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Abstract

Background: Community-acquired pneumonia is a leading cause of pediatric morbidity. Administrative data are often used to
conduct comparative effectiveness research (CER) with sufficient sample sizes to enhance detection of important outcomes.
However, such studies are prone to misclassification errors because of the variable accuracy of discharge diagnosis codes.

Objective: The aim of this study was to develop an automated, scalable, and accurate method to determine the presence or
absence of pneumonia in children using chest imaging reports.

Methods: The multi-institutional PHIS+ clinical repository was developed to support pediatric CER by expanding an
administrative database of children’s hospitals with detailed clinical data. To develop a scalable approach to find patients with
bacterial pneumonia more accurately, we developed a Natural Language Processing (NLP) application to extract relevant
information from chest diagnostic imaging reports. Domain experts established a reference standard by manually annotating 282
reports to train and then test the NLP application. Findings of pleural effusion, pulmonary infiltrate, and pneumonia were
automatically extracted from the reports and then used to automatically classify whether a report was consistent with bacterial
pneumonia.

Results: Compared with the annotated diagnostic imaging reports reference standard, the most accurate implementation of
machine learning algorithms in our NLP application allowed extracting relevant findings with a sensitivity of .939 and a positive
predictive value of .925. It allowed classifying reports with a sensitivity of .71, a positive predictive value of .86, and a specificity
of .962. When compared with each of the domain experts manually annotating these reports, the NLP application allowed for
significantly higher sensitivity (.71 vs .527) and similar positive predictive value and specificity .

Conclusions: NLP-based pneumonia information extraction of pediatric diagnostic imaging reports performed better than
domain experts in this pilot study. NLP is an efficient method to extract information from a large collection of imaging reports
to facilitate CER.

(J Med Internet Res 2017;19(5):e162) doi: 10.2196/jmir.6887
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Introduction

Community-acquired pneumonia (CAP) is a leading cause of
hospitalization among children in the United States [1,2].
Despite this prevalence, the effectiveness of common
management strategies [3] is unknown. Multicenter studies
using administrative data are inexpensive to conduct and could
help compare treatment effectiveness and overcome the
challenge of measuring adverse outcomes [4,5]. However, these
studies are limited by the potential for subject misclassification.
International Classification of Diseases, 9th revision, Clinical
Modification (ICD-9-CM) discharge diagnosis codes are
commonly used to identify patients [4,5]. Improper use of these
codes may lead to false positive or false negative cases [6]. In
studies of pediatric CAP, this might lead to systematic biasing
by inadvertently including patients without pneumonia or
excluding patients with pneumonia in the study cohort [7].
Furthermore, use of these discharge diagnosis codes only
precludes more accurate risk adjustment than might be available
through admission chest radiograph results, for example [8].

The PHIS+ repository augments the Pediatric Health Information
System (PHIS), an administrative database from the Children’s
Hospital Association, with clinical data [9]. PHIS+, consists of
laboratory [9] and microbiological testing results [10], as well
as imaging reports from 6 pediatric hospitals across multiple
care settings (inpatient, outpatient, emergency department, and
ambulatory surgery) over a 5-year study period. The clinical
data in the PHIS+ repository are standardized and harmonized
using biomedical terminologies and common data models. But,
unlike laboratory results, which are available in discrete formats
for comparative effectiveness research analyses, imaging reports
are available only in narrative clinical text and lack
standardization in structure and format. To allow for efficient
and rapid access to these data, we developed a Natural Language
Processing (NLP) application to determine the diagnosis of
bacterial pneumonia from pediatric diagnostic imaging reports
by extracting pneumonia characteristics (ie, presence, symmetry,
and size of pleural effusion and pulmonary infiltrate) [11].

NLP has been used to extract different types of clinical
information from various sources of narrative text in adult
patients [12]. Studies have applied Bayesian networks and NLP
to detect bacterial pneumonia in adults [13], and several used
an NLP application called MedLEE [14] to extract
community-acquired pneumonia severity scores in adults [15]
and pneumonia information from chest radiology reports in a
neonatal intensive care unit [16], or to identify patients with
tuberculosis [17]. Recent efforts applied NLP to extract
pneumonia information from radiology reports in an adult
intensive care unit [18], detect probable pneumonia cases and
help manual chart review [19], and also included electronic
health record structured data to detect pneumonia cases [20].
These studies reported accuracy metrics with large variations,
sensitivity ranging from .45 to .95, and positive predictive value
(PPV) from .075 to .86 (best PPV was .86 with a sensitivity of
.75 [18], and best sensitivity was .95 with a PPV of .78 [13]).
They typically focused on only one type of clinical note, at only
one health care organization or hospital, and included the
complete development of large complex NLP systems. Only

one of these prior studies included children evaluated for
pneumonia [19], but it required a manual review of a subset of
the radiology reports already analyzed by the NLP system. A
good recent review of NLP applications to radiology reports
can be found in [21]. The goal of this study was to develop an
automated, scalable, and accurate method to determine the
presence or absence of pneumonia in children, using a large
variety of chest imaging reports from the newly developed
PHIS+ repository in order to facilitate the conduct of adequately
powered comparative effectiveness research aimed for treatment
options of hospitalized children.

Methods

Study Sites
Six free-standing children’s hospitals were included: Boston
Children’s Hospital (Boston, MA, USA); Children’s Hospital
of Philadelphia (Philadelphia, PA, USA); Children’s Hospital
of Pittsburgh (Pittsburgh, PA, USA); Cincinnati Children’s
Hospital Medical Center (Cincinnati, OH, USA); Primary
Children’s Hospital, Intermountain Healthcare (Salt Lake City,
UT, USA); and Seattle Children’s Hospital (Seattle, WA, USA).

Reference Standard Preparation
The imaging procedures from the six contributing hospitals in
the PHIS+ repository were already mapped to Current
Procedural Terminology (CPT) codes [22]. We first selected
relevant chest diagnostic imaging (chest radiograph,
computerized tomography, and ultrasound) procedure CPT
codes (see Multimedia Appendix 1), and then extracted a
stratified random collection of imaging study reports mapped
to these CPT codes. One report was extracted for each randomly
selected patient. A preliminary power analysis indicated that a
selection of 270 imaging reports would allow a 95% CI of ±4%
width with an expected sensitivity of 90%, assuming mention
of pneumonia in 25% of the reports (pneumonia is the
information we extracted mentioned the least frequently). A
total of 282 reports were eventually selected, deidentified using
De-ID software (DE-ID Data Corp) [23] and provided as plain
text files for NLP-based information extraction.

Reference Standard Annotation
The 282 deidentified diagnostic imaging reports were annotated
by domain experts to evaluate the pneumonia information
extraction application. Annotations included all mentions of
pulmonary infiltrate, their local context (eg, negation, as in “no
infiltrate”), and their symmetry (ie, unilateral or bilateral);
pleural effusions, their local context, and their size (ie, small or
moderate or large); mentions of pneumonia and their local
context (eg, “consistent with pneumonia” or “no evidence of
pneumonia”); and whether the report supported the diagnosis
of bacterial pneumonia (Figure 1).

The domain experts, three attending pediatric hospital medicine
physicians, were trained while also iteratively refining the
annotation instructions on the basis of their experience. They
first annotated a set of 15 reports, with low interannotator
agreement. Examples of disagreements between domain experts
are listed in Figure 2.

J Med Internet Res 2017 | vol. 19 | iss. 5 | e162 | p. 2http://www.jmir.org/2017/5/e162/
(page number not for citation purposes)

Meystre et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


After having discussed disagreements and updated the
annotation instructions, they annotated a second set of 10 other
reports and reached fair agreement (pairwise proportions of
agreement: .65-.78 for infiltrates, .12-.7 for effusions, and
.43-.74 for mentions of pneumonia). Finally, after a final round
of disagreement discussions and instructions refinement, they
annotated 10 new reports and reached excellent agreement
(.96-.98 for infiltrates, .94-1 for effusions, and .92-1 for
mentions of pneumonia). The training phase then ended, and
annotation of the complete 282 reports collection followed
(including reannotation of the initial 15+10+10 reports). At this
stage, the rare disagreements were discussed among all domain
experts to reach consensus for the reference standard. The
annotated information included the following (Figure 1; Final
annotation guideline in Multimedia Appendix 2):

• Mentions of “pneumonia” (or synonyms—eg,
“pneumonitis”), without adjectives (except if required to
define the concept; eg, “lung infection” needs “lung” to be
precise enough).

• Mentions of “pleural effusion” (or synonyms—eg,
“empyema”; or terms that imply the existence of a pleural

effusion if “pleural effusion” or a synonym is not
mentioned—eg, “loculation,” “free fluid”), without
adjectives.

• Mentions of “pulmonary infiltrate” (or synonyms like
“opacity,” “consolidation”), without adjectives or remote
synonyms like “small airways disease,” “interstitial
markings,” “peribronchial thickening,” or “atelectasis.”

• Context surrounding each pneumonia, effusion, or infiltrate
annotation (referred to as “local context”) was annotated
as present (ie, affirmed, not negated, current), absent (ie,
negated, excluded), speculative (ie, hypothetical, a
possibility, to rule it out), or historical (ie, in the past, not
current anymore).

• Pleural effusion size was annotated as small,
moderate-large, or not mentioned.

• Symmetry of infiltrates was annotated as unilateral,
bilateral, or not mentioned.

• Overall, each report was annotated as to whether it did or
did not generally support the diagnosis of bacterial
pneumonia (true or false).

Figure 1. Diagnostic imaging report annotations example.

Figure 2. Examples of domain expert annotation disagreements.
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Clinical Information Extraction Application
Development
We developed an application based on NLP to automate the
extraction of information. This application was based on the
Apache UIMA (Unstructured Information Management
Architecture) framework [24] using components either
developed specifically for this application or adapted from
another NLP application: Textractor [25]. Components included
text preprocessing (sections detection, lists annotation, sentence
segmentation, tokenization, part-of-speech tagging, and
chunking), dictionary look-up, local context analysis, annotation
attributes and patient information (hospital and patient code)
extraction, machine learning features extraction, and the final
classification (Figure 3).

During text preprocessing, sections were detected using a
collection of regular expressions representing possible headers
for patient history sections. Lists were also detected using
regular expressions, and their entries segmented as individual
sentences. Segmentation of the text in sentences was adapted
from Textractor, which is based on a machine learning algorithm
(maximum entropy, MaxEnt [26]). Sentences are then
“tokenized,” split in words or other meaningful groups of
alphabetical or numeric characters. Each token is then assigned
a part-of-speech tag with another module adapted from
Textractor that is based on maximum entropy (itself adapted
from OpenNLP [26]). Finally, noun phrase “chunks” are
detected with a third module adapted from Textractor, which
is also based on maximum entropy (also originally adapted from
OpenNLP [26]).

The dictionary lookup module searches a list of terms for
matches with the noun phrase “chunks” detected in the text.
The list of terms (ie, dictionary) was originally based on a subset

of the Unified Medical Language System (UMLS)
Metathesaurus [27] filtered by semantic type to include only
disease or syndrome, finding, or pathologic function. This
dictionary was later replaced with a list of terms built manually
by clinicians (based on their domain knowledge), an approach
that allowed for improved accuracy.

The local context analysis was based on the ConText algorithm
[28], as implemented in Textractor. This algorithm looks for
keywords that indicate local context such as negation (eg,
denied, no, absent), and then assigns this context to concepts
found in a window of words following or preceding the
keyword. For example, in the sentence “Findings consistent
with viral or reactive airways disease without focal pneumonia,”
the keyword “without” indicates negation and precedes the
annotated concept “pneumonia,” which will therefore be
considered negated, or absent.

The extraction of annotation attributes (effusion size and
infiltrate symmetry) and patient information (hospital and patient
code) was based on a set of regular expressions developed
specifically and implemented similarly to ConText, assigning
these attributes to the appropriate annotated concepts.

Finally, the classification of reports as supporting the diagnosis
of bacterial pneumonia (or not) was based on a Support Vector
Machine (SVM) classifier with lexical and semantic features.
These features included a “bag-of-words” (ie, list of words
occurring more than once in our reports collection, without
stopwords like “and,” “from,” “each”) and the annotated
concepts with their attributes (eg, “pleural effusion” annotation
with “small” quantity attribute). The classifier was an
implementation of LIBSVM [29], with the radial basis function
(RBF) kernel.

Figure 3. Components of the pneumonia clinical information extraction application.

Application Performance Improvements
When initially evaluating the pneumonia classification accuracy,
sensitivity was not satisfactory. Therefore, we compared several
different machine learning algorithms, refined parameters for

the SVM, and filtered the machine learning features
(bag-of-words), as well as the dictionaries used by our
application.
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Machine learning algorithms compared included decision trees,
rule learners, naïve Bayes, Bayesian networks, and SVMs, all
implemented in the Weka software (version 3.7; University of
Waikato, New Zealand) [30]. Features used were the same with
each algorithm and included the annotated concepts, and their
attributes and local context. Refining the SVM parameters (ie,
the penalty parameter C, and the radial basis function parameter
gamma; final values allowing for best accuracy: C=11.5,
gamma=.1) consisted in realizing a grid search for selecting the
best values of these parameters (using the Grid Parameter Search
tool available with LIBSVM).

The “bag-of-words” is an important set of features for machine
learning, and the original version included 2103 different words.
Even after excluding stopwords, most remaining words have
no meaning associated with the diagnosis or radiological signs
of pneumonia. To focus our classification on more meaningful
words for our task, we manually reviewed all words in the initial
bag-of-words (named BOW0) and created three versions with
increasing levels of domain specificity. The first refined
bag-of-words (BOW1) included 99 words, the second (more
specific) bag-of-words (BOW2) included 37 words, and the
third (most specific) bag-of-words (BOW3) included only 23
words. The three refined bag-of-words are listed in Multimedia
Appendix 3. All were annotated as unigrams.

Finally, refining our dictionary of terms focused on mentions
of pulmonary infiltrate, removing terms that caused many false
positive matches, but few correct matches.

Performance Evaluation Approach
We used a cross validation approach with 5 “folds” for training
and validation. This approach starts with random partition of
our collection of 282 notes into 5 subsets of approximately the
same size. Then, one subset is retained for testing and the
remaining four subsets are used for training. This process is
repeated 5 times (ie, “folds”), with each subset used only once
for testing. In each “fold,” we compared the information
extraction application output with the manual reference standard
annotations, and classified each annotation as true positive
(application output matches the reference standard), false
positive (application output not found in the reference standard),
or false negatives (reference standard annotation missed by the
application). We also counted true negatives for the overall
classification when the reference standard and the application
both classified the report as not supporting the diagnosis of
bacterial pneumonia. Finally, we used counts of true positives,
true negatives, false positives, and false negatives, and computed
various accuracy metrics at the end of the whole process (not
after each fold and then averaged across folds). Accuracy metrics
included sensitivity (ie, recall), positive predictive value (ie,
precision), the F1-measure (a harmonic mean of sensitivity and

positive predictive value [31]), and the accuracy (proportion of
agreement) of the local context category and the attributes
category (effusion size and infiltrate symmetry).

For the concept-level evaluation, application automatic
annotations and reference standard manual annotations were
compared and considered a match when the annotated text
overlapped exactly (except preceding or following white space
or punctuation) and the annotated information categories (eg,
“Effusion”) were the same. For the document-level evaluation,
reports were classified as supporting the diagnosis of bacterial
pneumonia or not. They were considered a match when their
binary classification corresponded to the reference standard
classification. For document-level evaluation of domain experts,
their initial classification (ie, before adjudication of differences
between annotators and reference standard development) were
compared with final reference standard classifications.

Results

Reference Standard Development
The 282 radiology imaging reports annotated, originated from
each of the 6 health care organizations in approximately the
same numbers (48 from the Boston Children’s Hospital, 48
from the Children’s Hospital of Philadelphia, 47 from the
Children’s Hospital of Pittsburgh, 48 from the Cincinnati
Children’s Hospital Medical Center, 47 from the Primary
Children’s Hospital, and 44 from the Seattle Children’s
Hospital). Annotations included 72 mentions of pneumonia or
synonyms (0.255 per report on average), 312 mentions of
pulmonary infiltrate or synonyms (1.106), and 369 mentions of
pleural effusion or synonyms (1.309). Among the 282 reports,
24.5% (69/282) supported the diagnosis of bacterial pneumonia.
Agreement among annotators for the 247 (282 minus 35 reports
used for annotators training) not previously seen imaging reports
reached 82 of 121 pneumonia mentions (67.8%), 502 of 610
infiltrate mentions (82.3%), and 526 of 670 effusion mentions
(78.5%).

Performance at the Concept Level
Concepts evaluated here included the automatic annotations by
our application of mentions of pneumonia, pleural effusion,
pulmonary infiltrate, and corresponding local context and
attributes. The average sensitivity and positive predictive value
were approximately 93-94%, with higher accuracy for mentions
of pneumonia, and lower accuracy for mentions of pleural
effusion (Table 1). The local context was correct in about 92%
(65/71) to 94.1% (272/289) of the cases, and the attribute
category in about 72.3% (209/289) to 92.5% (321/347) of the
cases.
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Table 1. Concept level accuracy evaluation results.

Terms mentioned in radiology imaging reportsMetrics

All included termsEffusionInfiltratePneumonia

70734728971True positives

5737200False positives

4622231False negatives

.939.940.926.986Sensitivity

.925.904.9351.000Positive predictive value

.932.922.931.993F1-measurea

.929.931.941.916Context accuracy

.824.925.723N/AbAttribute accuracy

aF1-measure is a harmonic mean of sensitivity and positive predictive value [31].
bN/A: not applicable.

Performance at the Document Level
This classification was evaluated with various configurations
of our application. Sensitivity was quite low (.42) with our initial
configuration (Table 2), motivating us to experiment with the
aforementioned performance improvement approaches.

When using the SVM classifier with all features (ie, concepts
with local context and attributes, and bag-of-words), the more
specific bag-of-words (BOW2 and BOW3) allowed for higher
positive predictive value and specificity, but sensitivity was the
highest at .652 with the least filtered bag-of-words (BOW1).

The configuration allowing for the highest sensitivity and
F1-measure was based on the least filtered bag-of-words and a
refined dictionary (Best system in Table 2).

We also compared different machine learning algorithms with
a limited set of features (ie, no bag-of-words as not all
algorithms tested could use it). Most of them allowed for higher
sensitivity than the SVM algorithm (as implemented in Weka
sequential minimal optimization [SMO] [32]), but their positive
predictive value was always lower (see Multimedia Appendix
4).

Table 2. Document-level classification results.

Domain experts averageBest systeme

(95% CI)

BOW3dBOW2cBOW1bBOW0aMetrics

364930314529True positives

206205209210200207True negatives

7843136False positives

332039382440False negatives

.527.710

(.683-.737)

.435.449.652.420Sensitivity

.848.860

(.833-.886)

.882.912.776.829Positive predictive value

.650.778.583.602.709.556F1 measure

.966.962

(.951-.974)

.981.986.939.972Specificity

.862.901

(.883-.918)

.847.855.869.837Accuracy

a BOW0: Initial bag-of-words.
bBOW1: First refined bag-of-words.
cBOW2: Second (more specific) refined bag-of-words.
dBOW3: Third (most specific) refined bag-of-words.
eBOW1 with refined dictionary.
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The decision tree algorithm (pruned C4.5 decision tree [33])
automatically created the decision tree and allowed for a
classification F1-measure of .552 (Figure 4).

The rule learner (Repeated Incremental Pruning to Produce
Error Reduction [RIPPER] [34]) automatically learned three
rules that allowed for a classification F1-measure of .613:

• IF (Effusion=Present) AND (Symmetry=Unilateral) THEN
Supports pneumonia=Yes

• IF (Infiltrate=Present) AND (Pneumonia mention=Present)
THEN Supports pneumonia=Yes

• OTHERWISE Supports pneumonia=No

The Naïve Bayes algorithm implemented in Weka is based on
John and Langley algorithm [35] and the Bayesian network
implementation is based on several different algorithms such
as Cooper K2 algorithm [36]. The Bayesian network allowed
for the highest sensitivity (.739).

In Weka, the SVM implements John Platt's sequential minimal
optimization (SMO) algorithm [32]. In our experiment, where
the bag-of-words was not part of the features used here, it
reached the highest positive predictive value (.811), but also
had low sensitivity.

Figure 4. Pruned decision tree for pneumonia classification.

Error Analysis
The most common errors our application made were false
negatives, erroneously classifying reports as not supporting the
diagnosis of bacterial pneumonia when they actually did support
it. Among the 20 false negatives, most were cases of pneumonia
that were not as clear, with only 48% of the expert annotators
originally agreeing that they were positive cases. This average
agreement was 86% for cases that were correctly classified.
Most false negatives had no pleural effusion and some had
infiltrates mentioned as “airspace disease,” which domain
experts specifically decided to exclude as a clear indicator of
bacterial pneumonia. Others had pleural effusions mentioned
as “fluid” (without the mention of “pleural”), which were
difficult to differentiate from other fluid locations in the thorax.

False positive errors (ie, erroneously classifying reports as
supporting the diagnosis of bacterial pneumonia when they
actually did not support it) were rarer, often caused by local
context analysis errors (eg, “pleural effusion has completely
resolved” not recognized as an absence of pleural effusion).

Discussion

Principal Findings and Comparison With Prior Work
The most accurate version of our NLP-based pneumonia
information extraction application performed better than human
domain experts, with significantly higher sensitivity (Fisher
exact test, with P=.04.

We found variation in the language used in chest imaging reports
both within and across the six children’s hospitals. This was
due to inherent differences in imaging modalities, radiologists
reporting, and hospital practice. Despite this variability in
language, the most accurate version of our NLP-based diagnostic
imaging reports classification application eventually reached a
sensitivity of .71, positive predictive value of .86, and a
specificity of .96. It was based on an SVM classifier with a
refined set of features that included a filtered bag-of-words of
99 words, and the annotated concepts with their attributes. When
tested in its first version, it only reached a sensitivity of .42.

Experiments to improve classification accuracy included refining
the features and parameters used by the SVM classifier, and
testing other algorithms. These algorithms included decision
trees, rule learners, naïve Bayes, Bayesian networks, and SVMs.
They allowed for sensitivity between .42 and .74, positive
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predictive value between .66 and .81, and specificity between
.88 and .97. Even if the Bayesian network reached a slightly
higher sensitivity than the most accurate version of our classifier
(.739 vs .71), its positive predictive value was significantly
lower (.78 vs .86), and the overall accuracy and F1-measure
were therefore lower. These metrics are consistent with or
significantly better than earlier studies such as the extraction of
pneumonia information from chest radiology reports in a
neonatal intensive care unit by Mendonça and colleagues [16],
who reported .71 sensitivity but only .075 positive predictive
value, or the extraction of pneumonia findings from chest
radiology reports by Fiszman and colleagues [37], who reported
.90 positive predictive value but only .34 sensitivity.

The performance reached by the most accurate version of our
NLP-based reports classification application may seem low
when considering the classification task it performed (ie,
classifying diagnostic imaging reports as supporting the
diagnosis of bacterial pneumonia or not), but this task was
actually more difficult than it may appear. When comparing the
three domain experts (ie, attending physicians) annotating these
reports with the final reference standard, their average sensitivity
was lower than the automatic classifier (Table 2). The positive
predictive value and specificity were comparable. This
comparison demonstrates the difficulty of the classification task,
and the excellent performance of our application when compared
with human experts.

Limitations
Our evaluation had several limitations. First, although we had
a small sample of annotated diagnostic imaging reports, this
sample size allowed for CIs between .023 and .054 only (95%
CI; Table 2). This pilot study only included imaging reports
from 282 patients, but allowed for sufficiently precise
assessment of the accuracy of our system to then apply it to a
much larger population of more than 10,000 patients. Comparing
our approach with domain experts would benefit from increased

precision and could be based on an additional evaluation based
on a new larger testing set. Next, the 5-fold cross-validation
approach we used only yields meaningful results if the testing
set and training set are drawn from the same population, which
was our case (both were randomly drawn from our collection
of diagnostic imaging reports). Cross-validation could also be
misused if selecting features using the complete dataset, and
using some data for both training and testing. We avoided both
problems by selecting features manually (without examining
the dataset, only the experts’ domain knowledge), and by
ensuring that each report was used only exactly once for testing
in our cross-validation approach. The BOW refinement process
was purely manual and based on clinical domain knowledge,
an approach that would not generalize easily to other
applications. Finally, this pilot study was realized on a subset
of clinical notes from a unique small population in 6 health care
organizations, possibly making additional adaptations required
to generalize to a larger population (eg, retraining the machine
learning algorithms, refining the dictionaries used).

Conclusions
We developed and used an NLP-based information extraction
application to generate discrete and accurate data to identify
pediatric patients with CAP. Our main objective was good
positive predictive value and improved sensitivity when
compared with human domain experts. The pneumonia
information extraction application used methods and resources
that were trained and evaluated with our reports collection, using
a 5-fold cross-validation approach. It allowed for classifying
pediatric diagnostic imaging reports with a higher accuracy than
that by human domain experts (ie, higher sensitivity and similar
positive predictive value and specificity) in this pilot study.
After this study, it was used to extract information and classify
a much larger collection of diagnostic imaging reports (more
than 10,000) in the PHIS+ database, for subsequent
community-acquired pneumonia research comparing the
effectiveness of different treatment options.

Acknowledgments
This study was approved by the Institutional Review Board of the Children's Hospital of Philadelphia (CHOP), as the primary
recipient of the PHIS+ grant funding. A business associates’ agreement was used between each hospital and the Children’s
Hospital Association to authorize sharing of data with identifiers, and a data use agreement governed the sharing of deidentified
hospital clinical data. This project was funded under grant number R01 HS019862 from the AHRQ. We thank Ron Keren, MD,
MPH, for his advice and leadership of the PHIS+ project. We also thank the Pediatric Research in Inpatient Settings (PRIS)
Research Network (www.prisnetwork.org).

Authors' Contributions
SMM conceived the NLP system and led its development. This work was done while he was part of the University of Utah
Biomedical Informatics Department. RG was responsible for the data access, preparation, and analysis. JST, JMS, RS, and SSS
offered their clinical domain expertise. JST, JMS, and SSS annotated the reference standard. SSS was responsible for the clinical
project and evaluation. SMM drafted the initial manuscript. RG, JST, JMS, RS, and SSS provided critical revision of the manuscript.
All authors gave the final approval of the manuscript.

Conflicts of Interest
None declared.

J Med Internet Res 2017 | vol. 19 | iss. 5 | e162 | p. 8http://www.jmir.org/2017/5/e162/
(page number not for citation purposes)

Meystre et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Multimedia Appendix 1
Current Procedural Terminology Codes used to select relevant imaging studies.

[PDF File (Adobe PDF File), 213KB-Multimedia Appendix 1]

Multimedia Appendix 2
Annotation guideline.

[PDF File (Adobe PDF File), 49KB-Multimedia Appendix 2]

Multimedia Appendix 3
Refined bag-of-words.

[PDF File (Adobe PDF File), 220KB-Multimedia Appendix 3]

Multimedia Appendix 4
Document level classification accuracy with different machine learning algorithms.

[PDF File (Adobe PDF File), 37KB-Multimedia Appendix 4]

References

1. Lee GE, Lorch SA, Sheffler-Collins S, Kronman MP, Shah SS. National hospitalization trends for pediatric pneumonia
and associated complications. Pediatrics 2010 Aug;126(2):204-213 [FREE Full text] [doi: 10.1542/peds.2009-3109]
[Medline: 20643717]

2. Keren R, Luan X, Localio R, Hall M, McLeod L, Dai D, Pediatric Research in Inpatient Settings (PRIS) Network.
Prioritization of comparative effectiveness research topics in hospital pediatrics. Arch Pediatr Adolesc Med 2012
Dec;166(12):1155-1164. [doi: 10.1001/archpediatrics.2012.1266] [Medline: 23027409]

3. Bradley JS, Byington CL, Shah SS, Alverson B, Carter ER, Harrison C, Pediatric Infectious Diseases Societythe Infectious
Diseases Society of America. The management of community-acquired pneumonia in infants and children older than 3
months of age: clinical practice guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society
of America. Clin Infect Dis 2011 Oct;53(7):e25-e76. [doi: 10.1093/cid/cir531] [Medline: 21880587]

4. Ambroggio L, Taylor JA, Tabb LP, Newschaffer CJ, Evans AA, Shah SS. Comparative effectiveness of empiric β-lactam
monotherapy and β-lactam-macrolide combination therapy in children hospitalized with community-acquired pneumonia.
J Pediatr 2012 Dec;161(6):1097-1103. [doi: 10.1016/j.jpeds.2012.06.067] [Medline: 22901738]

5. Williams DJ, Hall M, Shah SS, Parikh K, Tyler A, Neuman MI, et al. Narrow vs broad-spectrum antimicrobial therapy for
children hospitalized with pneumonia. Pediatrics 2013 Nov;132(5):e1141-e1148 [FREE Full text] [doi:
10.1542/peds.2013-1614] [Medline: 24167170]

6. Kaafarani HM, Rosen AK. Using administrative data to identify surgical adverse events: an introduction to the Patient
Safety Indicators. Am J Surg 2009 Nov;198(5 Suppl):S63-S68. [doi: 10.1016/j.amjsurg.2009.08.008] [Medline: 19874937]

7. Williams DJ, Shah SS, Myers A, Hall M, Auger K, Queen MA, et al. Identifying pediatric community-acquired pneumonia
hospitalizations: accuracy of administrative billing codes. JAMA Pediatr 2013 Sep;167(9):851-858 [FREE Full text] [doi:
10.1001/jamapediatrics.2013.186] [Medline: 23896966]

8. McClain L, Hall M, Shah SS, Tieder JS, Myers AL, Auger K, et al. Admission chest radiographs predict illness severity
for children hospitalized with pneumonia. J Hosp Med 2014 Sep;9(9):559-564 [FREE Full text] [doi: 10.1002/jhm.2227]
[Medline: 24942619]

9. Narus SP, Srivastava R, Gouripeddi R, Livne OE, Mo P, Bickel JP, et al. Federating clinical data from six pediatric hospitals:
process and initial results from the PHIS+ Consortium. AMIA Annu Symp Proc 2011;2011:994-1003 [FREE Full text]
[Medline: 22195159]

10. Gouripeddi R, Warner PB, Mo P, Levin JE, Srivastava R, Shah SS, et al. Federating clinical data from six pediatric hospitals:
process and initial results for microbiology from the PHIS+ consortium. AMIA Annu Symp Proc 2012;2012:281-290
[FREE Full text] [Medline: 23304298]

11. Meystre S, Gouripeddi R, Shah S, Mitchell J. Automatic pediatric pneumonia characteristics extraction from diagnostic
imaging reports in a multi-institutional clinical repository. 2013 Presented at: 2013 Joint Summits on Translational Science;
March 18-22, 2013; San Francisco.

12. Meystre SM, Savova GK, Kipper-Schuler KC, Hurdle JF. Extracting information from textual documents in the electronic
health record: a review of recent research. Yearb Med Inform 2008:128-144. [Medline: 18660887]

13. Kim W, Wilbur WJ. Corpus-based statistical screening for phrase identification. J Am Med Inform Assoc 2000;7(5):499-511
[FREE Full text] [Medline: 10984469]

J Med Internet Res 2017 | vol. 19 | iss. 5 | e162 | p. 9http://www.jmir.org/2017/5/e162/
(page number not for citation purposes)

Meystre et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v19i5e162_app1.pdf&filename=19bf9d902caac9b83cf72823fca11496.pdf
https://jmir.org/api/download?alt_name=jmir_v19i5e162_app1.pdf&filename=19bf9d902caac9b83cf72823fca11496.pdf
https://jmir.org/api/download?alt_name=jmir_v19i5e162_app2.pdf&filename=877faaad8e13c9d7200246af6342386c.pdf
https://jmir.org/api/download?alt_name=jmir_v19i5e162_app2.pdf&filename=877faaad8e13c9d7200246af6342386c.pdf
https://jmir.org/api/download?alt_name=jmir_v19i5e162_app3.pdf&filename=f55b7e48c63c685cc985b8ab2c6b220a.pdf
https://jmir.org/api/download?alt_name=jmir_v19i5e162_app3.pdf&filename=f55b7e48c63c685cc985b8ab2c6b220a.pdf
https://jmir.org/api/download?alt_name=jmir_v19i5e162_app4.pdf&filename=1c728da03008a1cfd686d68a2618a83e.pdf
https://jmir.org/api/download?alt_name=jmir_v19i5e162_app4.pdf&filename=1c728da03008a1cfd686d68a2618a83e.pdf
http://europepmc.org/abstract/MED/20643717
http://dx.doi.org/10.1542/peds.2009-3109
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20643717&dopt=Abstract
http://dx.doi.org/10.1001/archpediatrics.2012.1266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23027409&dopt=Abstract
http://dx.doi.org/10.1093/cid/cir531
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21880587&dopt=Abstract
http://dx.doi.org/10.1016/j.jpeds.2012.06.067
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22901738&dopt=Abstract
http://pediatrics.aappublications.org/cgi/pmidlookup?view=long&pmid=24167170
http://dx.doi.org/10.1542/peds.2013-1614
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24167170&dopt=Abstract
http://dx.doi.org/10.1016/j.amjsurg.2009.08.008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19874937&dopt=Abstract
http://europepmc.org/abstract/MED/23896966
http://dx.doi.org/10.1001/jamapediatrics.2013.186
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23896966&dopt=Abstract
http://europepmc.org/abstract/MED/24942619
http://dx.doi.org/10.1002/jhm.2227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24942619&dopt=Abstract
http://europepmc.org/abstract/MED/22195159
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22195159&dopt=Abstract
http://europepmc.org/abstract/MED/23304298
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23304298&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18660887&dopt=Abstract
http://jamia.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=10984469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10984469&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


14. Friedman C. A broad-coverage natural language processing system. Proc AMIA Symp 2000:270-274 [FREE Full text]
[Medline: 11079887]

15. Chapman WW, Haug PJ. Comparing expert systems for identifying chest x-ray reports that support pneumonia. Proc AMIA
Symp 1999:216-220 [FREE Full text] [Medline: 10566352]

16. Mendonça EA, Haas J, Shagina L, Larson E, Friedman C. Extracting information on pneumonia in infants using natural
language processing of radiology reports. J Biomed Inform 2005 Aug;38(4):314-321 [FREE Full text] [doi:
10.1016/j.jbi.2005.02.003] [Medline: 16084473]

17. Johnson SB, Friedman C. Integrating data from natural language processing into a clinical information system. Proc AMIA
Annu Fall Symp 1996:537-541 [FREE Full text] [Medline: 8947724]

18. Liu V, Clark MP, Mendoza M, Saket R, Gardner MN, Turk BJ, et al. Automated identification of pneumonia in chest
radiograph reports in critically ill patients. BMC Med Inform Decis Mak 2013 Aug 15;13:90 [FREE Full text] [doi:
10.1186/1472-6947-13-90] [Medline: 23947340]

19. Dublin S, Baldwin E, Walker RL, Christensen LM, Haug PJ, Jackson ML, et al. Natural Language Processing to identify
pneumonia from radiology reports. Pharmacoepidemiol Drug Saf 2013 Aug;22(8):834-841 [FREE Full text] [doi:
10.1002/pds.3418] [Medline: 23554109]

20. DeLisle S, Kim B, Deepak J, Siddiqui T, Gundlapalli A, Samore M, et al. Using the electronic medical record to identify
community-acquired pneumonia: toward a replicable automated strategy. PLoS One 2013;8(8):e70944 [FREE Full text]
[doi: 10.1371/journal.pone.0070944] [Medline: 23967138]

21. Cai T, Giannopoulos AA, Yu S, Kelil T, Ripley B, Kumamaru KK, et al. Natural language processing technologies in
radiology research and clinical applications. Radiographics 2016;36(1):176-191 [FREE Full text] [doi:
10.1148/rg.2016150080] [Medline: 26761536]

22. American Medical Association. AMA-ASSN. CPT - Current Procedural Terminology URL: http://www.ama-assn.org/ama/
pub/physician-resources/solutions-managing-your-practice/coding-billing-insurance/cpt.page [accessed 2013-02-15]
[WebCite Cache ID 6ESKL24Ap]

23. DE-IDATA. DE-ID Software URL: http://www.de-idata.com/ [accessed 2016-10-25] [WebCite Cache ID 6lWrAN6St]
24. Apache. UIMA (Unstructured Information Management Architecture) URL: http://uima.apache.org/ [accessed 2016-10-25]

[WebCite Cache ID 6lWqpTAtM]
25. Meystre SM, Thibault J, Shen S, Hurdle JF, South BR. Textractor: a hybrid system for medications and reason for their

prescription extraction from clinical text documents. J Am Med Inform Assoc 2010;17(5):559-562 [FREE Full text] [doi:
10.1136/jamia.2010.004028] [Medline: 20819864]

26. Apache. Welcome to Apache OpenNLP URL: http://opennlp.apache.org [accessed 2014-01-01] [WebCite Cache ID
6MIJrWJJY]

27. Friedman C, Cimino JJ, Johnson SB. A conceptual model for clinical radiology reports. Proc Annu Symp Comput Appl
Med Care 1993:829-833 [FREE Full text] [Medline: 8130594]

28. Chapman W, Chu D, Dowling J. ConText: an algorithm for identifying contextual features from clinical text. 2007 Presented
at: BioNLP '07 Proceedings of the Workshop on BioNLP 2007; June 29, 2007; Prague, Czech Republic p. 81-88.

29. Chang CC, Lin CJ. NTU CSIE. LIBSVM : a library for support vector machines URL: https://www.csie.ntu.edu.tw/~cjlin/
libsvm/ [accessed 2016-10-25] [WebCite Cache ID 6lWr1s08H]

30. Waikato. Weka 3: Data Mining Software in Java URL: http://www.cs.waikato.ac.nz/ml/weka/ [accessed 2017-04-14]
[WebCite Cache ID 6piyFTt5G]

31. van Rijsbergen CJ. Openlib. 1979. Information retrieval URL: http://openlib.org/home/krichel/courses/lis618/readings/
rijsbergen79_infor_retriev.pdf [accessed 2017-04-26] [WebCite Cache ID 6q0RSjrif]

32. Platt J. Fast training of support vector machines using sequential minimal optimization. In: Advances in kernel methods.
Cambridge, MA: MIT Press; 1999:185-210.

33. Quinlan J. C4.5: programs for machine learning. San Francisco, CA: Morgan Kaufmann Publishers Inc; 1993.
34. Cohen WW. Fast Effective Rule Induction. 1995 Presented at: Proceedings of the Twelfth International Conference on

Machine Learning; 1995; Tahoe City, CA p. 115-123.
35. John G, Langley P. Estimating continuous distributions in Bayesian classifiers. 1995 Presented at: UAI'95 Proceedings of

the Eleventh conference on Uncertainty in artificial intelligence; August 18-20, 1995; Montreal, Canada p. 338-345.
36. Cooper GF, Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Machine Learning

1992 Oct;9(4):309-347.
37. Fiszman M, Haug PJ. Using medical language processing to support real-time evaluation of pneumonia guidelines. Proc

AMIA Symp 2000:235-239 [FREE Full text] [Medline: 11079880]

Abbreviations
BOW: bag-of-words
CAP: community-acquired pneumonia
CER: comparative effectiveness research
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CPT: Current Procedural Terminology
ICD-9-CM: International Classification of Diseases, 9th revision, Clinical Modification
NLP: Natural Language Processing
PHIS+: Pediatric Health Information System, augmented
PPV: positive predictive value
RBF: radial basis function
SVM: Support Vector Machine
UIMA: Unstructured Information Management Architecture
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