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Abstract

Background: Objective behavioral markers of mental illness, often recorded through smartphones or wearable devices, have
the potential to transform how mental health services are delivered and to help users monitor their own health. Linking objective
markers to illness is commonly performed using population-level models, which assume that everyone is the same. The reality
is that there are large levels of natural interindividual variability, both in terms of response to illness and in usual behavioral
patterns, as well as intraindividual variability that these models do not consider.

Objective: The objective of this study was to demonstrate the utility of splitting the population into subsets of individuals that
exhibit similar relationships between their objective markers and their mental states. Using these subsets, “group-personalized”
models can be built for individuals based on other individuals to whom they are most similar.

Methods: We collected geolocation data from 59 participants who were part of the Automated Monitoring of Symptom Severity
study at the University of Oxford. This was an observational data collection study. Participants were diagnosed with bipolar
disorder (n=20); borderline personality disorder (n=17); or were healthy controls (n=22). Geolocation data were collected using
a custom Android app installed on participants’ smartphones, and participants weekly reported their symptoms of depression
using the 16-item quick inventory of depressive symptomatology questionnaire. Population-level models were built to estimate
levels of depression using features derived from the geolocation data recorded from participants, and it was hypothesized that
results could be improved by splitting individuals into subgroups with similar relationships between their behavioral features and
depressive symptoms. We developed a new model using a Dirichlet process prior for splitting individuals into groups, with a
Bayesian Lasso model in each group to link behavioral features with mental illness. The result is a model for each individual that
incorporates information from other similar individuals to augment the limited training data available.

Results: The new group-personalized regression model showed a significant improvement over population-level models in
predicting mental health severity (P<.001). Analysis of subgroups showed that different groups were characterized by different
features derived from raw geolocation data.

Conclusions: This study demonstrates the importance of handling interindividual variability when developing models of mental
illness. Population-level models do not capture nuances in how different individuals respond to illness, and the group-personalized
model demonstrates a potential way to overcome these limitations when estimating mental state from objective behavioral features.
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Introduction

One key research area in computing and mental health is finding
relationships between objective markers of user behavior and
mental state. Objective markers in this context may include
physical activity levels, geographic movements, interaction with
social networks, sleep quality and circadian regularity, and
interaction with technology, among others. Commonly, these
markers may be recorded continuously from smartphones, which
provide easy access to an array of sensors that can provide such
data in a completely passive way, although wearable devices
and other sensors may also be used.

Objective behavioral markers have been explored in a number
of previous studies. Physical activity level was one of the first
behavioral markers to be widely studied. For example,
Wielopolski et al [1] found significantly lower levels of physical
activity in patients with acute unipolar depression than in healthy
controls and that physical activity correlated with improvement
in symptoms in 19 patients with depression. In contrast, Wang
et al [2] found that the levels of activity in students were
negatively correlated with self-rated loneliness scores, but not
with self-ratings of depression. Use of technology, especially
mobile phones, has also been studied, with Saeb et al [3]
reporting that both frequency of phone usage and total time
spent interacting with the phone correlated with levels of
depression in a community cohort of 21 individuals, with more
depressed individuals interacting more with their phones.
Mehrotra et al [4] also reported that the way users interacted
with their phones, such as the number of notifications responded
to and the time taken to respond, strongly correlated with
depression scores from 25 individuals. Another promising
behavioral data source is the geographic movement of
individuals, which indicates activity on a higher level with
potentially greater accuracy than physical activity recorded
through accelerometry. While people may not carry their phones
during all physical activity, they are likely to carry them when
moving across larger geographic distances. Among the earliest
work on using geolocation for mental state estimation, Grünerbl
et al [5-6] demonstrated that it is possible to use
geolocation-derived features to detect episodes in patients with
bipolar disorder. Saeb et al [3] further showed that features
derived from geolocation data correlated with depression levels
in individuals recruited over the internet; the results were later
replicated with a sample of students [7].

The previous work summarized above has focused mainly on
finding population-level models [3,6,7] or correlations [2,4]
that link measured behavioral markers to mental state.
Specifically, most studies either attempt to classify groups of
patients by condition or perform regression to estimate the
patient’s mental state (usually using patient self-ratings—a
limitation explored further in the Discussion). Population-level
models use all available data from a given population to link

the mental states of individuals to their behavioral features. This
is also the case in the popular approach of classifying patient
groups based on their behavioral symptoms. It is implicitly
assumed that the same set of features will have discriminative
power across the whole population. While this is a promising
approach, it is widely accepted that natural variability in the
usual behavioral patterns of different individuals, or differences
in their behavior for a given level of illness, are major limitations
of these models. Mohr et al referred to this as the “curse of
variability” [8]. A recent review by Berrouiguet et al [9] also
highlighted the need to move toward a personalized approach
for developing digital tools, especially in mental healthcare.
While agreeing that different individuals may have different
models that link their behavior to their mental states, how best
to define such individual models is still an open question.
Training “fully personalized” models on any available training
data for each individual (for example, by asking the individual
to provide objective data and questionnaire responses for a
number of weeks) would in theory produce the most accurate
model for that individual because it would eliminate any
interindividual variability. Grünerbl et al [5] used this approach
to identify mental state in patients with bipolar disorder from
geolocation-derived features. Similarly, Canzian and Musolesi
[10] reported correlations calculated for individual participants
between geolocation-derived features and daily self-reported
depression scores in 28 participants who provided at least 20
usable data points. Significant correlations were shown between
depression scores and the maximum distance between any 2
locations over the last 14 days for 18 of the 28 participants; this
again demonstrates the utility of geolocation as a predictor for
depression. However, in practice, this approach is limited by
the amount of data that would be required from each individual
to train the model, may not generalize to unseen states, and will
likely overfit available data, leading to reduced out-of-sample
performance.

A compromise between population-level models and fully
personalized models is to create groups of individuals with
similar characteristics [11]. New individuals can then be
allocated to an existing group based on their similarity to
individuals in that group. If limited training data are available
from new individuals, then their data can be combined with
data from similar individuals. In a large study of over 18,000
people, Servia-Rodríguez et al [12] found correlations between
most of the available demographics (age, gender, occupation,
etc) and smartphone-recorded behavioral data. This means that
another way of achieving personalized models is by conditioning
on available demographics, but this approach is limited by the
level of detail in the recorded demographic data. Hong et al
have also previously demonstrated that demographic features
poorly predict sensor data similarity [13]. Likely more subtle
subgroups exist in the population, with similar correlations
between behavioral data and mental state, but these groups may
not be identifiable by explicit demographic features alone. The
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challenge is finding these subgroups, which can be thought of
as “behavioral phenotypes” within the population. In addition
to providing improved models of patient health, understanding
the characteristics of these phenotypes may help develop our
understanding of how to classify or subclassify mental illness
[14].

Personalization by finding similar individuals in the population
has long been considered in activity recognition from sensor
data [11]. For example, Lane et al [15] developed, and Abdullah
et al [16] extended, an approach for finding groups of individuals
based on the similarity of their demographics, lifestyle, and
sensor data. An advantage of this method is that it does not
require any calibration data for new individuals. However,
clustering on distributions of sensor data and not on relationships
between sensor data and model output (in the present case,
mental state) may miss important differences or similarities
among individuals.

This paper proposes a novel, data-driven approach toward
group-personalized regression. We describe an extension to
classical linear regression whereby groups of individuals who
exhibit similar linear models linking objective behavioral data
and mental state are automatically identified. This model’s
ability to identify groups of similar individuals is demonstrated
by comparing traditional population-level regression with the
novel approach for the estimation of self-reported levels of
depression from objective geolocation-derived features.

Methods

Data Collection
Data were collected from participants in the Automated
Monitoring of Symptom Severity (AMoSS) study at the
University of Oxford [17,18]. The AMoSS study was approved
by the Research Ethics Committee of the East of England
(reference 13/EE/0288), and all participants provided written
informed consent. During the AMoSS study, a range of
behavioral data were collected from patients diagnosed with
bipolar disorder and borderline personality disorder as well as
healthy control individuals without any symptoms of mental
disorder. All participants were screened by an experienced
psychiatrist using the Structured Clinical Interview for the
Diagnostic and Statistical Manual of Mental Disorders, Fourth
edition. Objective behavioral data were collected from a custom
Android-based app as well as other wearable devices. The app
recorded individuals’ activity levels, geographic movements
(described below), light exposure, and social interaction. We
also collected physiological data during some parts of the study,
as presented by Carr et al [19,20]. More details about the study
design are available in our previous work [17].

Mental State Reporting
Participants self-reported their mental state throughout their
participation in the study, using a variety of clinically validated
questionnaires, administered weekly. One questionnaire, the
16-item Quick Inventory of Depressive Symptomatology (QIDS)
Self-Report questionnaire [21], was used to assess the level of

depression in individuals. This questionnaire asks 16 questions
assessing depression based on clinical diagnostic criteria and
provides a single score from 0 (no symptoms of depression) to
27 (severe symptoms of depression). A score over 10 is
considered a suitable threshold for clinically significant
depression. A simple custom mood questionnaire was also
administered daily on the app, which Tsanas et al have shown
to correlate well with QIDS [22,23].

Location Data Overview
One of the key sources of behavioral data that can be easily
recorded through a mobile phone is the individual’s geographic
movements. We described in detail the collection,
noise-removal, processing, and feature extraction from
geolocation data in our previous work [18], wherein we
demonstrated that several features can clearly discriminate
between nondepressed and depressed weeks in patients with
bipolar disorder.

Features were extracted from preprocessed geolocation data. In
total, 10 features described in Table 1 were extracted and used
in this paper, with full details available in our previous work
[18]. All features were calculated on full calendar weeks of data
(Monday to Sunday).

Data Inclusion
For the analysis presented here, it is important to have multiple
data points available for each individual. For this reason, only
participants who provided ≥6 weeks of geolocation data with
associated QIDS scores were included in the analysis. A total
of 59 participants provided the required minimum of 6 labeled
weeks of data. Demographic characteristics of the included
participants are shown in Table 2, which also shows summary
statistics of the data available for analysis. Healthy control
participants had the lowest mean QIDS scores and least
variability. Participants with borderline personality disorder
had the highest mean QIDS scores and also the highest
variability, with participants with bipolar disorder between the
two.

Standard Population-Level Regression Model
Previous studies estimating continuous mental health severity
from objective markers [3], commonly work with standard linear

regression models [24] of the form: y=βxT+µ.

In our case, x would be a vector of the geolocation-derived
features in Table 1, and y is the predicted QIDS score. This
regression model therefore forms the core baseline model for
comparison of the group-personalized model described in the
following section. Linear models as given above are prone to
overfitting the available training data resulting in poor
out-of-sample performance. One well-known method to reduce
the overfitting of the model is the Lasso by Tibshirani [25],
which adds an ℓ1 regularization term to select only the most
important features to include in the model. In its Lagrangian
dual form [26], the Lasso is parameterized by λ. When λ is
large, many (or all) of the coefficients of β will be reduced to
exactly zero.
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Table 1. Summary of features extracted from preprocessed geolocation data.

DescriptionFeature name

A measure of the variance in the location coordinates visited.Location variance

The number of unique locations visited.Number of clusters

The information-theoretic entropy calculated on the proportion of time spent in each of the locations
visited.

Entropy of locations

The entropy of locations feature normalized by dividing by the log of the number of location visited,
resulting in a feature ranging between 0 and 1, which is less correlated with the number of clusters
feature.

Normalized entropy

The percentage of time that the individual is recorded at home.Home stay

The percentage of time that the individual is recorded traveling between locations.Transition time

The total distance traveled by the individual.Total distance

A measure of the diurnal regularity in the movements of the individual, calculated from the power
in sinusoids fitted to the data with periods around 24 hours.

Diurnal movement

Similar to the diurnal movement feature, but calculated on normalized coordinates, making it less
sensitive to the different distances that individuals may travel.

Diurnal movement on normalized coordinates

Similar to the diurnal movement and diurnal movement on normalized coordinates features, but cal-
culated on the single dimensional distance of the current location coordinates from the home location
of the individual.

Diurnal movement on distance from home

Table 2. Demographic and data characteristics of participants included in the analysis.

Total (n=59)Borderline personality
disorder patients (n=17)

Bipolar disorder patients (n=20)Healthy controls (n=22)Characteristic

Gender, n

15177Male

44161315Female

41 (15.75)38 (9.75)44 (20)42 (12)Age, median (IQRa)

26 (8.50)31 (10.25)27 (4.22)24 (5.37)Body mass index, median (IQR)

19 (19.75)20 (24.5)16 (19.5)17 (15.0)Weeks of data per participant, median (IQR)

4 (9.96)14 (4.67)5 (6.74)2 (1.92)QIDSb mean, median (IQR)

5 (7.52)10 (7.34)7 (6.64)3 (2.07)QIDS range, median (IQR)

aIQR: interquartile range.
bQIDS: Quick Inventory of Depressive Symptomatology.

Figure 1. High-level overview of the group-personalized model.

Group-Personalized Regression Model
Here, we will introduce a method for splitting the total
population into groups of individuals that have similar
relationships between their geolocation-derived features and
their QIDS scores. Each group will be represented by a Lasso

model where the regression coefficients β and offset μ will differ
between subsets. This group-personalized regression model has
been developed to improve regression performance by finding
models in subgroups that fit individuals better than the
population-level model trained across all available individuals,
while not training an individual model for each subject.
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Figure 1 depicts the high-level framework of the
group-personalized model used to find groups of individuals
that have similar regression models linking mental states and
behavioral features. During initialization, all available
individuals are randomly split into groups, and a Lasso
regularized linear regression model is trained for each group.
The performance of all individuals under the model for each
group is then evaluated, and individuals are reassigned between
groups as appropriate. Note that the number of groups is
dynamic and optimized as the model is run. This process is
repeated to convergence. Using Lasso regularized linear
regression as the core of the group-personalized model allows
identification of the most relevant subset of features for each
group.

In a practical realization of the model depicted in Figure 1, a
framework that combines the predictive model and clustering
is required. The Dirichlet process (DP) provides a suitable
framework [27]. A DP mixture model splits individuals into
distinct groups, trains a model on individuals in each group,
and then allows individuals to switch groups until clustering is
optimized. One feature of the DP is that the number of clusters
does not need to be specified in advance, and individuals may
create new clusters if they do not fit well into existing ones.

The DP is a Bayesian model where any well-specified generative
model can be used as the model for individual clusters (with
the requirement that model priors can be sampled and that the
joint likelihood can be calculated).

Park and Casella [28] have previously presented a Bayesian
version of the Lasso. In this work, we extend the Bayesian Lasso
to operate over multiple individuals and apply a DP prior to
provide clustering of individuals based on the relationship
between their behavioral features and their levels of self-reported
depression.

The full generative form of the group-personalized regression
model is given in Figure 2. Free parameters in the model are
the α concentration parameter of the DP; the λ regularization

parameter of the Lasso model for each group; the μμ and σμ
2

priors of the μ variable (the regression offset); and the ασ
2 and

γσ
2 priors of the σ2 variable (the noise in the model). The α

concentration parameter and the λ regularization parameter
were both optimized by a grid search maximizing the likelihood
of the model’s joint probability. Parameter values of λ=0.4 and
α=0.0001 were found optimal and are used to generate the
results presented here. Other free priors have much less impact

on the model and were set to μμ=0; σμ
2=10; ασ

2=1; and γσ
2=1.

The group-personalized regression model defined in Figure 2
can be sampled using a standard implementation of Algorithm
8 by Neal [27,29]. In each iteration of sampling the DP,
individual grouped model variables are Gibbs sampled from
the distributions given in Figure 3.

Figure 2. Formal definition of the group-personalized regression model.
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Figure 3. Gibbs sampler distributions for variables in the group-personalized regression model.

Model Evaluation

Evaluation Framework
This study’s aim was to predict QIDS scores from
geolocation-derived features and to compare the performance
of population-level, fully personalized, and group-personalized
regression models for this purpose. For this reason, several
models described below have been implemented to present
comparative results.

Most models described in the following sections were tested in
a “leave-one-participant-out” framework where each participant
is left out and the relevant model is trained on data from other
relevant participants (as described for each model in turn).

In practice, fully personalized and group-personalized models
generally require a certain level of calibration data (behavioral
features and QIDS scores). To simulate this, in most models, a
subset of data from the start of the recording for the left-out test
individual were included in the model’s training (but were
excluded when evaluating test performance). The number of
weeks of calibration data included in the model training is
defined as the first half of the available data for the test
individual up to a maximum of 8 weeks. For example, for an
individual who provided 10 weeks of data, the first 5 weeks are
used as calibration data included in model training and the last
5 weeks are used for evaluation. For an individual who provided
≥16 weeks of data, the first 8 weeks are used as calibration data
and all remaining data are used for evaluation.
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In all cases except the clustering model, standard Bayesian
Lasso models by Park and Casella [28] were trained on the
calibration data for the left out individual and all data from other
relevant individuals. The Bayesian Lasso model was trained
with regularization parameter λ=0.4 (the same value found
optimal for running the group-personalized model) for 1000
iterations. Because the Bayesian Lasso is implemented using a
Gibbs sampler, this leads to 1000 samples of model coefficients.
The model’s performance was evaluated in each iteration by
applying the Bayesian Lasso with the sampled coefficients on
the evaluation data for the left out individual. The mean absolute
error (MAE) of the estimated QIDS scores and self-reported
values was calculated in each iteration, and overall performance
was evaluated as the mean MAE over all iterations.
Improvements in performance were compared using a
single-tailed paired t test of the mean MAE over all iterations
for each individual.

Population-Level Model
The population-level model was tested by training a Bayesian
Lasso model on the calibration data from the test individual and
all data available from all other individuals.

Group-Personalized Model
The group-personalized model was introduced by first finding
groups of individuals in the population that have similar models
linking their geolocation-derived features with their QIDS
scores. To find these groups, the group-personalized regression
model was run using Neal’s Algorithm 8 for 5000 iterations
with all data available from all individuals.

To evaluate the performance of the optimal groups found using
the group-personalized model, a Bayesian Lasso model was
trained on the calibration data from the test individual and all
data available from other individuals in the same group.

Note that if an individual ends up in a group containing just
himself or herself, then the group-personalized model will be
trained just on the calibration data from that individual, so that
it reduces to the fully personalized model described below.

Group-Personalized Model with Clusters Allocated Using
Calibration Data
The group-personalized model tested retrospectively, as
described above, is useful to demonstrate principles of the
model’s operation and the clinical relevance of the groups found.

To apply the model prospectively, only calibration data from
new individuals must be used to allocate them into one of the
groups. To test this, each individual was left out in turn, and
separate Bayesian Lasso models were trained for each group.
For the group that the left-out individual was originally assigned
to, the Bayesian Lasso model was trained on that group’s
remaining individuals (if any).

QIDS scores were estimated from the calibration data for the
left-out individual using the model trained on each of the groups.
The mean MAE of the estimated QIDS scores using the model
for each group was evaluated, and the individual was allocated
to the group that provided optimal performance.

To provide the final prediction, a new Bayesian Lasso model
was trained using the calibration data from the left-out individual
and all data from other individuals assigned to the allocated
group.

Fully Personalized Model Using All Available Data
The literature [5,6,30] commonly uses cross-validation over all
available data points from an individual to demonstrate a
“personalized” model. This was implemented using random
subsampling of data from each individual, where a Bayesian
Lasso model was trained using 80% of data randomly selected
from the test individual, with results presented on estimation
of the remaining 20%. This split was repeated 10 times.

Fully Personalized Model Using Calibration Data Only
While the fully personalized model using all available data is
commonly presented in the literature, it may not provide a fair
representation of the model’s accuracy in practice because it
does not demonstrate how well the model will generalize when
trained with limited calibration data.

As an alternative, the fully personalized model using only
calibration data was tested by training a Bayesian Lasso model
on just the calibration data from the test individual.

Clustering Model
A comparative model was tested using the clustering method
described by Lane et al [15] and Abdullah et al [16]. To provide
a comparative result, only the part of the method that clusters
individuals by similarity of their feature values was included.
The clustering method by Lane et al and Abdullah et al used a
locality-sensitive hashing method known as random projection
[31] as a similarity measure of feature values between all pairs
of individuals. The random projection method samples random
values in the feature space and calculates the distance from these
random values to extracted feature values for each individual.
By repeating this process multiple times, features from similar
individuals will commonly be closest to the same randomly
sampled values. Lane et al and Abdullah et al used the resulting
similarity matrix to condition an online boosting classification
algorithm. Because the group-personalized model concerns
regression rather than classification, this was replaced with a
regression equivalent [32].

Because the clustering model does not use the relationship
between behavioral features and model output, all available data
from all individuals, including the test individual, were included
when assessing similarity.

Results

Extracted Feature Properties
Raw feature values calculated from the geolocation data for
included participants are shown in Figure 4 for 3 selected
features (the number of locations visited on the left; entropy in
the middle; and the percentage of time recorded at home on the
right); highlighted are 6 participants (2 from each cohort).
Standard population-level linear regression models predicting
the QIDS score from all available data for each of the features
individually are shown overlaid. The general trends follow what
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is expected from the literature and has been presented in
previous work. More depressed individuals tend to visit fewer
locations and stay at home more. As a measure of variability in
the locations visited, entropy tends to be lower in more
depressed individuals, indicating that depressed individuals
have less regularity in their routines.

Clearly, however, these trends are weak, and the features contain
a high level of noise. Models trained over all available data
(such as the population-level linear models shown in Figure 4)
would therefore tend to estimate depression poorly on behavioral
features.

The 6 participants highlighted in Figure 4 indicate that data
from specific individuals tended to occur in clusters within the
whole dataset. In some cases, such as the green borderline
personality disorder individual, personalizing the model using
the number of clusters visited should far outperform the
population-level model.

Model Evaluation
The group-personalized regression model was run over all
individuals as described above. In total, 17 groups were found,
each containing between 1 and 9 individuals. Figure 5 shows
how individuals were allocated to these groups. Each group is
shown as a row, with the shading of the markers indicating how
many individuals are from each cohort in that group. Groups
1-4 are predominantly healthy control individuals, together with
participants with bipolar disorder who exhibit low variability
in their QIDS scores. Groups 5 and 6 are predominantly
individuals with bipolar disorder, and groups 7-10 are
predominantly individuals with borderline personality disorder,
all displaying greater variability in their QIDS scores. To groups
11-17, 9 individuals were assigned, with only 1 or 2 individuals
in each group. These individuals have been shown as unassigned
because they did not fit well into any of the other groups, and
therefore solid conclusions cannot be drawn. As more
individuals become available for analysis, these individuals
would likely be assigned to larger groups.

The number of groups found (17 for 59 participants) indicates
the high level of variability in the relationships between
behavioral data and mental state for individuals in the study.
The number of groups may also be affected by properties of the
DP prior on smaller sample sizes. Asymptotically, the DP

exhibits a “rich-gets-richer” property, where larger clusters tend
to become larger [33]. This also has the side effect that with
more data points, the number of clusters relative to the number
of samples decreases (more precisely, the expected number of
clusters grows logarithmically with the number of data points,
proportional to the concentration parameter in the DP prior).
With fewer data points, none of the clusters are yet large enough
to sufficiently attract data points. This means that as more data
become available to train the model, the relative number of
clusters should decrease, thus improving the model’s stability.

These findings imply some overlap between healthy control
individuals and individuals with bipolar disorder. This fits with
the informal observation that individuals with bipolar disorder
exhibit normal mood when well. By contrast, there is very little
overlap between healthy control and borderline personality
disorder group membership. This finding broadly aligns with
other subjective measures of mental state, sampled much more
frequently than weekly, which show a gradient of abnormal
mood where healthy control<bipolar disorder<borderline
personality disorder [19,20]. How more frequent sampling would
combine with geolocation data is an important future question.

One of the key advantages of finding similar groups of
individuals within the population is that models for each group
found may indicate different characteristics of patient subgroups.
This can be explored by inspecting the coefficient values
sampled for each group. For this, a Bayesian Lasso model was
run on all individuals allocated to each group. This results in
the sampled coefficient values shown in Figure 6 for groups 7
and 9 in Figure 5.

The group on the left in Figure 6 is characterized mainly by the
diurnal movement, transition time, and total distance features,
while the group on the right is characterized by the number of
clusters visited. In both cases, the other features are effectively
removed from the model. Pearson correlation coefficients of
each feature with the reported QIDS scores for individuals in
the group are shown on the right of each feature. Statistically
significant correlation coefficients (P<.01) are shown in bold.
This shows that the group-personalized model tends to pick out
the most correlated features for each group, although this may
not necessarily be the case as two features with low correlations
may be predictive when combined in a regression model.

Figure 4. All available data for 3 of the geolocation-derived features, with the data from 6 individuals highlighted, 2 from each cohort in the study.
(HC: healthy control, BD: bipolar disorder, BPD: borderline personality disorder, QIDS: Quick Inventory of Depressive Symptomatology).
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Figure 5. Allocations of individuals to different groups, showing the cohort of each individual. (HC: healthy control, BD: bipolar disorder, BPD:
borderline personality disorder).

Figure 6. Sampled coefficient values for features in 2 groups found by the group-personalized model. (LV: location variance; NC: number of clusters;
ENT: entropy of locations; NENT: normalized entropy; HS: home stay; DM: diurnal movement; TT: transition time; TD: total distance; DMN: diurnal
movement on normalized coordinates; DMD: diurnal movement on distance from home).

Inspection of the model coefficients in each of the clusters found
indicate that they all model different characteristics of the range
of relationships between behavioral data and QIDS scores. Most
groups are also characterized by ≤3 main features, indicating
the interpretability of the models found.

Performance of the different models tested across all individuals
is summarized in Table 3. Results are presented as MAE, mean
(SD) for all models. Overall estimation accuracy is increased
from the population-level model by using both fully personalized
and group-personalized models. Optimal results are achieved
with the fully personalized model, trained using subsamples of
all available data. This is not surprising since the full range of
values is likely to be included in the model’s training. The
group-personalized model with individuals allocated to their

optimal groups improves over the population-level model and
is similar to the fully personalized model. A single-tailed paired
t test confirms that the performance improvement using the
group-personalized model with optimized clusters from the
population-level model is significant (P<.001). The
group-personalized model with individuals assigned to groups
using only their calibration data also performs significantly
better than the population-level model. It also improves slightly
on the fully personalized model trained only on the same
calibration data, but the improvement is only mildly significant.
Performance of the fully personalized model trained using only
calibration data indicates the difficulty of generalizability of a
model trained using limited data. The clustering method by
Lane et al [15] and Abdullah et al [16] improves on the
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population-level model for bipolar disorder and borderline
personality disorder participants, but does not perform better
overall. This is can be explained by the method’s entire basis
on similarity of input features, not on the similarity of the
relationship between the input features and QIDS scores.

Figure 7 shows the distributions of performance under 3 of the
models tested: the top row shows the MAE of estimations made

using the population-level model; the second row shows the
MAE of estimations made using the fully personalized model;
and the bottom row shows the MAE of estimations made using
the group-personalized model. In all 3 graphs, bars are shaded
in proportions corresponding to the cohort of individuals in that
bar. Individuals with borderline personality disorder tend to
perform worst under the population-level model.

Table 3. Mean absolute error of Quick Inventory of Depressive Symptomatology score estimation.

Significance of reduction in overall mean
absolute error compared to reference models

Overall,
mean (SD)

BPDc patients, mean
(SD)

BDb patients,
mean (SD)

HCa, mean
(SD)

Model

Fully personalized
model trained on cali-
bration data (P value)

Population-level
model (P value)

——d5.27 (2.48)6.43 (2.58)4.74 (2.07)4.86 (2.54)Population-level model

<.001<.0011.94 (1.60)3.05 (1.67)2.27 (1.44)0.80 (0.76)Fully personalized model using
cross-validation validation over all
data points

—<.0012.90 (2.49)4.38 (2.43)3.67 (2.60)1.06 (0.75)Fully personalized model trained
on calibration data

——5.29 (2.82)6.15 (2.88)4.50 (2.30)5.33 (3.11)Clustering based on Lane et al [15]
and Abdullah et al [16]

<.001<.0011.90 (1.60)2.82 (1.28)2.30 (1.96)0.83 (0.52)Group-personalized model with
optimized clusters

.02<.0012.52 (2.47)3.75 (2.07)3.30 (3.09)0.86 (0.46)Group-personalized model with
clusters allocated using calibration
data

aHC: healthy control.
bBD: bipolar disorder.
cBPD: borderline personality disorder.
dNot applicable.

Figure 7. Mean absolute error of Quick Inventory of Depressive Symptomatology score estimation using 3 of the models in Table 3. (HC: healthy
control; BD: bipolar disorder; BPD: borderline personality disorder).
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The best performance under the group-personalized model is
from healthy control participants, who showed quite variable
performance under the population-level model. However, this
should be viewed with caution because healthy control
participants also tended to show very low QIDS scores with
very little variation, as demonstrated in Table 2, meaning that
a model may just estimate a constant low value. Similarly, some
participants with bipolar disorder also perform very well under
the group-personalized model, but as shown in Figure 5, some
individuals with bipolar disorder were allocated with healthy
control individuals, indicating that they may also have relatively
constant low QIDS scores. The remaining individuals with
bipolar disorder and borderline personality disorder clearly
showed great improvement under the group-personalized model.

Discussion

Principal Findings
Our previous work demonstrated the utility of using
geolocation-derived features to classify weeks of depression in
participants with bipolar disorder. In this paper, we investigated
to what extent those features can be used as proxy for the level
of depression in subjects with bipolar disorder and borderline
personality disorder. We have shown that using a
population-based estimate is suboptimal because variability in
behavioral patterns between subjects is too high, as shown in
Figure 4. While fully personalizing a model for each individual
might make sense, doing so requires too much data to be
practicable in a prospective fashion and provides little clinical
insight into how behavior changes with varying levels of
depression since every subject follows a different model. We
introduce a group-personalized model as an alternative for
personalization where subgroups of individuals that exhibit
similar relationships between their behavioral data and mental
states are automatically identified. This leads to plausible
groupings since most healthy control individuals and individuals
with bipolar disorder and borderline personality disorder have
been assigned to different groups, reflecting the relationship
between different disease categories and different behavioral
patterns. However, further validation with more data is needed
to assess whether these are “optimal” groupings.

While groupings provide insights, the key challenge for applying
group-personalized models in practice remains the determination
of which group to allocate new individuals to. In the results
above, up to 8 data points (pairs of behavioral features and actual
QIDS scores) were used to allocate each individual to a group
based on the performance of QIDS score estimation using the
model for each group. This provided a significant improvement
over the population-level model and a smaller, but still mildly
significant, improvement over the fully personalized model
trained on the same data used for calibration. In practice, the
main advantage of grouping might be to enable better
understanding of patient characteristics. While the fully
personalized model may take any form, the group-personalized
model is restricted to a known set of behavioral phenotypes.
With enough individuals available to train models, an exhaustive
set of behavioral phenotypes can be obtained. Matching
individuals to groups based purely on the predictive performance

of the extracted groups on calibration data, as done here, is a
naïve approach, and using other indicators of similarity, such
as demographics or similarity of sensor data, may improve
group-matching when only limited calibration data are available.

The fact that a high number of groups relative to the number of
individuals were found suggests that there is indeed a large
amount of interindividual variability between subjects. Having
access to larger datasets might also increase the number of
subjects belonging to each group. With the current dataset,
groups with clearly different behavioral patterns could be
identified, as shown in Figure 6. Significant improvements in
performance of estimating levels of depression from objective,
geolocation-derived features were shown, demonstrating further
the appropriateness of the groupings, but also the utility of using
geolocation as an objective marker for mental health.

Quick Inventory of Depressive Symptomatology
Estimation Model
The presented model uses standard linear regression as the core
model within groups. This assumes a linear relationship between
the model’s predictor(s) and output. Other authors, for instance,
Abdullah et al [30], have used more advanced methods such as
support vector regression in a similar application, which enables
nonlinearity in the relationship between the behavioral features
and output variable of interest to be modeled. In the present
model, nonlinearity could be modeled using a generalized linear
model in place of the standard linear regression. However, the
individuals highlighted in the features shown in Figure 4 do not
indicate that nonlinearity is a major limitation, but rather
variability in the output. For this reason, incorporating
nonlinearity may exacerbate any overfitting of the model to the
training data available.

Limitations
While the results presented here demonstrate the utility of
group-personalized models of behavior to improve regression
performance—which might be a very useful approach beyond
this application—a number of important limitations need to be
discussed.

First, a limitation of this work, in common with many previous
studies of objective markers of mental health, is reliance on and
comparison with subjective proxies of mental state. In this work,
the patient-reported QIDS questionnaire was used to train and
evaluate models. Similar patient-reported questionnaires have
been used in most previous work. Some studies use
clinician-reported measures, but these are still fundamentally
subjective proxies and are usually not available at a high sample
rate. While this is an accepted limitation of the current work,
as more longitudinal data become available for analysis, the
properties of the behavioral phenotypes found may in turn help
inform our understanding of mental illness.

The model presented here also assumes that individuals always
remain in the same group. In reality, individuals may exhibit
temporal variability in their response to illness. For example,
in some individuals, improvements in mental state may follow
different models to deterioration, or the same individual may
have different relationships with behavioral features during
different episodes.
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The main area of interest in using objective markers to monitor
levels of mental illness is the transition between states. Detailed
investigation of state transitions compared with stable states
may provide useful data about which variations in behavior are
normal for an individual in remission (as in bipolar disorder)
and which variations significantly correlate with the onset of
illness episodes. Separating the two will always be crucial for
predictive models to perform adequately. A limitation of the
data used to train the models presented in this work is that most
individuals did not exhibit both stability and variability in
illness. Indeed, most individuals were relatively stable in their
levels of depression. Again, as more data become available,
more complex analysis can be performed.

Conclusions
This paper has demonstrated the limitations of using
population-level models to estimate levels of mental illness
from behavioral features. Population-level models do not
account for natural interindividual variability in how individuals’
behavior changes in response to mental illness such as

depression. On the other end of the spectrum, fully personalized
models built using training data only from specific individuals
limits interpretation into clinical phenotypes.

Group-personalized models were therefore presented as a way
to augment limited training data available for an individual with
data from a group of other individuals who have a similar
relationship between their behavior and mental state. Predicting
levels of self-reported depression from geolocation-derived
features demonstrated the model’s appropriateness. Several
previous studies have shown the need for personalized modeling
for mental health applications due to the high noise levels in
behavioral data, as also demonstrated in this work. While there
is a clear advantage in using group-personalized models over
population-level models, further work must validate these
models. Optimal group allocation remains an open question,
but the value in the interpretability of the grouped models has
been demonstrated. As further data are collected, the utility of
the model is expected to increase because more refined models
can be inferred from the groups of individuals found.
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