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We provide a response to Allem and Ferrara [1], who recently
commented on our article, “Garbage in Garbage Out: Data
Collection, Quality Assessment and Reporting Standards for
Social Media Data Use in Health Research, Infodemiology and
Digital Disease Detection,” which was published in JMIR in
February 2016 [2]. In their comment, published in JMIR in
August 2016, entitled “The importance of Debiasing Social
Media Data to Better Understand E-Cigarette-Related Attitudes
and Behaviors,” Allem and Ferrara discuss the importance of
removing bias in social media data. They claim that automated
tweets are noise that injects bias into the data, and thus should
be removed before applying the framework we proposed [1].
We believe they misunderstood our intent. In addition, their
discussion misinterprets the key messages of our article; the
implication of their comments, which suggests that automated
tweets are garbage, is highly misleading. A formal response is
provided here to articulate accurately the main focus of our
article and present a different view about the “noise” in social
media data.

The objective of our paper was “to develop and apply a
framework of social media data collection and quality
assessment, and to propose a reporting standard,” as stated in
the abstract. The e-cigarette-related tweet data were used as “a
real-world example” to demonstrate how to apply this
framework to develop a search filter, and how to estimate the
measures of data quality under different conditions. The

objective of our paper was not to understand e-cigarette-related
attitudes and behaviors expressed on Twitter. 

The definition of the “noise” in social media data by Allem and
Ferrara, as any tweets produced from an account identified as
a social bot, is narrow and oversimplifying, and may even be
misleading in some cases. Organic and commercial tweets are
not isolated in the Twittersphere. Many organic tweets are
retweets or replies to commercial tweets, of which a large
number is generated by bots. Whether automated contents
generated by bots should be considered as noise depends on the
research topic at hand. Although it may be important to remove
bot tweets and focus solely on organic contents for certain
research topics, it is equally important to measure the amount
of these bot tweets and the content of (mis)information in these
tweets for many other research topics [3]. For example, a study
that examines the commercial advertising on e-cigarette should
include the tweets generated by bots. The automated social
media messages are not unique to the topic of e-cigarettes. For
many other research topics, including other tobacco products,
pharmaceutical products, dietary supplements, etc.,
automatically-generated marketing content is common. In fact,
one of the studies that Allem and Ferrara cited to justify
removing automated tweets discussed the value of
“understanding the effect of promotionally marketing
vaporization products” on social media using “cyborgs to mimic
organic users” because of their importance to public health and
policy [4]. This underscores the importance of being able to
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identify and quantify such automated messages in order to
understand their impact on the marketplace and individual
attitudes, beliefs and behaviors. 

Allem and Ferrara also briefly discussed the inherent bias in
social media data due to the fact that social media users are not
a representative sample of the general population. However,
this itself does not limit the value of social media data, and it
can be used as an advantage to study hard-to-reach populations
such as young adults, and ethnic, racial, and sexual minorities.
Social media can serve as a good alternative or complementary

data source to understand behavior and intentions among these
understudied and hard-to-reach groups. 

Removing automated contents and applying other approaches
to remove noise can be considered in the stage of developing
search filters if it is deemed appropriate for the research topics
in study. However, it is not a necessary component to be
considered for all research using social media data. This point
underscores the main thesis of our paper: that clear disclosure
about data cleaning and processing (e.g. whether bot tweets are
included or not) is important.
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