Testing and Bayesian
Analysis
Setting aside the mathematical differences between the two
approaches, the most prominent difference is perhaps that the
Bayesian approach put forward here does not incorporate the
same type of null hypothesis testing that is so strongly rooted
in conventional practice. This ties into the fact that the output
from the Bayesian analysis is the posterior distribution over the
parameters of our model. Therefore, the Bayesian approach
does not attempt to identify a fixed value for the parameters
and dichotomize the world into significant and nonsignificant,

but rather relies on the researcher to do the scientific inference
and not to delegate this obligation to the statistical model. It
should not be forgotten that all statistical inference is based on
a model, whether we take the NHST or Bayesian approach, and
that these models are approximations of the real world. In both
cases, there needs to be a leap of faith that the model chosen is
a good enough approximation. We should therefore be careful
not to let the model alone make assessments of the bias of the
coin, but rather we must take what the model tells us and then
go back to the real world and do the scientific inference
ourselves.

We expect researchers to add their interpretation of their results,
grounded in previous studies and current theory, balanced with
cost and benefit, etc. We have purposely kept short the analyses
that we have presented, but a full analysis cannot end with a
posterior distribution; some scientific inference needs to be
conducted. One attractive aspect of the Bayesian analyses that
we have conducted herein is the way in which we ask questions
of the models that have been created. For instance, the questions
in Table 2 relate to the odds ratio, a quantity that can be
interpreted with a real-world meaning. Compare this with an
arbitrary threshold for the P value, which only applies in the
null hypothesis world, and even then is difficult to connect to
a real-world quantity.

In the NHST approach, we are assessing the population value,
and we state upfront our intentions: if the null hypothesis is
rejected, then we will say that the coin is biased. In this sense,
we are giving a license to the statistical model to do scientific
inference. Once the analysis is complete and the null hypothesis
is rejected, we are not much wiser about the population value;
as we have discussed, confidence intervals are not as good an
indication of the location of the fixed population value as we
might think. In case the hypothesis is not rejected; we have very
little use of our analysis. Furthermore, the NHST approach is
rooted in the idea of being able to redo the experiment many
times (so as to get a sampling distribution). Even if we can rely
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on theoretical results to get this sampling distribution without
actually going back in time and redoing the experiment, the
underlying idea can be somewhat problematic. What do we
mean by redoing an experiment? Can we redo a randomized
controlled trial while keeping all things equal and recruiting a
new sample from the study population? We might just overlook
this philosophical obstacle if we like, but we should not forget
that we are asking our statistical models to use such an
assumption to make dichotomous decisions.

The Bayesian analysis outputs a posterior distribution, which
then must be used to assess whether the coin is fair. We can say
something about the value of the quantity of interest given our
data, since the posterior distribution is a distribution over all
possible values of the quantity. There exist Bayesian hypothesis
frameworks that allow for a systematic way of making
dichotomous decisions, and the interested reader may want to
look into the field of decision theory, but at the end of the day
the researcher must use the posterior distribution to assess the
real-world implications. Imagine that we were assessing whether
a medical procedure would be beneficial for a patient. We would
have to weigh this probability with the risk for the patient: a
95% probability in favor of the procedure may be necessary if
the procedure is invasive (eg, surgery), while a 60% probability
in favor of the procedure may be okay if it simply involves a
patient taking part in a seminar.

Prior Distributions
It is usually the prior distribution that is contested by
non-Bayesian proponents. How can we know anything about a
parameter before we collect any data? While it is not made
explicit, the non-Bayesian approach does in a sense assume flat
priors on all parameters, which is why many newcomers to the
Bayesian field feel that flat priors should be used all the time.
However, the belief that flat priors are objective because they
assign the same probability to all outcomes is not well grounded.
Consider, for instance, the NEXit trial, where we used flat priors,
which encodes that before we analyze the data we believe that
all outcomes are equally likely. This is, however, subjective:
believing it equally likely that 20% to 25% in the intervention
group will quit smoking and that 90% to 95% will quit smoking.
We know that brief interventions usually have a small to
moderate effect size; thus, assuming a flat prior is a subjective
choice going against what is known. Therefore, subjective
modelling choices are unavoidable, regardless of whether one
takes the Bayesian approach. The fact that the Bayesian
approach requires researchers to explicitly state their prior
beliefs is actually a boon, since it forces us to be explicit about
this choice, rather than hiding it. Had this paper focused solely
on the analysis of the NEXit and AMADEUS trials, we would
have followed the suggestion of Spiegelhalter et al [23] to
conduct our analysis under several priors, one that encodes
indifference, one that encodes the genuine opinion among
practitioners, and one that encodes skepticism toward the new
intervention. It should also be noted, as McShane et al [3]
pointed out, that while using a P value threshold may seem like
a way to break subjective interpretations of statistical analyses,
P values are highly subjective in the sense that the choice of
which models to use, which covariates to include, which tests
to perform, etc, all produce different P values.

Interpreting Results
Practitioners, patients, the media, journal editors, and reviewers
are keen to ask “does it work?” or “is it significant?” It is of
course convenient to tell a patient that an intervention has been
proven to have effect in a scientific study, but such statements
are vague at best and lying at worst, and are still based on
statistical models with arbitrarily decided-upon thresholds and
null hypotheses. We should be communicating the probability
that the intervention effect lies within a given range, such as
that the odds ratio is greater than 1. Practitioners, patients, the
media, journals, and reviewers can then use their own situation
and expertise to assess the implications. We can take the
posterior distribution and set it into economic and social
contexts. An intervention with a 75% probability of a positive
effect may still be defensible to implement, since it may be very
cheap and noninvasive, while an intervention that has 95%
probability of a positive effect might not be economically
feasible to implement. Once we remove ourselves from the
dichotomization of evidence, other things start to take
precedence: critically assessing the models chosen, evaluating
the quality of the data, interpreting the real-world impact of the
results, etc.

We argue that the dichotomization, or be it trichotomization, is
more misleading and misunderstood than Amrhein and
Greenland [2] and McShane et al [3] pointed out. Many
researchers and readers of scientific literature interpret statistical
significance as true and nonstatistical significance as false, but
this dichotomization does not exist, since statistical significance
splits the world into a true state within which there exists an
effect and a state in which there is ambivalence, which is not
the opposite of the true state. It is not a not-true state and not a
false state. Thinking in terms of statistical significance leads to
a very difficult to understand dichotomization. The proposal
from Benjamin et al [1] would further complicate matters, as
we would end up in an even more difficult to understand
trichotomization, and it raises the question of whether scientific
discoveries based on P value thresholds of .05 from the past
should now be considered nonsignificant.

Conclusion and Call for Papers
While, compared with the NHST approach, the use of Bayesian
methods to analyze randomized controlled trials is virtually
nonexistent, it has increased over the past few years (Lee and
Chu [24]). As further evidence of the traction Bayesian methods
are achieving, the US Food and Drug Administration has
released guidelines for the use of Bayesian statistics in medical
device clinical trials [25].

It may yet be some time until all trials report Bayesian posteriors
with scientific inference; it is nevertheless time to both educate
researches about Bayesian methods and include these methods
alongside current practice. The Journal of Medical Internet
Research has issued a call for papers for a special theme issue
that will be dedicated to the (re-)analysis of data from
randomized controlled trials using a Bayesian framework. We
invite researchers to reanalyze data from their previously
published trials and write a short paper about their new analysis.
Please see the call for papers on JMIR’s website
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(https://www.jmir.org/announcement/view/172) for further details.
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