
Original Paper

Activity Recognition for Persons With Stroke Using Mobile Phone
Technology: Toward Improved Performance in a Home Setting

Megan K O'Brien1,2*, PhD; Nicholas Shawen1*, MS; Chaithanya K Mummidisetty1, MS; Saninder Kaur1, MD; Xiao

Bo3, MS; Christian Poellabauer3, PhD; Konrad Kording2, PhD; Arun Jayaraman1,2, PT, PhD
1Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Rehabilitation Institute of Chicago, Chicago, IL, United States
2Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States
3Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, United States
*these authors contributed equally

Corresponding Author:
Arun Jayaraman, PT, PhD
Max Nader Lab for Rehabilitation Technologies and Outcomes Research
Rehabilitation Institute of Chicago
345 E. Superior St.
Chicago, IL, 60611
United States
Phone: 1 312 238 6875
Fax: 1 312 238 2081
Email: a-jayaraman@northwestern.edu

Abstract

Background: Smartphones contain sensors that measure movement-related data, making them promising tools for monitoring
physical activity after a stroke. Activity recognition (AR) systems are typically trained on movement data from healthy individuals
collected in a laboratory setting. However, movement patterns change after a stroke (eg, gait impairment), and activities may be
performed differently at home than in a lab. Thus, it is important to validate AR for gait-impaired stroke patients in a home setting
for accurate clinical predictions.

Objective: In this study, we sought to evaluate AR performance in a home setting for individuals who had suffered a stroke,
by using different sets of training activities. Specifically, we compared AR performance for persons with stroke while varying
the origin of training data, based on either population (healthy persons or persons with stoke) or environment (laboratory or home
setting).

Methods: Thirty individuals with stroke and fifteen healthy subjects performed a series of mobility-related activities, either in
a laboratory or at home, while wearing a smartphone. A custom-built app collected signals from the phone’s accelerometer,
gyroscope, and barometer sensors, and subjects self-labeled the mobility activities. We trained a random forest AR model using
either healthy or stroke activity data. Primary measures of AR performance were (1) the mean recall of activities and (2) the
misclassification of stationary and ambulatory activities.

Results: A classifier trained on stroke activity data performed better than one trained on healthy activity data, improving average
recall from 53% to 75%. The healthy-trained classifier performance declined with gait impairment severity, more often
misclassifying ambulatory activities as stationary ones. The classifier trained on in-lab activities had a lower average recall for
at-home activities (56%) than for in-lab activities collected on a different day (77%).

Conclusions: Stroke-based training data is needed for high quality AR among gait-impaired individuals with stroke. Additionally,
AR systems for home and community monitoring would likely benefit from including at-home activities in the training data.

(J Med Internet Res 2017;19(5):e184) doi: 10.2196/jmir.7385
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Introduction

Recovering independent mobility after a stroke, both at home
and in the community, is a priority for most stroke survivors
[1]. The development of therapeutic interventions to restore
walking and functional recovery remains a major focus of
rehabilitation for individuals after stroke [2]. However, it is
difficult to know which rehabilitation strategies most improve
functional mobility. As stroke units strive to optimize inpatient
and outpatient care and shorten hospital stays, it becomes
increasingly important to measure the impact of rehabilitation
beyond the traditional clinical setting.

Monitoring daily physical activity is essential to understanding
patient recovery. After all, community-dwelling stroke patients
exhibit high levels of sedentary behavior [3,4], which has been
identified as a risk factor for secondary cardiovascular disease
and mortality [5]. Decreasing sedentary time by increasing
ambulation or even standing time may reduce these risks [6,7]
and prevent further health complications for persons with stroke.
Wearable sensors, coupled with activity recognition (AR)
models and machine learning techniques, can identify various
mobility-related activities, such as sitting, lying, standing,
walking, and stair use, in the clinic and in the home and
community. This enables therapists to develop personalized,
data-driven programs to advise patients and improve activity
levels [8]. Thus, efficiently measuring mobility activities through
a wearable AR system is a major quantitative outcome measure
for studying new therapeutic interventions for stroke survivors.

Smartphones in particular have proven promising for
unobtrusive health monitoring among patients [9], as they are
now inexpensive, widely used, have an integrated system of
movement-related sensors, and are able to transmit data
continuously. Additionally, with access to the Global Positioning
System (GPS), smartphones can allow clinicians and researchers
to quantify outdoor community mobility [10-12] for tracking
recovery and societal reintegration. Smartphones offer a
favorable alternative to current monitoring devices such as
pedometers, step activity monitors (SAMs), or other
accelerometry-driven products [13], which focus exclusively
on step counts and walking bouts.

A significant obstacle to the deployment of AR systems in
rehabilitation is their reliability when applied to patients. Recent
work has demonstrated that AR classifiers trained using in-lab
data from young, able-bodied adults do not generalize to older
adults [14], persons with Parkinson’s disease [15], or patients
with lower limb impairments [16]. Rather, using training data
from the neurological population of interest notably improved
AR accuracy, likely because such groups exhibit different
movement patterns than a young, healthy cohort [17]. Despite
some ongoing research for stroke-based AR [18], we know little
about the generalization of AR classifiers from healthy subjects
to stroke patients. In particular, the heterogeneous
movement-related outcomes that accompany stroke, such as
level of gait impairment, may affect AR performance. It remains
to be seen whether activities from a healthy cohort provide
sufficient training data to classify stroke activities.

Another obstacle for the deployment of AR systems in
rehabilitation is their reliability when applied to at-home
activities. That is, AR classifier training usually relies on
activities performed in a laboratory, but the end goal for these
classifiers is to detect activities performed elsewhere in the
community. Considering that a laboratory is an unfamiliar
environment under close researcher supervision, it stands to
reason that activities performed in a lab may look different from
those performed at home. It is thus critical to know whether
in-lab activities provide sufficient training data to classify
at-home activities or whether models should be tuned to the
environment of interest.

Here, we set out to investigate AR for individuals with
stroke—specifically, the dependence of AR performance on the
type of training data (from stroke or healthy subjects) and the
environment (laboratory or home setting). Young, healthy
individuals and community ambulators with stroke wore a
smartphone while performing and self-labeling various
mobility-related activities. We compared the ability of AR
models trained on either a healthy or stroke cohort to classify
activities in stroke cohorts with different levels of gait
impairment. We also compared the ability of AR models trained
on activities collected in either a laboratory or a home setting
to classify activities at home for a stroke cohort. This approach
is an important first step in highlighting potential issues with
home monitoring using traditional laboratory-based AR
methods.

Methods

Participants
A total of 30 individuals with stroke (mean 60.7, SD 13.3 years;
18 males and 12 females) participated in this study. Of these
subjects, 21 had ischemic strokes, and 9 had hemorrhagic
strokes; 16 sustained right-side damage, and 14 sustained
left-side damage. Median stroke latency was 4.6 years (range
1986-2015) at the time of the study. Exclusion criteria included
severe cognitive impairment (scoring ≤17 points on the
Mini–Mental State Examination [19] and physical impairment
that would inhibit ability to use a smartphone. We determined
gait impairment using preferred walking speed during a 10-meter
walk test (10MWT). This method categorized 8 subjects with
mild impairment (>0.8 m/s), 13 subjects with moderate
impairment (≥0.4 and ≤0.8 m/s), and 9 subjects with severe
impairment (<0.4 m/s). Fifteen healthy subjects (mean 31.1,
SD 9.2 years; 4 males and 11 females) were also recruited for
this study, using a sample of convenience.

All subjects provided written informed consent before
participation. The study was approved by the Institutional
Review Board of Northwestern University (Chicago, IL) in
accordance with federal regulations, university policies, and
ethical standards regarding research on human subjects.

Smartphone Sensing System
Subjects wore a Samsung Galaxy S4 running Android OS 4.4.4
on their waist in a belted pouch. The pouch was not restricted
to any particular location on their waists (eg, right or left side)
to make the home deployment as realistic as possible. A custom
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app named CIMON [20,21] collected tri-axial accelerometer
data at an average of 60 samples per second, gyroscope data at
60 samples per second, and barometer data at 6 samples per
second. Subjects self-labeled various mobility-related activities
through CIMON’s user interface. Sensor data and labels were
sent in real time via WiFi and LTE to a HIPAA-compliant
(Health Insurance Portability and Accountability Act of 1996),
secure server at the University of Notre Dame (Notre Dame,
IN).

Activity Labeling
Subjects with stroke performed and labeled a sequence of six
activities (Sitting, Lying, Standing, Stairs Up, Stairs Down, and
Walking) during two in-lab sessions, and they performed another
session independently at home. During their first visit to the
lab, they completed the activity sequence three times between
rest periods. They were then asked to perform each of the six
activities at least twice at home on the following day. They
returned to the lab on the third day to complete three additional
sequences. The healthy subjects performed and labeled the same
activities at their leisure over a two-week period, and we asked
that they complete each activity at least twice per day. Before
taking the phones home, all subjects were taught to use the app
and labeling system, and they performed several activities under
the supervision of the researchers to ensure understanding.

Labeling an activity involved removing the phone from its
pouch, selecting an activity label from a dropdown menu on
the user interface, replacing the phone in the pouch, and
commencing with the activity. This approach generated noisy,
high-frequency sensor signals unrelated to the movement of
interest when removing and replacing the phone. We removed

these extraneous signals using an activity-dependent threshold
on sample entropy, supplemented by manual trimming, at the
beginning and end of each label. We also removed any trials
that the subjects had obviously mislabeled, which occasionally
occurred in the Home sessions (eg, a brief “Walking” trial with
nearly flat signals from the accelerometer and gyroscope sensors,
suggesting that the subject selected the incorrect label and
neglected to cancel the trial).

Activity Recognition
Data processing, activity recognition, and model analysis were
implemented in MATLAB 2016b (MathWorks; Natick, MA).
Accelerometer and gyroscope data were resampled to 50 Hz,
and barometer data were resampled to 6 Hz to correct for any
variability in the sensors’ sampling frequencies. Each activity
recording was then divided into 10-second data clips (instances)
with 90% overlap.

Initially, 270 features were identified from the activity data
clips. Of these features, 131 arose from the accelerometer, 131
arose from the gyroscope, and 8 arose from the barometer.
Features included statistical measures of the sensor signal, its
derivatives, and the frequency domain (Tables 1 and 2).

To reduce the complexity of the model, a reduced feature set
was chosen using MATLAB’s Out-of-Bag Predictor Importance
method for a random undersampling (RUS) random forest (RF)
model trained on the healthy subject data. RF models are often
used in AR for their efficiency and flexibility [22,23],
maintaining high accuracy for multiclass problems and large
feature sets. The final feature set included 151 features, with
80 from the accelerometer, 63 from the gyroscope, and 8 from
the barometer.

Table 1. Activity recognition model features from accelerometer and gyroscope signals.

Number of featuresDescription

3 (per axis)Mean, range, and interquartile range

3 (per axis)Moments: standard deviation, skew, and kurtosis

4 (per axis)Histogram: bin counts of z-scores from -2 to 2

4 (per axis)Moments of derivative: mean, standard deviation (SD), skew, and kurtosis

1Mean of the squared norm

1Sum of axial standard deviations

1 (per axis)Pearson correlation coefficient, r(xy), r(xz), r(yz)

2 (per axis)Mean cross products (raw and normalized), xy, xz, yz

2 (per axis)Absolute mean of cross products (raw and normalized)

4 (per axis)Power spectra: mean, standard deviation, skew, and kurtosis

20 (per axis)Mean power in 0.5 Hz bins from 0-10 Hz

Table 2. Activity recognition model features from barometer signals.

Number of featuresDescription

4Moments of derivative: mean, SD, skew, and kurtosis

3SD, range, and interquartile range

1Slope of linear regression
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The same analysis was also performed using the stroke subject
data, resulting in a set of 112 features, of which 102 were shared
with the set of 151 features from the healthy subject data.
Because of this similarity, we opted to use the set of 151 features
throughout our models for simplicity. The chance of overfitting
to the Healthy training set was negligible since less than half
of the available features were discarded and the set overlapped
substantially with features derived from the Stroke training set.
Further potential for overfitting could have been removed if
features were selected based on an external set not used for
model training or testing, or by using an additional layer of
cross-validation to the same effect.

RF tends to misclassify activities that are underrepresented in
the data and can underperform on the Stairs Up and Stairs Down
activities because of their rarity within the training data
(respectively accounting for 1.68% (4138/246,283) and 1.51%
(3723/246,823) of feature vectors). We implemented the
RUSBoost algorithm [24] using decision trees (minimum leaf
size=5, learn rate=1, number of trees=200) to improve model
performance for an imbalanced class distribution (eg,
underrepresented stair activity, overrepresented sitting activity).
This number of trees was found to be sufficient for nearly full
learning without overfitting. Using RUSBoost increased mean
recall of Stairs Up by 6.5% and Stairs Down by 3.3% over an
RF model, while showing little average change in recall over
the remaining activities. Based on this finding, we used
RUSBoost in the remainder of our analysis.

Model Analysis
We evaluated various AR classifiers for their performance in
stroke activity recognition. We designated these classifiers as
follows: (1) population models comparing the performance of
a model trained using activity data from young, healthy subjects
(Healthy) versus older stroke subjects (Stroke); (2) gait
impairment models comparing the performance of a young,
healthy training set on stroke subjects with mild versus moderate
versus severe gait impairment; and (3) environmental models
for stroke subjects, comparing the ability of the first in-lab
training set (Lab 1) to recognize at-home activities (Home)
versus the in-lab activities performed on a separate day (Lab
2). We also designed an environmental model trained and tested
on only at-home activities. These model comparisons and their
respective training and testing sets are depicted in Figure 1.

Population models were trained and tested on either the Healthy
or Stroke subject data using leave-one-subject-out cross
validation (Healthy-to-Healthy, Stroke-to-Stroke). The
performance of the Healthy population model, trained on all 15
healthy subjects, was also evaluated for each Stroke subject
(Healthy-to-Stroke). The Healthy-to-Healthy model yielded a

baseline AR performance, against which the other models were
compared.

To further probe the efficacy of Healthy data in detecting
activities for persons with stroke, the Healthy-to-Stroke model
results were separated for different subgroups of the stroke
population based on gait impairment (Mild, Moderate, and
Severe). We hypothesized that AR models trained on Healthy
activities would perform better for subjects with less gait
impairment (ie, a Healthy-to-Mild model would perform better
than a Healthy-to-Severe model) and that this improved
performance would be more pronounced for ambulatory
activities (Stairs Up, Stairs Down, and Walking). We performed
a similar analysis using the Stroke population training data to
determine whether the performance of the Stroke population
model is affected by level of gait impairment. We hypothesized
that the mixed-impairment Stroke population model would
perform similarly across impairment subgroups.

Environmental models assessed the capacity of training data
collected in a laboratory setting to classify activities performed
at home. We used personal models trained on Lab 1 data and
tested on Lab 2 data for a baseline comparison (Lab-1-to-Lab
2), as well as Home data (Lab 1-to-Home). For the same set of
subjects, we designed personal models trained on Home data
and tested on other Home data via a four-fold cross validation
(Home-to-Home). In this model, the Home data were divided
into four folds chronologically rather than randomly, selected
to ensure no overlap between adjacent folds. We used only
subjects who had at least 60 seconds of each activity in each
environmental setting (Lab 1, Home, and Lab 2), which limited
the pool to six subjects. With this smaller dataset, we reduced
the number of classes to four (combining Sitting and Lying as
well as Stairs Up and Stairs Down) to focus on the broader
misclassification of stationary and ambulatory activities. We
hypothesized that the Lab 1-to-Lab 2 model and the
Home-to-Home model would perform better than the Lab
1-to-Home model, expecting differences to arise in subject
behavior and in the relative distribution of activities when
performing activities at home versus in the lab.

We focused on personal models for the most direct comparison
of AR efficacy in the Lab and Home environments. In a practical
implementation of AR, a global model—with a training set
based on multiple subjects—would be used to classify activities
from a new subject, as in the population models described above.
In order to represent this use-case scenario, we also examined
global models for the three environmental analyses: Lab
1-to-Lab 2, Lab 1-to-Home, and Home-to-Home. The
environmental global models were implemented using
leave-one-subject-out cross validation on the same group of six
subjects evaluated in the personal models.
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Figure 1. Efficacy of stroke AR was compared using three types of models.

Barometer Sensor Validation
The barometer is a relatively new feature in smartphone
technology, and it is important to determine whether this
sensor’s signals provide useful information to AR algorithms.
Much of AR to date has relied predominantly on movement
signals from accelerometers and, more recently, gyroscopes to
distinguish between daily mobility-related activities. We thus
examined the Healthy-to-Healthy model with and without the
8 barometer features to assess whether this sensor contributes
to overall AR performance.

We found that the barometer improved recognition of stairs
activity, similar to the findings of Del Rosario et al [14].
Specifically, including the 8 barometer features reduced
misclassification of Stairs Up as Walking (from a
misclassification of 31.32% [1296/4138] to 13.12% [543/4238])
and reduced misclassification of Stairs Down as Walking (from
a misclassification of 33.04% [1230/3723] to 14.07%
[524/3723]). Including these features also decreased
misclassification of Stairs Down as Stairs Up (from 17.67%

[731/4138] to 9.59% [397/4138]). Any changes to Sitting, Lying,
and Standing classification with and without the barometer were
negligible. As the barometer proved beneficial for stair
classification, we included barometer data in our main analyses.

Subject Sample Size for Training Data
We evaluated the effect of subject sample size on AR
performance to determine the dependence of classifier accuracy
on the number of subjects in the training set. For each population
model and the Healthy-trained gait impairment model, we varied
the number of subjects used in training from two to fourteen,
selecting 1200 instances at random from the available training
subjects. We chose 1200 instances because this was the
maximum number available between the two subjects with the
least amount of data. The number of instances was kept constant,
though more subjects were added to the training set to determine
the effect of intra-subject variability rather than simply the
addition of more data. Each instance is a 10 second clip with
90% overlap between clips, so this corresponds to about 1200
seconds (20 minutes) of data. The models were evaluated on
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the remaining test subjects to determine the mean recall. This
process was repeated 1000 times for each subject sample size
to provide the mean and 95% CIs.

Statistical Analysis
The primary measure of model performance was mean recall.
Recall refers to the percentage of correct classifications for a
single activity out of all instances of that activity. Recall is the
multiclass version of sensitivity, which is only defined for
problems with two classes. For the population and environmental
models, mean recall was computed for each model as recall
averaged across activity classes. Performance of the gait
impairment models was additionally evaluated based on the
misclassification between stationary (Sitting, Lying, and
Standing) and ambulatory (Stairs Up, Stairs Down, and
Walking) activities.

Paired t tests were used to compare mean recall between the
Healthy-to-Stroke and the Stroke-to-Stroke population models,
as well as to compare mean recall between the Lab 1-to-Home
and the Lab 1-to-Lab 2 environmental models. A two-sample
t test was used to compare mean recall between the
Healthy-to-Healthy and the Stroke-to-Stroke population models.
For the gait impairment models, analysis of variance (ANOVA)
was used to examine variations in stationary and ambulatory
recall among the three impairment groups, using the Tukey
honest significant difference test for multiple comparisons.
Pearson correlation coefficients were also computed to
determine the association between model performance and gait

impairment, including mean recall of ambulatory activities and
misclassification between stationary and ambulatory activities.
Statistical significance levels were set to alpha=0.05, and values
are presented as mean (SD).

Results

Distribution of Activity Classes
The amount of data available for training and testing was
affected by incidences of transmission-based data drop (poor
4G/LTE signal, leading to transmission backlog and data loss),
noncompliance (subject did not label an expected activity), and
mislabeling (incorrect activity selected). The percentages of
activity labels affected are provided in Table 3. In conjunction
with differences in the amount of time spent labeling, this
produced class distributions that varied notably between subject
groups (Figure 2). The Healthy population generated more than
three times the number of instances than the Stroke population
(246,283 vs 71,861). Stationary activities accounted for 82.88%
(204,123/246,283) of the Healthy data and 53.99%
(38,801/71,861) of the Stroke data. Walking was the most
prevalent activity for Stroke subjects, accounting for 35.12%
(25,234/71,861) of the instances for that population.

Of the six subjects included in the environmental models, three
had mild gait impairment, one had moderate gait impairment,
and two had severe gait impairment. The distribution of classes
for each of these subjects is given in Figure 2.

Table 3. Data loss: average and 95% CIs for percentage of activity labels lost to transmission drop, noncompliance, and mislabeling for each population
and environment.

StrokeHealthyLoss type

Transmission drop

44.9 (28.9-61.4)50.6 (40.8-60.4)Home

11.9 (0.8-23.0)N/AaLab1

31.0 (14.2-47.9)N/ALab 2

Noncompliance

23.6 (13.3-33.9)15.2 (4.9-25.4)Home

3.7 (0.4-7.1)N/ALab1

1.4 (0-3.0)N/ALab 2

Mislabeling

12.4 (1.2-23.0)2.5 (1.0-3.9)Home

12.1 (0.8-23.3)N/ALab1

23.3 (8.9-37.7)N/ALab 2

aN/A: not available.
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Figure 2. (A) Prevalence of activity classes within the healthy population (gray) and within the stroke population (orange). (B) Prevalence of classes
for each of the six Stroke subjects included in the personal environmental models. The total number of instances for each population or subject is shown
in italics.
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Figure 3. (A) Confusion matrices for each population model, showing average activity recall across test subjects. (B) Boxplots of activity recall for
each population model.

Population Models
As expected, the Stroke-to-Stroke model had higher recall across
activities than the Healthy-to-Stroke model (Figure 3), showing
particular improvement when classifying the Stairs activities.

The mean recalls of the Healthy-to-Healthy, Healthy-to-Stroke,
and Stroke-to-Stroke models were 73% (SD 11), 53% (SD 13),
and 75% (SD 10), respectively (Figure 3). The Healthy-to-Stroke
model performed significantly worse than the
Healthy-to-Healthy model (two-sample t test, P<.001) and the
Stroke-to-Stroke model (paired t test, P<.001). There was no
significant difference between the Healthy-to-Healthy and the
Stroke-to-Stroke models (two-sample t test, P=.52).

Average misclassification of ambulatory activities as stationary,
and vice versa, was low for the Healthy-to-Healthy (<1.1%)
and the Stroke-to-Stroke models (<4.4%). For the
Healthy-to-Stroke model, average misclassification of stationary
activities as ambulatory was also low (0.77%, 297/38,801), but
much more pronounced for ambulatory activities mistaken as
stationary ones (30.88%, 10,210/33,060). That is, using a
Healthy training set to test on post-stroke activities
underestimated ambulation and overestimated less mobile
activities such as sitting and standing.

Gait Impairment Models
Confusion matrices for the three gait impairment models using
a Healthy training set are shown in Figure 4. For stationary
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activities, the mean recalls of the Healthy-to-Mild,
Healthy-to-Moderate, and Healthy-to-Severe models were 59%
(SD 7), 74% (SD 16), and 74% (SD 13), respectively. An
ANOVA on the mean stationary recall for each stroke subject
yielded no significant variation between the three models
(F2,26=1.83, P=.18). For ambulatory activities, the respective
mean recalls of the three models were 56% (SD 13), 35% (SD
19), and 23% (SD 20). An ANOVA on the mean ambulatory
recall for each subject revealed significant variation between
the three models (F2,26=6.96, P=.004).

A post-hoc Tukey test confirmed that the Healthy-to-Mild and
Healthy-to-Severe mean recall was significantly different
(P=.003); the Healthy-to-Moderate model did not have
significantly different mean recall from Healthy-to-Mild (P=.11)
or Healthy-to-Severe (P=.12).

In fact, across all stroke participants in this study, there was a
significant, moderate correlation between mean recall in the
ambulatory activities and walking speed in the 10MWT (Figure
4; r=.641, P<.001). That is, the performance of the Healthy
training set to classify stairs and walking activity declined as
gait impairment increased. On the other hand, there was no
association between mean recall in stationary activities and
walking speed (r=−.262, P=.17).

The effect of gait impairment appeared most pronounced in the
classification of ambulatory activities. Average misclassification
of stationary activities decreased slightly with gait impairment,
from 1.07% (97/9075) in Mild to 0.12% (19/16,077) in Severe.
Average misclassification of ambulatory activities as stationary
activities increased substantially with gait impairment, from
10.21% (818/8014) in Mild to 30.02% (3354/11,172) in
Moderate, and to 51.01% (7077/13,874) in the Severe subjects.
The Healthy-to-Mild model more accurately distinguished
between stationary and ambulatory activities, with mean recalls
of 99% (SD 1) and 90% (SD 5), respectively.

There was a moderate negative correlation between
misclassification of ambulatory activities and walking speed in
the 10MWT (Figure 4; r=−.634, P<.001). There was no
association between misclassification of stationary activities
and walking speed (r=−.307, P=.11). Thus, gait impairment
hindered the classification of ambulatory activities, without
impacting stationary activities.

The mixed-impairment training data from the Stroke-to-Stroke
model recognized activities more accurately than the
Healthy-to-Stroke model, across impairment levels. The mean
recalls of the Stroke-to-Mild, Stroke-to-Moderate, and
Stroke-to-Severe models were 72% (SD 16), 78% (SD 11), and
74% (SD 16), respectively (Figure 4). An ANOVA on the mean

recall for each subject yielded no significant variation between
the three models (F2,26=1.33, P=.28).

Average misclassification of stationary activities was similar
across gait impairment groups for the Stroke-to-Stroke model,
with 2.7% of instances misclassified in Mild, 3.7% in Moderate,
and 1.8% in Severe (Figure 4). Average misclassification of
ambulatory activities as stationary activities occurred more
frequently for persons with severe gait impairment, with 6.9%
of instances misclassified in Severe versus 2.4% in Mild and
1.3% in Moderate. Most of these errors in the Severe subjects
resulted from confusing stairs activity with standing, presumably
due to the slower speeds and longer pauses on the stairs.

Environmental Models
The mean recall values of the Lab 1-to-Lab 2, Lab 1-to-Home,
and Home-to-Home models were 72% (SD 18), 52% (SD 12),
and 67% (SD 7), respectively (Figure 5). The Lab 1-to-Home
model performed significantly worse than then Lab 1-to-Lab 2
model (P=.024) and the Home-to-Home model (P<.001). There
was no significant difference between the Lab 1-to-Lab 2 and
the Home-to-Home models (P=.43). In the Lab 1-to-Home
model, average misclassification of stationary activities as
ambulatory occurred in 17.86% (2,075/11,618) of instances,
compared with 0.54% (7/1,296) in the Lab 1-to-Lab 2 model
and 1.58% (179/11,316) in the Home-to-Home model. More
drastically, the Lab 1-to-Home model misclassified ambulatory
activities as stationary on an average of 40.34% (2,273/5,635),
compared with 6.57% (68/1,035) for the Lab 1-to-Lab 2 model
and 4.10% (218/5,320) for the Home-to-Home model.

To compare the effects of environment in a practical AR
implementation, we also examined global models for Lab
1-to-Lab 2, Lab 1-to-Home, and Home-to-Home. The mean
recall values of these models were 80% (SD 11), 65% (SD 14),
and 61% (SD 9), respectively. There was no significant
difference between the Lab 1-to-Lab 2 and the Lab 1-to-Home
global models (P=.07), nor between the Lab 1-to-Home and the
Home-to-Home global models (P=.53). The Home-to-Home
global model performed significantly worse than the Lab
1-to-Lab 2 global model (P=.004). In the Lab 1-to-Home global
model, average misclassification of stationary activities as
ambulatory occurred in 0.84% (98/11,618) of instances,
compared with 0.54% (7/1,296) in the Lab 1-to-Lab 2 global
model and 1.34% (156/11,618) in the Home-to-Home global
model. More drastically, the Lab 1-to-Home model misclassified
ambulatory activities as stationary on an average of 12.49%
(704/5,635) of the time, compared with 3.57% (37/1,035) for
the Lab 1-to-Lab 2 model and 3.07% (173/5,635) for the
Home-to-Home model.
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Figure 4. (A) Confusion matrices for each gait impairment in the Healthy-to-Stroke model. (B) For a Healthy training set, walking speed in the 10MWT
is positively correlated with mean recall across ambulatory activities (left) and negatively correlated with misclassification of ambulatory activities as
stationary (right) when using a Healthy training set. (C) For a Stroke training set, mean recall and misclassifications of ambulatory activities are similar
between gait impairment groups.

In summary, personal models exhibited a marked improvement
in mean recall when using a Home training set rather than a Lab
training set to classify Home activities. Global models that were
run on six subjects did not show such improvement. Both types
of AR models showed similar trends in reduced misclassification
of Home ambulatory activities when using a Home rather than
Lab training set.

Sample Size of Training Subjects Achieves
Near-Optimal Performance
Mean recall increased with training set sample size in our
population models (Figure 6). The Healthy-to-Healthy model

performance plateaued after about 10 training subjects. The
Healthy-to-Stroke performance plateaued at about 12 subjects,
regardless of the impairment severity group used for testing
(Figure 6). The Stroke-to-Stroke model began to plateau at 14
subjects. Therefore, we recommend using a training pool of at
least 14 subjects for optimal AR performance for persons with
stroke. More subjects may be necessary for AR involving more
activity classes than the six used in this study.

This suggests that our models, using 14 healthy and 29 stroke
subjects in training, achieved near-optimal performance. Note
that the analyses presented in the main text included all available
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instances for each subject. Including more training instances
would produce higher mean recall than those given for our
population models. For a larger number of instances, fewer
subjects may be necessary to achieve the point of marginal
performance gains.

Healthy training data yielded only marginal improvements using
more than 10-12 subjects. Stroke training data yielded continued
improvements using up to 14 subjects.

Figure 5. (A) Confusion matrices and (B) boxplots of activity recall for the personal environmental models.
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Figure 6. Average and SD of mean recall for (A) population models and (B) gait impairment models using different subject sample sizes in training
data (1200 random instances pulled, repeated 1000 times).

Discussion

Principal Findings
We have shown that training AR models on a mixed-impairment
stroke population improves activity recognition for persons with
stroke compared with training on a healthy population,
increasing mean recall from 53% to 75%. Models trained on
either the healthy population or patients with mild gait
impairment performed poorly when classifying ambulatory
activities in patients with severe gait impairment, lowering mean
recall to 23% by increasingly misclassifying ambulatory
activities as stationary ones.

Finally, personal models trained on in-lab activities performed
poorly when tested on at-home activities, with 56% recall.
Global models, which account for inter-subject variability, may
be less susceptible to variability in activities between
environmental contexts. However, the effect of environment on
global models remains to be demonstrated with a sufficient
number of subjects in the training set; using only six subjects
in the environmental global model analysis is likely insufficient
to achieve optimal model performance. Taken together, our
results suggest that future community monitoring systems for
persons with stroke should incorporate activity training data
collected outside the laboratory using cohorts with similar gait
impairment or a wide range of gait impairments.

Comparison With Prior Work
Our results for the stroke population align with previous work
validating AR reliability for persons with neurological injury
when using training data from a young, healthy cohort
[14-16,18]. We have extended this analysis to stroke by
comparing AR across levels of gait impairment, finding that
the healthy-trained model increasingly underestimated
ambulation with impairment severity. This is especially
problematic as it affects a population that already exhibits
reduced ambulation. Conversely, misclassification was reduced

across impairment groups using a model trained on a
mixed-impairment stroke cohort (Figure 4). Our results indicate
that training sets incorporating a broad range of gait impairments
may be generally sufficient to classify the activities of a stroke
subject.

Our study also offers several contributions to community
monitoring research for persons with stroke. We have presented
an activity recognition system using smartphone technology
that allows users to independently label activity data outside
the laboratory. Using this system, we have evaluated the validity
of various activity recognition models when classifying activities
in persons with stroke. Our findings agree with a recent study
by Albert et al [25], in which support vector machine models
trained on home activity data outperformed models trained on
lab data when classifying mobility-related activities for patients
with incomplete spinal cord injury. Our results further
demonstrate the need to train AR models using data
representative of home activities as best as possible for the
population of interest. We expect this would also hold for
activity data collected from other movement sensors, such as
inertial measurement units (IMUs).

Limitations
While this work is an important first step in highlighting
potential issues in AR for community-based monitoring, our
findings should be considered in the context of several
limitations. For one, the healthy cohort was not age-matched
to the stroke cohort, which may underestimate the performance
of the Healthy-to-Stroke population model. Nevertheless,
patients with stroke have reduced walking speeds relative to
age-matched controls [26], and we do not expect that
age-matching would negate our overall findings in the
population models. Indeed, age and neurological injury both
appear to negatively impact AR performance when training
with activities from a young, healthy population.
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The positioning of the mobile phone may present another
limitation. Other studies using mobile phone data have placed
the phone in the pocket and achieved better resolution of
stationary activities than the models presented here. For
example, Kwapisz et al [27] achieved high sensitivities for both
sitting and standing (>93%) with a mobile phone placed in the
pocket. Sensor data collected from the waist may not be
adequate to distinguish between sitting and standing postures.
We decided to keep the phone in a belted pouch at the waist to
minimize discomfort, avoid the need for large-pocketed clothing,
and maintain consistent phone access for all subjects during
labeling.

A third limitation of our study was the reduced amount of home
data available for AR validation in the stroke population,
resulting from data loss and protocol design. Most of the data
loss resulted from transmission-based data drops, which
happened in cases of poor 4G/LTE signal. Specifically,
continuously poor signal would lead to a data backlog and
prevent new data from being captured. This was a problem with
the CIMON app that has since been improved for future studies.
Furthermore, because stroke subjects only completed one session
of at-home labeling, we expect the Home-to-Home personal
models to have slightly overestimated performance, though this
is likely negligible relative to the poor performance of the
Lab-to-Home models. Follow-up studies should collect activity
data on different days and in more varied community
environments to better capture variance in behavior.

Future work should consider the amount of training data needed
for satisfactory AR performance in a stroke cohort. Model
accuracy changes with the sample size of healthy and stroke
subjects included in the training set. We found that about 10
healthy subjects and 14 stroke subjects achieved satisfactory
AR accuracy, using 20 minutes of total activity data for model
training (Figure 6). However, the amount of training data is not
the sole determinant of model quality. As we have demonstrated
in this study, consideration of target population and environment
are crucial to maximize AR performance.

Conclusions
Improving the reliability of AR algorithms for persons with
stroke has significant benefits for home and community
monitoring. Wearable technology paired with AR will allow
clinicians to construct and supervise remote/home rehabilitation
programs, utilizing data-driven feedback about patient activities.
Our recommendation for future stroke-based AR models is to
use training data from a balanced distribution of gait impairment
levels, thereby including as much variety as possible to improve
performance across all levels. Future studies should further
examine real-world activity labeling to improve the ability of
AR models to generalize across multiple environmental contexts,
not just in the laboratory and at home. These findings may help
guide the construction of future AR models for persons with
stroke and other clinical populations.
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RF: random forest
RUS: random undersampling
SD: standard deviation
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