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Abstract

Background: Influenza is a viral respiratory disease capable of causing epidemics that represent a threat to communities
worldwide. The rapidly growing availability of electronic “big data” from diagnostic and prediagnostic sources in health care
and public health settings permits advance of a new generation of methods for local detection and prediction of winter influenza
seasons and influenza pandemics.

Objective: The aim of this study was to present a method for integrated detection and prediction of influenza virus activity in
local settings using electronically available surveillance data and to evaluate its performance by retrospective application on
authentic data from a Swedish county.

Methods: An integrated detection and prediction method was formally defined based on a design rationale for influenza detection
and prediction methods adapted for local surveillance. The novel method was retrospectively applied on data from the winter
influenza season 2008-09 in a Swedish county (population 445,000). Outcome data represented individuals who met a clinical
case definition for influenza (based on International Classification of Diseases version 10 [ICD-10] codes) from an electronic
health data repository. Information from calls to a telenursing service in the county was used as syndromic data source.

Results: The novel integrated detection and prediction method is based on nonmechanistic statistical models and is designed
for integration in local health information systems. The method is divided into separate modules for detection and prediction of
local influenza virus activity. The function of the detection module is to alert for an upcoming period of increased load of influenza
cases on local health care (using influenza-diagnosis data), whereas the function of the prediction module is to predict the timing
of the activity peak (using syndromic data) and its intensity (using influenza-diagnosis data). For detection modeling, exponential
regression was used based on the assumption that the beginning of a winter influenza season has an exponential growth of infected
individuals. For prediction modeling, linear regression was applied on 7-day periods at the time in order to find the peak timing,
whereas a derivate of a normal distribution density function was used to find the peak intensity. We found that the integrated
detection and prediction method detected the 2008-09 winter influenza season on its starting day (optimal timeliness 0 days),
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whereas the predicted peak was estimated to occur 7 days ahead of the factual peak and the predicted peak intensity was estimated
to be 26% lower than the factual intensity (6.3 compared with 8.5 influenza-diagnosis cases/100,000).

Conclusions: Our detection and prediction method is one of the first integrated methods specifically designed for local application
on influenza data electronically available for surveillance. The performance of the method in a retrospective study indicates that
further prospective evaluations of the methods are justified.

(J Med Internet Res 2017;19(6):e211) doi: 10.2196/jmir.7101
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Introduction

In light of the rapidly growing availability of “big data” from
both diagnostic and prediagnostic (syndromic) sources in health
care and public health settings, a new generation of
epidemiological and statistical methods is needed for reliable
analyses and modeling [1]. This need of new methods adapted
to extensive but heterogeneous datasets extends to algorithms
for detection and prediction of winter influenza seasons and
influenza pandemics. Each year epidemics of influenza occur
in communities worldwide and cause extensive morbidity and
mortality [2,3]. Preparing for and responding appropriately to
winter influenza seasons and pandemics is a critical function
of public health. However, a concern regarding forecasting
algorithms is that reports of methods used for analyses of
extensive datasets originating from different sources do not
always meet basic standards. The reports fail with regard to the
requirement that evaluators should be able to assess the design
and performance of the methods when building the next
generation of algorithms [4]. However, regardless of the
transparency problems in reporting, the potential of big data
analyses in infectious disease control is widely recognized. For
instance, autoregressive models for influenza forecasts have
shown satisfactory performances when applied on large
populations [5]. This implies that the area where the knowledge
need presently is most immediate is the detection and prediction
of influenza activity at local levels [6]. Such granular views, in
turn, can provide input into large-scale models and accurate
prediction of influenza spread in wide geographical areas.

Several weaknesses of infectious disease surveillance and
prediction systems described in previous decades [7] have still
not been addressed in methods design. Responding to this
situation, the Centers for Disease Control and Prevention (CDC)
in the United States initiated the “predict the influenza season
challenge” [8], which encouraged researchers to forecast features
of winter influenza season progression that are useful to policy
makers and to take advantage of big data resources. For this
competition, existing methods for modeling influenza were
grouped into three categories:

(1) Compartmental models: These are based on mechanistic
assumptions about how the influenza virus is transmitted and
use these assumptions to estimate the number of individuals in
various states related to a disease [9]. For instance, the
Susceptible-Infectious-Recovered (SIR) model approximates
the dynamics between groups susceptible to influenza, infected
with the virus, and recovered from infection over time [10].

Assumptions typical for this category of models include that
any pair of individuals in a defined group are equally likely to
interact socially and that genetic subgroups within influenza
strains behave identically.

(2) Agent-based models: These are more complex types of
mechanistic models that typically use synthetic populations
based on census data and build complex schemes of social
interaction and disease progress in simulated individuals and
communities [11,12]. These models can incorporate more
detailed assumptions about transmission dynamics but can be
computationally intensive.

(3) Nonmechanistic statistical models: These are
phenomenological approaches, that is, they aim to model
patterns and trends in the data without necessarily considering
the underlying mechanisms. Typical approaches of this type
are linear autoregression, which estimate influenza activity using
a linear function based on recorded past activity. More complex
methods in this category include generalized linear models,
Box-Jenkins analysis [13], seasonal autoregressive integrated
moving-average models [14], and generalized autoregressive
moving- average models [15].

More alternative surveillance methods include, for instance,
prediction markets [16] that combine expert predictions using
a stock market-like system, and the method of analogues (k
nearest neighbors) [17] that makes predictions of future
influenza activity levels using similar patterns from the past
without assuming a strict model. However, it is disconcerting
that none of the above categories of forecasting methods
evaluated in the CDC challenge generated satisfying results for
all four aspects of influenza epidemics (ie, start week, peak
week, peak percentage, and duration) [18].

The aim of this study was to present a novel method for
integrated detection and prediction of influenza activity using
data electronically available for real-time surveillance in local
settings in the Western hemisphere and to evaluate its
performance by retrospective application on authentic data from
a Swedish county. By local settings in the Western hemisphere
is meant communities with specified populations in Europe and
North America. Winter influenza seasons and pandemics can
be expected to spread to these settings, but the dissemination
of the actual types and strains of influenza virus does not likely
originate from there. In the presentation of the integrated
detection and prediction method, the term epidemic is used as
a summary label for both winter influenza seasons and
pandemics.
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Methods

Study Design
The novel method was formally defined based on a design
rationale for integrated detection and prediction methods
specifically adapted for application in local influenza
surveillance. An overview of the method design is exhibited in
the Results section, followed by detailed descriptions of the
detection and prediction modules. The results of a retrospective
performance study evaluation based on authentic data from a
Swedish county are also presented. The study design was
approved by the regional research ethics board in Linköping
(dnr. 2012/104-31).

Design Rationale
The rationale for design of a novel integrated detection and
prediction method is that the aim of local influenza surveillance
is early detection and prediction of infected individuals requiring
clinical attention, with the purpose of timely allocation of scarce
health care resources. Precious time is lost before laboratory
data are available for algorithmic processing and test samples
are not taken from all patients. Syndromic data are used for
peak timing prediction because it is challenging to only use
unidimensional gold standard data to predict the peak timing.

Both the detection and prediction functions are to comply with
requisite quality and accuracy criteria for technologies to be
used in health care and public health practice [19]. A theoretical
assumption underpinning the design of the detection module is
that the number of influenza cases grows exponentially in the
beginning of periods with increased activity. Another
assumption is that an alerting threshold can be determined using
historical data from previous winter influenza seasons. For
prediction of the peak timing, evidence of a strong association
between the gold standard and syndromic data sources used for
the surveillance is assumed to be available. For prediction of
the peak intensity, the peak timing must have been determined
and the influenza-diagnosis case rates must follow a bell-shaped
function of time around the peak.

Definitions
Influenza detection is defined as indicating the initiation of an
epidemic in the community, that is, a prolonged period of
elevated incidence rates (exceeding a given limit) of influenza
cases, as defined by the rate of individuals clinically diagnosed
with influenza in a population under surveillance. Influenza
prediction denotes foretelling the peak timing and the peak
intensity of an epidemic in the community. For detection,
weekday effects and optimal alerting thresholds with reference
to influenza-diagnosis data are retrospectively established in
the method calibration. For prediction, both the weekday effects
and the grouping of variables in the syndromic data with the
largest correlation strength and longest lead time to
influenza-diagnosis data are established.

The influenza case-rate level when a local influenza epidemic
factually takes off was set to 6.3 influenza-diagnosis
cases/100,000 during a floating 7-day period. This limit was
determined by inspecting the epidemic curves of previous local
influenza epidemics in the learning dataset. A similar definition

(6.4 influenza-diagnosis cases/week/100,000) was determined
for the winter influenza season in 2008-09 in a recent
comparison of influenza intensity levels in Europe [20]. The
definition of when an epidemic ends was set to the interepidemic
(period between two epidemics) influenza-diagnosis level for
the specific setting where the method is applied. This was done
because the detection algorithm requires that the influenza
activity is at an interepidemic level before the algorithm can
start its search.

Retrospective Performance Study
For a retrospective performance evaluation of the integrated
detection and prediction method, outcome cases were
represented by individuals clinically diagnosed with influenza
during the 2008-09 winter influenza season in a Swedish county
(population 445,000). The thresholds used in epidemic detection
were determined using data from a learning dataset containing
the 2008-09 winter influenza season. The metrics used to
evaluate the detection of influenza epidemics were timeliness,
sensitivity, and specificity. Timeliness was defined as the time
difference (in days) between the actual start of the epidemic
and the start indicated by the model. Specificity was calculated
from when the detection algorithm is started (ie, when previous
epidemic has come to an end) and until the beginning of the
current epidemic per the standard definition (6.3
influenza-diagnosis cases/100,000 during a floating 7-day
period). This means that the period length for specificity
calculations varies with the interepidemic period. Sensitivity
was calculated from the beginning of the current epidemic
(according to the same definition) and 45 days into the epidemic.
The optimal alerting threshold was decided by calculating
sensitivity and specificity and studying them on a receiver
operating characteristic (ROC) curve, giving specificity priority
over sensitivity because a high level of false alarms is
undesirable in public health practice.

To evaluate the prediction of the peak timing, timeliness
(defined as time between the predicted day of the
influenza-diagnosis peak (highest number of daily cases) and
the day of the peak in the observed smoothed series (using
moving average of influenza-diagnosis data) was used as metric.
To evaluate the prediction of the peak intensity, the absolute
and relative differences between the predicted peak intensity
expressed as the number of influenza-diagnosis cases at the
predicted day of the peak and the observed peak intensity were
used as metrics. The reason for not comparing the predicted
peak intensity with the actual peak intensity (ie, without
smoothing data first) was to reduce the impact from possible
outliers.

Data Sources
Influenza cases were identified using the International
Classification of Diseases version 10 (ICD-10) codes for
influenza (J10.0, J10.1, J10.8, J11.0, J11.1, J11.8) [21] from
the local electronic health data repository. For individuals having
received an influenza-diagnosis at both primary and secondary
levels of care, the diagnosis code recorded at the first contact
was used for the analyses. If the codes were recorded at the
same day, only the secondary-level diagnosis code was used.
Correspondingly, information collected from the calls to a
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telenursing service in the county was used as syndromic data.
Influenza-related telenursing call cases were identified by the
chief complaint codes associated with influenza symptoms
(dyspnea, fever [child and adult], cough [child and adult], sore
throat, lethargy, syncope, dizziness, and headache [child and
adult]) from the fixed-field terminology register. In accordance
with Swedish legislation (SFS 2008:355), personal identifiers
were removed from the records. In this study, only the chief
complaints of fever in a child and adult were used because a
previous study showed that this combination of complaints was
most strongly associated with influenza diagnoses [22].

Results

Method Design Overview
The integrated detection and prediction method is based on
nonmechanistic statistical models, that is, patterns and trends

in the data are modeled without necessarily considering
underlying mechanisms. It is designed for integration in local
health information systems. Accordingly, the underpinning
structure is defined at four levels, ranging from data sources to
performance validation (Figure 1). The method is divided into
separate modules for detection and prediction of influenza
activity, respectively. The function of the detection module is
to alert for an upcoming period of increased load of
influenza-diagnosis cases on local health care services, whereas
the function of the prediction module is to predict the timing of
the activity peak and its intensity. Early detection of increased
influenza activity and prediction of peak intensity are based on
streams of the gold standard data, whereas prediction of peak
timing is based on syndromic data. In this setting, patients
clinically diagnosed with influenza were used as gold standard.

An overview of the main statistical assumptions and equations
for each component is displayed in Figure 2.

Figure 1. Structure of the integrated detection and prediction method displayed design patterns.

Figure 2. An overview of the main mathematical equations or functions used for each component.
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Detection Module
Exponential regression (1) is used for detection modeling, based
on the observation that the beginning of an influenza epidemic
is assumed to have an exponential growth of infected
individuals:

(1) Xt= ea  + b₁t

with t representing the time, a0 representing the level, and b1

representing the trend. The expected number of visits at local
health care services, E[Yt] is the product of X and the probability
p for an infected individual to visit the local health care service.
This expectation is also exponential in time:

(2) E[Yt] = ea  + b₁tp=ea  + ln(p) + b₁t= eb  + b₁t

Where b0 now combines the current level of number of infected
and probability of visiting the local health care service without
any possibility to separate them. As daily data are used in the
analysis, weekday effects, Aw, are also calculated and used as
an offset variable in the exponential regression analysis. The
weekday effects are calculated as follows: let AMonday be the
average number of events on Mondays during previous
epidemics and denote the values for other weekdays by ATuesday,
AWednesday, and so on. Let ATotal=(AMonday+...+ASunday)/7. The
multiplicative weekday effect for Mondays is AMonday/ATotal and
so on. The weekday effects are included in the model:

(3) E[Yt] = eb  + b₁t + ln(Aw)

If X is large, p is small, and the infected individuals act
independently, then Y is approximately Poisson distributed:

(4) Yt~ Poisson (eb  + b₁t + ln(Aw))

Furthermore, the time is shifted, that is, the most recent day is
considered as t=0, the second most recent day is considered as
t=−1, and so on. For every new day, the time axis is moved one
step so that the new “most recent day” is considered as t=0. For
each day an exponential regression analysis (1) is run and a
fitted value ŷ is calculated by inserting t=0 in equation (3) giving

(5) Yt= eb 

as an estimate of the current level of visits which is smoothed
for random variation and adjusted for weekday effects. This is
repeated for each day by moving the time axis one day at a time
so that the most recent point in time of the series is considered
t=0. Doing this, one value is obtained for every day representing
the level for that day. Finally, the lower 95% confidence limit
is calculated to represent the level of influenza activity, which
is then compared with a predetermined threshold. If the level
is above the threshold, an alarm is raised, which means that the
epidemic has started; and if the level is below the threshold, no
alarm is raised.

Detection starts when the previous epidemic has ended (the
interepidemic period level for the community where the
detection component is applied), and runs during the
inter-epidemic period until an increase in diagnosed influenza

cases is detected. When the increase is confirmed, the algorithm
is paused and restarted when the epidemic has ended.

The detection algorithm is adjusted in exceptional situations,
that is, if an epidemic “simmers” before it begins. The risk of
simmering is extensive for a pandemic or an exceptionally mild
winter influenza season. In the first case, if there is a fear of a
pandemic outbreak among the population, individuals are more
likely to contact medical services for influenza symptoms,
leading to an increased baseline which increases the risk for
false alarms. Also, if a winter influenza season is exceptionally
mild, individuals contacting medical services for influenza-like
symptoms in the winter will sporadically be misdiagnosed with
influenza before the actual circulation of the influenza virus,
leading to an increased baseline and thus, an increased risk for
false alarms. The alerting threshold determined in the learning
set is therefore doubled in these particular cases. It was
contended that a strong indication of preepidemic simmering
is when it takes extended time between when the influenza
incidence increases above a baseline level and when the start
of the epidemic occurs (according to the standard definition 6.3
influenza-diagnosis cases/100,000 during a floating 7-day
period). The definition for when the influenza incidence has
increased above the baseline level is set to 3.2
influenza-diagnosis cases/100,000 during a floating 7-day period
(ie, half of the start-of-epidemic definition). An epidemic is
then defined to simmer if the time-period separating these 2
dates is longer than three times the average length of the period
during previous local influenza epidemics. In other words, the
alerting threshold is only doubled due to simmering if the
incidence has increased over the baseline level but not exceeded
the start-of-epidemic level during this observation period.

Prediction Module
The prediction process is divided into two components. In the
first component, syndromic data are used to predict the peak
timing, and in the second component, influenza-diagnosis data
are used to estimate the peak intensity.

Peak Timing Prediction
In the first component, the aim is to predict the peak timing
using linear regression. Including weekday effects Aw and
smoothed for random variation, the model for the number of
cases in syndromic data is expressed as

(6) Zt= (b0+ b1t) × Aw,

with b0 representing the level and b1 representing the trend.
Since the weekday effects Aw are known, a model smoothed for
weekday effects and random variation can be expressed as:

(7) Zt/ Aw= b0+ b1t

For each 7-day period, a linear regression (7) is run and
parameter estimates b0 and b1 are fitted. The idea is to estimate
the trend in syndromic data for every 7-day period (the first
period being days 1-7 and the second being days 2-8), from the
beginning of an epidemic and until the peak is found. Although
it is unlikely that an epidemic curve increases and decreases
linearly, the assumption can be made that the trend during a
short period of 7 days has almost a linear increase or decrease.
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The search for the peak starts when the detection algorithm
signals that an epidemic has taken off and continues until the
peak is detected. To identify the peak timing, two conditions
are set. As per the first condition, it is essential to ensure that
the epidemic has a sufficiently sharp upward trend. The trend
is therefore defined as sufficiently sharp when significantly
positive (P<.05) trends b1 have occurred either during two
consecutive or during three different 7-day periods. When one
of these events has occurred, the second condition is applied.
According to this condition, when the first significantly negative
trend (b1) during a 7-day period has occurred, it is assumed that
the peak has been reached on the first day of this period.
However, there is a possibility that this 7-day period “overlaps”
with a previous 7-day period, which includes a significantly
positive trend. In that case, the first 7-day period with a
significantly negative trend is ignored and the peak is instead
assumed to appear during the second 7-day period with a
significantly negative trend. The search is aborted if the peak
is not found when the epidemic has already descended in the
local setting where the algorithm is applied.

When the peak is found in the syndromic data, the 14 days
preceding influenza-diagnosis data [22] is utilized to find the
peak (in influenza-diagnosis data). In other words, if the peak
in the syndromic data appears on day 0, the influenza-diagnosis
peak is assumed to appear on day 14. However, it is possible
that the peak in the syndromic data occurs on a day during the
weekend but highly unlikely that the peak in influenza-diagnosis
data occurs on one of these days as, for instance, primary care
centers are closed during weekends in Sweden. Instead, it is
reasonable to assume that the influenza-diagnosis peak occurs
at the beginning of the week because individuals who suffer
influenza symptoms during the weekend visit primary care
centers when they reopen on Monday or possibly Tuesday.
Adjustments are therefore made by moving the
influenza-diagnosis peak to the following Monday if it is
expected to occur on a Friday, Saturday, or Sunday according
to syndromic data and to the previous Tuesday if the peak is
expected to take place on a Wednesday or Thursday. If the peak
is expected to occur on a Monday or Tuesday, no adjustments
are made. In other words, in the first case the syndromic data
precedes influenza-diagnosis data between 15 and 17 days, in
the second case between 12 and 13 days, and in the third case
14 days.

Depending on what day of the week the peak in the syndromic
data is expected to take place, the prediction of the
influenza-diagnosis peak is made between 6 and 11 days before
it is expected to occur, as the syndromic peak can be determined
first after 6 days has passed of the syndromic data series.

Peak Intensity Prediction
In the second component of the prediction module, the aim is
to predict only the peak intensity. Based on empirical
assessments of previous epidemics, an epidemic adjusted for
weekday effects is assumed to show a bell-shaped form from
the beginning to the end, and can therefore be expressed using
a derivate of a normal distribution density function. The intensity
function must also include weekday effects and total number
of events during the whole epidemic. Use of bell-shaped
functions was systematically introduced in epidemiology by
Brownlee in the early 20th century [23], and such functions
have since then been applied in several contexts, for example,
to predict the course of acquired immune deficiency syndrome
(AIDS) in the United States [24]. Assuming that the peak timing
is known (estimated in the first prediction component) and that
an epidemic follows the bell-shaped function around the peak,
the intensity function can be used to predict the peak intensity
at time m.

Assume that day number t=1, 2, 3,..., ti; the observed number
of influenza-diagnosis cases is y= y1, y2, y3,..., yi, and that

(8) y~ Poisson (T × w × f (t: m, s))

where T is the total number of health care visits of the whole
epidemic, w is the weekday effects, f is the normal distribution
density function, t is the day number, m is the center of the
epidemic (which coincides with t for the peak), and s is the
spread in time. Since t, w, and m are known, only the parameters
T and s are estimated using y in such way so that the likelihood
is maximized. However, in order to do that, first appropriate
starting values for these parameters need to be selected. Finally,
using the known parameter m and the estimated parameters T
and s, the peak intensity at time m is calculated by replacing t
with m in equation (8).

It is important that the start of the series seems appropriate
because the second prediction component assumes that the level
is zero or at an interepidemic level at the start and it is not
optimal that there are single or occasional spikes at the
beginning of the series. For that reason, the start of the series
should be a couple of weeks before an epidemic is detected.

Evaluation of Detection Module
The optimal threshold for the lower confidence limit of the
expected number of influenza-diagnosis cases was computed
to 0.21/day/100,000 for the detection algorithm. The detection
sensitivity and specificity (calculation based on the
interepidemic period 211 days) were both 1.00 and the
timeliness 0 (Figure 3). This means that the detection module
according to the definition (6.3 influenza-diagnosis
cases/100,000 during a floating 7-day period) detected the
2008-09 winter influenza season on the day it actually started.
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Figure 3. The detection algorithm applied on winter influenza season 2008-09 (A[H3N2]). The blue line represents the number of influenza-diagnosis
cases/day/100,000, the gray bar marks the start of the winter influenza season according to the definition (6.3 influenza-diagnosis cases/100,000 during
a floating 7-day period), and the orange line denotes the lower limit estimated using the detection algorithm.

Evaluation of Prediction Module
The prediction module performance was satisfying both with
regard to the peak timing and peak intensity. The peak timing
was estimated 8 days in advance and occurred 7 days before
the factual peak occurred. The predicted peak intensity at the

predicted day of the peak was estimated to 6.3
influenza-diagnosis cases/100,000 (Figure 4) compared with
the factual 8.5 influenza-diagnosis cases/100,000 at the day of
the actual peak, that is, the absolute difference between the
predicted and the actual incidence was 26%.
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Figure 4. The prediction method applied on winter influenza season 2008-09 (A[H3N2]). The blue line represents the number of known actual
influenza-diagnosis cases/day/100,000 at the time when the prediction is performed, the orange line represents the number of “unknown” actual
influenza-diagnosis cases/day/100,000 at the time when the prediction is performed from the first unknown day and until the peak has passed, the gray
bar marks the end of the known and the beginning of the “unknown” actual influenza-diagnosis cases/day/100,000, and the black line denotes the
predicted values (using the peak intensity prediction) from the first “unknown” day and until the predicted peak occurs.

Discussion

Principal Findings
The aim of this study was to present an integrated influenza
detection and prediction method that uses data electronically
available in local public health information systems for real-time
surveillance. In the performance evaluation based on
retrospective data, the method detected the winter influenza
season of 2008-09 on the day it actually occurred, whereas the

prediction module showed satisfying performance both with
regard to the peak activity timing and its intensity.

Comparison With Prior Work
Many important policy decisions in the response to increased
influenza activity are made at the local level, for example,
planning of resources at intensive care units and deciding social
distancing measures such as school closures. The design of the
presented integrated detection and prediction method can be
compared with current state-of-the-art big data approaches to
influenza forecasting [18]. One such approach for local
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application is a multi-linear, auto-regressive framework in which
information is synthesized from a variety of data sources,
ranging from Google Trends to electronic patient records (EPRs)
[5,6,25-27]. In this study, clinical influenza-diagnosis cases
were used for detection of a period of increased influenza
activity and for prediction of the peak intensity, whereas
syndromic telenursing data were used for prediction of the peak
timing. We chose not to use data directly from EPRs due to
integrity and legal issues. In addition to telenursing data, several
other syndromic data sources were available that also displayed
satisfactory associations with clinical influenza-diagnosis data,
for example, Google Trends data, website use data, and local
media coverage data [22]. Among the data sources available,
telenursing and Google Trends data had the longest lead times
and showed the strongest correlations with influenza-diagnosis
data. However, since daily Google Trends data could not be
guaranteed to be available on a constant routine basis, only
telenursing data were used as syndromic data source in the
present study. Moreover, we employ full-season learning periods
for model updates, whereas continuous updating of the model
during an epidemic is used in the multi-linear auto-regressive
framework. We chose seasonal updates because a central design
prerequisite was to highlight transparency of the method
construction and thus facilitate implementation by other
researchers. Adjustments of the algorithm processes are only
made before pandemics and during winter influenza seasons to
adjust detection levels for simmering low influenza activity.
We gather that methods for continuous updating have to be
dependent on the characteristics of local data and it is
challenging to formally define a continuous updating framework
in a decontextualized format sufficiently transparent to allow
transfer of the framework to other settings with maintained
performance levels.

Our approach also differs from the framework with the addition
of a detection function. Combined detection and prediction
methods are common in weather forecasting but not in infectious
disease epidemiology. It is somewhat surprising that this is the
case, as there are several studies that have focused on developing
either influenza detection or influenza prediction algorithms,
but seldom a combination of these [28]. However, one possible
reason for this fact can be that researchers or research groups
have attempted to develop integrated detection and prediction
methods but failed to obtain satisfying results for one or several
components and therefore chosen not to publish the findings.
We suggest researchers in this field to publish methods even if
the obtained results are not satisfying because other researchers
may want to further develop and improve these methods.

Public Health Implications
The performance evaluation of the integrated detection and
prediction method based on retrospective data showed promising
results. The rationale for developing our influenza detection
and prediction method was to inform the planning of local
response measures and adjustments of health care capacity.
During emerging epidemics of infectious diseases, it is vital to
have up-to-date information on epidemic trends because
hospitals and intensive care units have limited excess capacity
[29]. In Sweden, for example, the hospital bed capacity is
habitually over-extended already before winter influenza seasons

with on average 103 patients occupying 100 regular hospital
bed units [30]. It is therefore important that increased influenza
activity is noticed early at the local level to make time for
adjusting primary care and hospital resources already under
pressure to the demand in the community (especially
hospitalizations requiring intensive care). Syndromic
surveillance methods here serve as complements to traditional
surveillance by provision of earlier indications of influenza
activity [31,32]. However, although the method showed
promising performance, we contend that a retrospective
evaluation of a single season is insufficient for drawing valid
conclusions about its effectiveness. We find that a retrospective
evaluation of numerous seasons still would be insufficient.
Instead, prospective evaluations are warranted where historical
data are only used to determine thresholds and other parameters,
and the method is applied on forthcoming epidemics.

Strengths and Weaknesses
The method presented in this paper has both strengths and
weaknesses that need to be taken into regard. An important
strength is that the design rationale is documented in detail in
order to allow the researchers to consider the arguments for
different design decisions when building next generation of
integrated detection and prediction methods. Another key
strength is that analyses of an epidemic is divided into three
separate components (beginning of epidemic, peak timing of
epidemic, and peak intensity of epidemic), where statistical and
mathematical assumptions for each of these components are
made independently of each other. Also, different data sources
are applied in each component. Concretely, to detect the
beginning of an epidemic, exponential regression is applied on
influenza-diagnosis data; to predict the peak timing, simple
linear regression is applied on syndromic telenursing data; and
to predict the peak intensity, the epidemic is assumed to follow
a bell-shaped function of time around the peak and therefore a
derivate of the normal distribution density function is applied
on influenza-diagnosis data. An approach similar to this has
rarely been reported in the field of influenza surveillance. One
possible limitation of the method design is that the series of
actual influenza-diagnosis data are smoothed and the peak of
the smoothed series is used as the actual peak. However, as
mentioned in the Methods section, the reason for this design
choice was to reduce the risk of misleading influence from
outliers.

One potential limitation concerns the use of sensitivity and
specificity in the method. These metrics are, however, restricted
to assess the accuracy of the alerting threshold. We have
previously contended that it is important to determine the
appropriate period in time which calculations of sensitivity and
specificity are to be based upon [33]. This issue mainly concerns
sensitivity because once an epidemic has started, it is known
that the daily incidence will exceed the predetermined threshold
for a certain period ahead. Expanding this period would generate
higher sensitivity and thereby overestimate the method
performance. Similarly, if the periods are set too short, the
performance of the method may be underestimated. A short
period of the specificity can also lead to a situation where
hypothetic increases of the incidence level during interepidemic
periods are ignored in the calculations, leading to a higher value
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of the specificity which can also be deceiving. Therefore, we
chose to base the calculations of the sensitivity on the first 45
days of an epidemic and the specificity calculations on the
period from when the previous epidemic has ended and until
the beginning of the current epidemic (ie, for specificity the
period length varied).

Another possible limitation concerns the second prediction
component, where we chose to apply linear regression on 7-day
periods for the search of positive and negative trends in order
to find the peak timing in the syndromic data. The length of the
period could have been extended with 1-2 days to get more
reliable estimates of the trend. However, this alternative was
weighted against the risk of predicting the influenza-diagnosis
peak with fewer days in advance, and the advantage with earlier
prediction of saving these days was preferred. Another limitation
is that the prediction of the peak intensity is affected by the peak
timing prediction, since a precise prediction of the peak timing
increases the chance of an accurate prediction of the peak
intensity. Concretely, if the timeliness for the prediction of the
peak timing was 0 days instead of 7 days in our retrospective
evaluation of the 2008-09 winter influenza season, the predicted
peak intensity would have been estimated to 7.7 instead of 6.3
influenza-diagnosis cases/100,000 compared with the factual
8.5 influenza-diagnosis cases/100,000. In other words, the
absolute difference between the predicted and the actual
incidence would have been 10% instead of 26%. Finally, in the
second prediction component, we assumed that an influenza

epidemic takes a bell-shaped form from the beginning to the
end, and therefore we employed a derivate of a normal
distribution density function to find the peak intensity. The same
assumption was used by Bregman and Langmuir [24] to predict
the course of the AIDS epidemic in the United States but was
later shown to be inaccurate [34]. However, in the case of the
AIDS epidemic, the bell-shaped function was applied in a setting
where the underlying premises radically differed from that at
hand in the present study, that is, to predict the course of the
AIDS epidemic which had been ongoing for several years in an
ill-defined population. In contrast, in our study, the function is
used only to find the peak intensity in an increase of influenza
activity that lasts for only one season. In this context and for
these purposes, we believe that the assumption of a bell-shaped
curve is defensible.

Conclusions
During the recent decade, a multitude of algorithms for influenza
detection or prediction have been reported [28,35-38]. Unlike
meteorology where methods for integrated very-short and
long-term predictions have been used in practice settings for
several decades (see eg, [39-41]), surprisingly few such
approaches have been reported for influenza surveillance. Our
integrated detection and prediction method is one of the first
designed for application on naturally occurring local influenza
epidemics. The results of this study indicate that further
prospective evaluations of the method are justified.
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