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Abstract

Background: The pronator drift test (PDT), a neurological examination, is widely used in clinics to measure motor weakness
of stroke patients.

Objective: The aim of this study was to develop a PDT tool with machine learning classifiers to detect stroke symptoms based
on quantification of proximal arm weakness using inertial sensors and signal processing.

Methods: We extracted features of drift and pronation from accelerometer signals of wearable devices on the inner wrists of
16 stroke patients and 10 healthy controls. Signal processing and feature selection approach were applied to discriminate PDT
features used to classify stroke patients. A series of machine learning techniques, namely support vector machine (SVM), radial
basis function network (RBFN), and random forest (RF), were implemented to discriminate stroke patients from controls with
leave-one-out cross-validation.

Results: Signal processing by the PDT tool extracted a total of 12 PDT features from sensors. Feature selection abstracted the
major attributes from the 12 PDT features to elucidate the dominant characteristics of proximal weakness of stroke patients using
machine learning classification. Our proposed PDT classifiers had an area under the receiver operating characteristic curve (AUC)
of .806 (SVM), .769 (RBFN), and .900 (RF) without feature selection, and feature selection improves the AUCs to .913 (SVM),
.956 (RBFN), and .975 (RF), representing an average performance enhancement of 15.3%.

Conclusions: Sensors and machine learning methods can reliably detect stroke signs and quantify proximal arm weakness. Our
proposed solution will facilitate pervasive monitoring of stroke patients.

(J Med Internet Res 2017;19(4):e120) doi: 10.2196/jmir.7092
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Introduction

Stroke is one of the main causes of death and disability
worldwide [1]. One-third of stroke patients experience recurrent
strokes. Muscle weakness is the most frequent sign of stroke
and is related to disability [2]. Pronator drift, an indication of
arm weakness, is mainly caused by subtle upper motor neuron
disorders and is measured using the pronator drift test (PDT)

[3]. PDT has higher sensitivity than other neurological
examinations including forearm roll, segmental motor exam,
the Barr test, the Mingazzinis movements, and tendon reflexes
[4]. Most stroke patients are diagnosed with the help of trained
neurologists who perform bedside neurological examination,
including PDT. However, early detection of stroke is critical
because the effectiveness of thrombolytic therapy is
time-dependent, and earlier treatment results in better outcomes
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[5]. In addition to the need for instant examination, objectivity
and accuracy need to be improved, because the conventional
PDT performed by an inexperienced observer can result in
missed rapid jitter of arm movement. To improve subjective
decision making in the context of the conventional PDT, we
developed an objective tool (the iPronator) to measure drift and
pronation, and reported its feasibility and usefulness in a
previous study [6]. In this study, we propose a decision support
solution that can distinguish between the PDT properties of
stroke patients and healthy people using representative machine
learning algorithms.

Methods

Study Design
We applied machine learning methods to detect arm weakness
in stroke patients (Figure 1). First, accelerometer data from PDT

were collected from patients and healthy controls for a
predefined period. We separated the start time for examination
and analysis to exclude the effect of initial dip, which is
commonly observed for upper extremity weakness [6]. In this
work, the duration of PDT was set to 20 seconds, and the
analysis began 10 seconds after the examination started. Next,
our feature extraction task produced PDT features from the
collected signals. Then, the feature selection task chose effective
predictors among extracted features for the enhanced
classification. Finally, after feature selection, machine learning
algorithms modeled the classification for PDT. This study was
approved by the Severance Hospital Institutional Review Board,
and informed consent was obtained from all subjects.

Figure 1. Flowchart of pronator drift test (PDT) software.

Participants
A total of 26 subjects (10 men and 16 women) were recruited
and assigned to the patient group or healthy control group. The
ages of the participants ranged from 27 to 84 years, with an
average of 58.2 (SD 17.8). During the study period, 16
consecutive stroke patients with mild upper arm weakness were
enrolled. Exclusion criteria were patients who were unable to
sit and had bilateral arm weakness or preexisting chronic arm
weakness. A neurologist graded the muscle power of patients

and healthy controls using the Medical Research Council (MRC)
scale, which is widely used to evaluate motor weakness (Table
1) [7]. Patients with MRC scores between 0 and 3 were also
excluded because PDT was designed for subjects who are able
to resist gravity and the weight of the measuring device on the
arm. Healthy controls consisted of subjects who had no upper
arm weakness and no history of neurological disease. All healthy
controls were graded MRC 5. In total, 6 stroke patients were
graded MRC 4, 7 were graded MRC 4+, and 3 were graded
MRC 5.
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Table 1. Muscle power grading using the Medical Research Council scale.

DescriptionGrade

No contraction0

Flicker or trace of contraction1

Active movement with gravity eliminated2

Active movement against gravity3

Active movement against gravity and moderate resistance4

Active movement against gravity and strong resistance4+

Normal power5

Sensor Signal Processing
The integrated, low-power, three-axis accelerometer
(LIS331DLH, ST-Microelectronics) in the mobile phone was
used to measure pronation and drift. The accelerometer has a
low-power mode and high accuracy of 1% on its lowest
measurement range (±2g) and approximately 0.1% on its highest
measurement range (±8g) [8]. Any device equipped with
sensors, including mobile phones or wrist bands, can be used
as a sensorized PDT tool.

Demographic information was collected according to predefined
protocol. Patients were asked to conduct the PDT trial after
registration. Two sensing devices were placed on each of a
subject’s wrists, as shown in Figure 2. When the mode was set
to double-hand mode, the two devices were paired with a

Bluetooth connection. In the initial state of PDT, patients were
asked to extend both arms anteriorly and hold them at shoulder
height with palms facing up.

The time frame of the test was initialized, and then the PDT
software initiated the measurement of arm movement to
calculate the degree of pronation and drift. The procedure
continued for the predefined test duration, calculating drift and
pronation of the weak side. PDT simultaneously measures the
movement of the counter-side by calculating the drift and
pronation based on the fact that the counter-limb of the defective
side also moves [6,9]. Measured values were subsequently saved
for feature extraction in the analysis step. On the basis of
collected data for the test duration, the properties of PDT were
extracted and input into the classifiers (see Multimedia
Appendix 1).

Figure 2. The pronator drift test: (a) the degree of drift in the weak arm and counter-arm of a patient was measured by the drift angle from the horizontal
plane, and (b) the degree of pronation was assessed in front of the patient.

Decision Support by Pronator Drift Test Classifiers
We performed machine learning classification of PDT results
from stroke patients versus those from healthy controls using
MATLAB (Mathworks) [10], WEKA (University of Waikato)
[11], and Medcalc (Medcalc Software) [12]. As a preprocessing
step before machine learning, we implemented feature selection
to identify which features were discriminant predictors to
enhance the performance of the machine learning algorithms
by eliminating redundant and irrelevant attributes [13]. We used

a wrapper approach for feature selection; this assesses subsets
of extracted features according to their contribution to the
classification performance [14,15]. Feature selection considers
the employed classification model as an unseen part and assesses
the subset of features according to their usefulness to a given
classifier. Best-first search was used to traverse the space of
candidate subsets and greedily find the optimal subset [15].

Next, a series of machine learning techniques [16], namely
support vector machine (SVM), radial basis function network
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(RBFN), and random forest (RF), were implemented. We
selected such methods based on the findings in the research that
compared 17 families of classifiers using 121 datasets, resulting
in RF, SVM, and neural network–ranked top families [17].
Details of these machine learning algorithms are beyond the
scope of this paper; thus, we only provide a brief description
of each method.

Support Vector Machine
SVM is a machine learning algorithm developed by Cortes and
Vapnik [18]. An SVM as a classifier trains a function that
calculates a score for a new input to separate samples into two
classes by building a hyperplane, which maintains a maximum
margin between support vectors (Figure 3).

Figure 3. An example of a support vector machine with four support vectors in feature space.

If the output of the scoring function is negative, then the input
is classified as belonging to the negative class; if the score is
positive, the input is classified as belonging to the positive class.
The scoring function is expressed as (eq.1; see Multimedia

Appendix 2), where x(i) represents the ith input vector, y(i)

represents the class label of the ith training data, and αi is the
coefficient associated with the training sample. The function
K, which is called a kernel function, operates on the two vectors
and reduces dimensions to simplify computation of the product
of vectors. Among various kernel functions, we applied the
polynomial kernel for the PDT classifier [19].

Radial Basis Function Network
RBFN is a neural network classifier that computes the Euclidean
distance between a new input vector and the prototype vector
corresponding to each neuron to measure the similarity between
them [20] (Figure 4).

Each neuron’s activation function is denoted as (eq. 2; see
Multimedia Appendix 2), where μi and βi are the prototype
vector and the coefficient of the corresponding neuron i,
respectively. The training process for an RBFN selects the

prototype vector, coefficient for each of the RBF neurons, and
the matrix of output weights wij between the RBF neurons and
the output node j. The decision for each class j is decided by
(eq. 3).

Various approaches have been proposed to select prototypes
from input vectors. We applied K means clustering as the base
function to select prototypes [21].

Random Forest
RF is an ensemble predictor that uses a combination of multiple
decision trees [22]. Prediction in the training stage is determined
by voting from the forest in which an individual tree predicts
the target class depending on the values of a random vector
sampled independently (Figure 5).

We applied SVM, RBFN, and RF classifiers to the entire set of
PDT features. Leave-one-out cross-validation (LOOCV) was
applied, because we had a small number of training samples.
The performance of classifiers was measured by calculating
sensitivity, specificity, the F measure, and area under the
receiver operating characteristic curve (AUC).

J Med Internet Res 2017 | vol. 19 | iss. 4 | e120 | p. 4http://www.jmir.org/2017/4/e120/
(page number not for citation purposes)

Park et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. The architecture of an radial basis function network.

Figure 5. A simplified random forest.

Results

Statistical Properties of Pronator Drift Test Features
We compared PDT features using the t test. Figure 6 shows the
means and standard deviations of the PDT features. Among the

12 PDT features, WEAK-DRT-AVG, WEAK-DRT-MAX,
WEAK-DRT-OSC, WEAK-PRN-AVG, and WEAK-PRN-MAX
were significantly different between stroke patients and controls.
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Figure 6. Differences of degree in PDT features between stroke patients and controls. Values are mean, standard deviation, and P value.

Selected Attributes
Among the extracted PDT features, SVM, RBFN, and RF
classifiers selected discriminative features (Table 2). We applied
the wrapping approach for feature selection. Feature selection
procedure for SVM calculates the usefulness of features and
extracts a discriminant feature set {WEAK-PRN-MAX,

WEAK-DRT-AVG} for SVM. Feature selection for RBFN
reduced all features to three features of pronation on the weak
side {WEAK-PRN-MAX, WEAK-PRN-AVG,
WEAK-PRN-OSC}. Feature selection for RF resulted in
identification of the maximum degree of pronation on the weak
side and average drift of the counter-side as useful features for
RF classification {WEAK-PRN-MAX, CNT-DRT-AVG}.
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Table 2. Features selected in pronator drift test classification.

No. of classifiers that selected the featureMachine learning classifierSelected feature

RFRBFNSVM

3XXXWEAK-PRN-MAX

1XWEAK-PRN-AVG

1XWEAK-PRN-OSC

1XWEAK-DRT-AVG

1XCNT-DRT-AVG

232No. of features

Stroke Classifiers With Selected Pronator Drift Test
Predictors
Using the selected features for the SVM classifier, we built an
SVM PDT classifier with a polynomial kernel. PDT feature
vector SVM-PDTvec and score function f (SVM-PDTvec) for the
SVM classifier were modeled as (eq. 4; see Multimedia
Appendix 2).

The derived score function was used to assign training instances
into positive class and negative class that contained positive
and negative values of the score function, respectively. As

shown in Figure 7 (a), stroke patients’ PDT features were
mapped on the surface of the score function above the cut-plane.
Two control cases were misclassified as belonging to the stroke
group. As shown in Figure 7 (b), the score function for the
control group produced values less than the cut-plane, and one
stroke case was misclassified as a control case.

The RBFN classifier for stroke patients constructed four clusters
to calculate radials in the RBFN without feature selection and
two clusters for the RBFN including feature selection. The RF
classifier combined decision trees as depicted in Figure 8; two
cases were misclassified (Figure 9).

Figure 7. Plot of support vector machine (SVM) score function and decision by the SVM classifier: (a) positive scores of the SVM classifier for input
(above the plane); two control cases were misclassified as patients, and (b) negative scores of the SVM classifier for input (below the plane); one stroke
patient case was misclassified as a control case.
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Figure 8. Random forest composed of decision trees as a pronator drift test classifier.

J Med Internet Res 2017 | vol. 19 | iss. 4 | e120 | p. 8http://www.jmir.org/2017/4/e120/
(page number not for citation purposes)

Park et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 9. Weakness detection using a random forest, including feature selection.

Performance of Stroke Classifiers With Feature
Selection
Figure 10 shows the performance of classifiers in terms of
accuracy, sensitivity, specificity, and F-measure. The accuracy
of all classifiers was improved by feature selection; accuracies
of the classifiers improved by 9.53% (.808 with SVM-exFS
[excluding feature selection] vs .885 with SVM-inFS [including
feature selection]), 14.23% (.808 with RBFN-exFS vs .923 with

RBFN-inFS), and 9.10% (.846 with RF-exFS vs .923 with
RF-inFS), respectively.

The stroke classifiers had an accuracy of up to 92.3% for
detecting stroke (RBFN-inFS, AUC = .956; RF-inFS, AUC =
.975), and RF had the best AUC of .975 when feature selection
was applied (Figure 11). To compare the means of the individual
AUCs of methods with and without feature selection, t test was
also performed.

Figure 10. Performance of stroke classifiers excluding/including feature selection.
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Figure 11. Receiver operating characteristic (ROC) curve of pronator drift test classifiers and t test of area under the receiver operating characteristic
(AUC) (SVM-exFS and SVM-inFS: support vector machine excluding and including feature selection; RBFN-exFS and RBFN-inFS: radial basis
function excluding and including feature selection; RF-exFS and RF-inFS: random forest excluding and including feature selection).

Discussion

Summary
We developed a novel method to monitor pronator drift using
sensor-equipped devices. We investigated and demonstrated
the feasibility of machine learning analysis of the information
obtained via the sensors and found that the combination of these
methods can detect the neurological deficit of subtle motor
weakness. We demonstrated that machine learning–based
classifiers correctly classified up to 92.3% of PDT cases.

Review of Previous Studies
Machine learning has recently been adopted in medicine and
its usage includes various medical studies: health care utilization
based on patients’ social network data [23,24]; predicting
mortality after surgery [25]; estimating the risk of treatment
outcomes [26]; predicting deterioration using electronic medical
records with physiological signals [27]; and activity monitoring
[28]. This popularity is because of the advantage of easily
incorporating new data to improve prediction performance [29]
and to identify discriminant variables for prediction [30].
Machine learning has also improved assessment and outcome
prediction in stroke studies. Decision tree [31], SVM, and neural
network [29] have been utilized to predict the outcome of acute
ischemic stroke. SVM-integrated regression models have also
been proposed to predict stroke [32].

In addition to machine learning analysis, sensor-based
measurement improved the detection of abnormality and
outcome prediction. Task-oriented, arm-hand training using
sensor measurement was introduced in [33], and a machine
learning method with pressure sensor–embedded smart shoes
discriminated the alcohol-induced gait [34].

In this study, we utilized an off-the-shelf smart device
embedding accelerometer for the measurement of arm weakness.

The use of mobile phones or general activity trackers elaborated
the high accessibility of users. Recent studies demonstrated the
validity of using accelerometer in iPhone for the physical
activity monitoring [28], the extraction of heart rate [35], and
applications for Parkinson and Holmes tremor [36].

We previously developed a sensor-based mobile tool (the
iPronator) and reported that the iPronator app was useful and
feasible for detecting mild arm weakness and quantifying the
degree of weakness. Moreover, the iPronator can also detect
functional recovery after one week in patients with acute stroke
[6]. In this study, we further evaluated whether machine learning
could improve detection of the presence of mild arm weakness
after stroke. Although information technology and mobile
devices are increasingly used in the management of stroke [37],
most researchers have focused on analyzing medical records,
including laboratory results, to predict mortality and the outcome
of care. However, as far as we know, no studies have reported
using machine learning–based classifiers to detect weakness
associated with stroke and PDT.

Predictors for Stroke Decision Support
PDT is known to be a sensitive neurological test of weakness.
If a patient has pronator drift, positive test indicates the damage
in motor pathway from the opposite side of the brain [38]. The
pronator drift is determined by various conditions including
motor deficit, sensory deficit, cerebellar drift, parietal lobe
lesions, and conversion disorders: cerebellar disease causes
outward and upward drift; patients with parietal lobe lesions
exhibits loss of position sense, which causes updrift with the
involved arm rising overhead; and functional upper limb paresis
causes drift without pronation [39]. Due to such various causes
of pronator drift, the result of PDT varies on the condition of
patients: one study showed that patients with subtle difficulty
in routine activity had positive PDT in 38 (76%) out of 50
patients [40], whereas another study showed positive PDT in
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only 43.8% of patients with cerebral lesions [41]. We infer that
such variability originated the outperformance of machine
learning methods in the classification of PDT, since machine
learning is strong in sophisticated pattern recognition by
delineating patterns from relations between less significant
variables as well as key variables. As shown in Figure 6 and
Table 2, the key variable WEAK-PRN-MAX, which showed a
significant difference between patients and controls in statistical
analysis, was the dominant feature selected by all classifiers
and can therefore be considered a dominant predictor for
detecting weakness. In addition, machine learning methods (RF
and RBFN) utilized CNT-DRT-AVG and WEAK-PRN-AVG
resulting in high detection rate, although both WEAK-PRN-OSC
(P=.12) and CNT-DRT-AVG (P=.93) were not significantly
different between the patient and control groups statistically.

In searching for optimal subset of features for classifiers, the
wrapper method resolves the problem of high-dimensional
features space and feature redundancy to improve the intelligent
decision [42]. In [43], feature selection of RF and SVM
conducted the phenotyping through limiting the number of
variables based on the importance in RF. Especially, feature
selection was prominent in the classification with insufficient
sample data by restricting the number of features in the classifier
to  n/10  for the best performance [44]. In this study, 12 PDT
features extracted from sensor signal processing were narrowed
down to two or three features to support decision for stroke.
We investigated the effect of reduction of dominant features by
comparing the performance of stroke classifiers including and
excluding feature selection. As shown in Figure 10, the accuracy
of RF-exFS classifier (accuracy = .846) obtained higher accuracy
than SVM-exFS and RBFN-exFS (accuracy = .808). The result
is induced from the RF’s intrinsic property that RF contains the
feature selection mechanism in the classification as it randomly
selects different variables to construct each tree within its forest.
This randomization is known to be effective in eliminating
noises and reflecting multivariate interactions with other
variables [22]. Therefore, the effect of feature selection appears
stronger in RBFN and SVM than RF as shown in Figures 10
and 11. Feature selection improved accuracy by 14.23%, 9.53%,
and 9.1% in RBFN, SVM, and RF, respectively. AUC was also
improved along with FS by 15.3 % in average (SVM: .806-.913,
RBFN: .769-.956, and RF: .900-.975). We conducted the t test
between AUCs of classifiers with and without feature selection
and the difference between RBFN-inFS and RBFN-exFS was
most significant (P=.06).

Implications of This Study and Perspectives
Although many mobile devices using sensors have been
developed and marketed to doctors and health care providers
for years, adoption of machine learning in stroke patients is still

in its infancy. In particular, patients or stroke witnesses do not
have any tools to detect stroke or communicate with health care
providers.

As we described, time is critical in acute stroke management,
including thrombolytic treatments. Thrombolytic treatment
should begin within 4.5 hours after the onset of a stroke.
Moreover, earlier treatment results in better outcomes within
the treatment window. Therefore, rapid evaluation of motor
weakness is important. To reduce hospital delay and efficiently
dispatch patients in emergent medical services, integration of
machine learning methods with mobile devices with sensors
might be useful.

In addition, evaluation by neurologists may be delayed in busy
emergency room. To overcome these limitations and improve
patients’ care, a simple bedside tool and objectifying the results
are important. The proposed solution can connect patients and
health care providers in rapid communication and, ultimately,
these approaches may improve the care of stroke patients at low
cost.

As another application, the proposed tool might be helpful in
monitoring of stroke recurrence in subacute-to-chronic period
after stroke. Although we previously demonstrated that the
objective of PDT was useful in detecting functional recovery
in patients with acute stroke, further long-term follow-up studies
can provide its usefulness in detecting stroke occurrence,
because machine learning model can be improved with the big
data, and personalized history of measurement can provide
tailoring in stroke management.

Limitations and Future Works
In this study, a total of 26 sample data were analyzed by machine
learning methods. The performance of machine learning
algorithms is known to be affected by the quality and quantity
of training data. We adopted LOOCV to complement the small
number of instances, and the large data accumulation in further
study may diminish the requirement of LOOCV, which requires
more computing time and resources.

We also plan to develop a new version of iPronator with
small-sized, 3-axis accelerometer and 3-axis gyroscope, since
the weight of smart devices may affect the result of PDT. In
this study, we excluded the initial dip caused by the mobile
phone’s own weight.

The diverse causes of pronator drift can be another limitation
for this tool in the detection of stroke, because there exist false
positive signs in PDT caused by other lesions outside the motor
pathway. The future development extends the current binary
classification into multi-classification clustering various causes
of PDT.
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of support vector machine for pronator drift test.

[PNG File, 403KB-Multimedia Appendix 2]

References

1. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality,
and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease
Study 2015. Lancet 2016 Oct 08;388(10053):1459-1544 [FREE Full text] [doi: 10.1016/S0140-6736(16)31012-1] [Medline:
27733281]

2. Rathore SS, Hinn AR, Cooper LS, Tyroler HA, Rosamond WD. Characterization of incident stroke signs and symptoms:
findings from the atherosclerosis risk in communities study. Stroke 2002 Nov;33(11):2718-2721 [FREE Full text] [Medline:
12411667]

3. Darcy P, Moughty AM. Images in clinical medicine. Pronator drift. N Engl J Med 2013 Oct 17;369(16):e20. [doi:
10.1056/NEJMicm1213343] [Medline: 24131195]

4. Teitelbaum JS, Eliasziw M, Garner M. Tests of motor function in patients suspected of having mild unilateral cerebral
lesions. Can J Neurol Sci 2002 Nov;29(4):337-344. [Medline: 12463489]

5. Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, Guidetti D, et al. Thrombolysis with alteplase 3 to 4.5 hours after
acute ischemic stroke. N Engl J Med 2008 Sep 25;359(13):1317-1329. [doi: 10.1056/NEJMoa0804656] [Medline: 18815396]

6. Shin S, Park E, Lee DH, Lee K, Heo JH, Nam HS. An objective pronator drift test application (iPronator) using handheld
device. PLoS One 2012;7(7):e41544 [FREE Full text] [doi: 10.1371/journal.pone.0041544] [Medline: 22911811]

7. Vanpee G, Hermans G, Segers J, Gosselink R. Assessment of limb muscle strength in critically ill patients: a systematic
review. Crit Care Med 2014 Mar;42(3):701-711. [doi: 10.1097/CCM.0000000000000030] [Medline: 24201180]

8. Dunn P. Measurement and Data Analysis for Engineering and Science, Third Edition. Boca Raton: CRC Press; 2014.
9. Kobori S, Takizawa S, Sekiyama S, Takagi S. Ten centimeter elevation of the contralateral leg is enough to evaluate Hoover

sign. Intern Med 2007;46(1):55-56 [FREE Full text] [Medline: 17202735]
10. Moore H. MATLAB for Engineers (3rd Edition). Upper Saddle River: Prentice Hall; 2012.
11. Smith TC, Frank E. Introducing Machine Learning Concepts with WEKA. Methods Mol Biol 2016;1418:353-378. [doi:

10.1007/978-1-4939-3578-9_17] [Medline: 27008023]
12. Schoonjans F, Zalata A, Depuydt CE, Comhaire FH. MedCalc: a new computer program for medical statistics. Comput

Methods Programs Biomed 1995 Dec;48(3):257-262. [Medline: 8925653]
13. Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007 Oct

1;23(19):2507-2517 [FREE Full text] [doi: 10.1093/bioinformatics/btm344] [Medline: 17720704]
14. Kohavi R, John GH. Wrappers for feature subset selection. Artif Intell 1997 Dec;97(1-2):273-324. [doi:

10.1016/S0004-3702(97)00043-X]
15. Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res 2003;3:1157-1182. [doi:

10.1162/153244303322753616]
16. Larrañaga P, Calvo B, Santana R, Bielza C, Galdiano J, Inza I, et al. Machine learning in bioinformatics. Brief Bioinform

2006 Mar;7(1):86-112 [FREE Full text] [Medline: 16761367]
17. Fernández-Delgado M, Cernadas E, Barro S, Amorim D. Do we Need Hundreds of Classifiers to Solve Real World

Classification Problems? J Mach Learn Res 2014;15:3133-3181.
18. Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995;20(3):273-297. [doi: 10.1023/A:1022627411411]
19. Schölkopf B, Smola A. Learning with kernels: support vector machines, regularization, optimization, and beyond.

Cambridge, Mass: MIT Press; 2002.
20. Schwenker F, Kestler HA, Palm G. Three learning phases for radial-basis-function networks. Neural Netw 2001

May;14(4-5):439-458. [doi: 10.1016/S0893-6080(01)00027-2]

J Med Internet Res 2017 | vol. 19 | iss. 4 | e120 | p. 12http://www.jmir.org/2017/4/e120/
(page number not for citation purposes)

Park et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v19i4e120_app1.png&filename=084abaf9674d2f2df327eb8cc59d2873.png
https://jmir.org/api/download?alt_name=jmir_v19i4e120_app1.png&filename=084abaf9674d2f2df327eb8cc59d2873.png
https://jmir.org/api/download?alt_name=jmir_v19i4e120_app2.png&filename=339042db817f3b4720e89f3daba83f18.png
https://jmir.org/api/download?alt_name=jmir_v19i4e120_app2.png&filename=339042db817f3b4720e89f3daba83f18.png
https://linkinghub.elsevier.com/retrieve/pii/S0140-6736(16)31012-1
http://dx.doi.org/10.1016/S0140-6736(16)31012-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27733281&dopt=Abstract
http://stroke.ahajournals.org/cgi/pmidlookup?view=long&pmid=12411667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12411667&dopt=Abstract
http://dx.doi.org/10.1056/NEJMicm1213343
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24131195&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12463489&dopt=Abstract
http://dx.doi.org/10.1056/NEJMoa0804656
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18815396&dopt=Abstract
http://dx.plos.org/10.1371/journal.pone.0041544
http://dx.doi.org/10.1371/journal.pone.0041544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22911811&dopt=Abstract
http://dx.doi.org/10.1097/CCM.0000000000000030
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24201180&dopt=Abstract
http://joi.jlc.jst.go.jp/JST.JSTAGE/internalmedicine/46.6170?from=PubMed
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17202735&dopt=Abstract
http://dx.doi.org/10.1007/978-1-4939-3578-9_17
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27008023&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8925653&dopt=Abstract
http://bioinformatics.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=17720704
http://dx.doi.org/10.1093/bioinformatics/btm344
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17720704&dopt=Abstract
http://dx.doi.org/10.1016/S0004-3702(97)00043-X
http://dx.doi.org/10.1162/153244303322753616
http://bib.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=16761367
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16761367&dopt=Abstract
http://dx.doi.org/10.1023/A:1022627411411
http://dx.doi.org/10.1016/S0893-6080(01)00027-2
http://www.w3.org/Style/XSL
http://www.renderx.com/


21. Wettschereck D, Dietterich T. Improving the performance of radial basis function networks by learning center locations.
In: Proceedings of the 4th International Conference on Neural Information Processing Systems. 1991 Presented at: NIPS'91;
December 2; Denver, Colorado p. 1133-1140.

22. Breiman L. Random forests. Mach Learn 2001;45(1):5-32. [doi: 10.1023/A:1010933404324]
23. Agarwal V, Zhang L, Zhu J, Fang S, Cheng T, Hong C, et al. Impact of predicting health care utilization via web search

behavior: a data-driven analysis. J Med Internet Res 2016 Sep 21;18(9):e251 [FREE Full text] [doi: 10.2196/jmir.6240]
[Medline: 27655225]

24. Cole-Lewis H, Varghese A, Sanders A, Schwarz M, Pugatch J, Augustson E. Assessing electronic cigarette-related tweets
for sentiment and content using supervised machine learning. J Med Internet Res 2015;17(8):e208 [FREE Full text] [doi:
10.2196/jmir.4392] [Medline: 26307512]

25. Allyn J, Allou N, Augustin P, Philip I, Martinet O, Belghiti M, et al. A comparison of a machine learning model with
EuroSCORE II in predicting mortality after elective cardiac surgery: a decision curve analysis. PLoS One
2017;12(1):e0169772 [FREE Full text] [doi: 10.1371/journal.pone.0169772] [Medline: 28060903]

26. Koutsouleris N, Kahn RS, Chekroud AM, Leucht S, Falkai P, Wobrock T, et al. Multisite prediction of 4-week and 52-week
treatment outcomes in patients with first-episode psychosis: a machine learning approach. Lancet Psychiatry 2016
Oct;3(10):935-946. [doi: 10.1016/S2215-0366(16)30171-7] [Medline: 27569526]

27. Desautels T, Calvert J, Hoffman J, Jay M, Kerem Y, Shieh L, et al. Prediction of sepsis in the intensive care unit with
minimal electronic health record data: a machine learning approach. JMIR Med Inform 2016 Sep 30;4(3):e28 [FREE Full
text] [doi: 10.2196/medinform.5909] [Medline: 27694098]

28. Wu W, Dasgupta S, Ramirez EE, Peterson C, Norman GJ. Classification accuracies of physical activities using smartphone
motion sensors. J Med Internet Res 2012;14(5):e130 [FREE Full text] [doi: 10.2196/jmir.2208] [Medline: 23041431]

29. Asadi H, Dowling R, Yan B, Mitchell P. Machine learning for outcome prediction of acute ischemic stroke post intra-arterial
therapy. PLoS One 2014;9(2):e88225 [FREE Full text] [doi: 10.1371/journal.pone.0088225] [Medline: 24520356]

30. Laux da Costa L, Delcroix M, Dalla Costa ER, Prestes IV, Milano M, Francis SS, et al. A real-time PCR signature to
discriminate between tuberculosis and other pulmonary diseases. Tuberculosis (Edinb) 2015 Jul;95(4):421-425 [FREE Full
text] [doi: 10.1016/j.tube.2015.04.008] [Medline: 26025597]

31. Alexopoulos E, Dounias G, Vemmos K. Medical diagnosis of stroke using inductive machine learning. Machine Learning
and Applications: Machine Learning in Medical Applications 1999:20-23.

32. Khosla A, Cao Y, Lin C, Chiu H, Hu J, Lee H. An integrated machine learning approach to stroke prediction. 2010 Presented
at: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining; July 2010;
Washington, DC, USA.

33. Lemmens RJ, Timmermans AA, Janssen-Potten YJ, Pulles SA, Geers RP, Bakx WG, et al. Accelerometry measuring the
outcome of robot-supported upper limb training in chronic stroke: a randomized controlled trial. PLoS One 2014;9(5):e96414
[FREE Full text] [doi: 10.1371/journal.pone.0096414] [Medline: 24823925]

34. Park E, Lee SI, Nam HS, Garst JH, Huang A, Campion A, et al. Unobtrusive and continuous monitoring of alcohol-impaired
gait using smart shoes. Methods Inf Med 2017;56(1):74-82. [doi: 10.3414/ME15-02-0008] [Medline: 27782289]

35. Kwon S, Kim H, Park KS. Validation of heart rate extraction using video imaging on a built-in camera system of a
smartphone. Conf Proc IEEE Eng Med Biol Soc 2012;2012:2174-2177. [doi: 10.1109/EMBC.2012.6346392] [Medline:
23366353]

36. Araújo R, Tábuas-Pereira M, Almendra L, Ribeiro J, Arenga M, Negrão L, et al. Tremor frequency assessment by iPhone®
applications: correlation with EMG analysis. J Parkinsons Dis 2016 Oct 19;6(4):717-721. [doi: 10.3233/JPD-160936]
[Medline: 27662333]

37. Nam HS, Park E, Heo JH. Facilitating stroke management using modern information technology. J Stroke 2013
Sep;15(3):135-143 [FREE Full text] [doi: 10.5853/jos.2013.15.3.135] [Medline: 24396807]

38. Pullen RL. Neurologic assessment for pronator drift. Nursing 2004 Mar;34(3):22. [Medline: 15179998]
39. Campbell W, DeJong R. DeJong's the neurologic examination. Philadelphia: Lippincott Williams & Wilkins; 2005.
40. Weaver DF. A clinical examination technique for mild upper motor neuron paresis of the arm. Neurology 2000 Jan

25;54(2):531-532. [Medline: 10668739]
41. Maranhão ET, Maranhão-Filho P, Lima MA. The Digiti Quinti Sign, Souques' Interosseous Phenomenon, and Pronator

Drift Test as Subtle Motor Signs in Patients with Monohemispheric Brain Tumor. Revista Brasileira de Cancerologia
2008;54(3):227-230.

42. Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A. Recent advances and emerging challenges of feature selection
in the context of big data. Knowl Based Syst 2015 Sep;86:33-45. [doi: 10.1016/j.knosys.2015.05.014]

43. Zhao J, Bodner G, Rewald B. Phenotyping: using machine learning for improved pairwise genotype classification based
on root traits. Front Plant Sci 2016;7:1864 [FREE Full text] [doi: 10.3389/fpls.2016.01864] [Medline: 27999587]

44. Raudys S, Jain A. Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE
Trans Pattern Anal Machine Intell 1991;13(3):252-264. [doi: 10.1109/34.75512]

J Med Internet Res 2017 | vol. 19 | iss. 4 | e120 | p. 13http://www.jmir.org/2017/4/e120/
(page number not for citation purposes)

Park et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1023/A:1010933404324
http://www.jmir.org/2016/9/e251/
http://dx.doi.org/10.2196/jmir.6240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27655225&dopt=Abstract
http://www.jmir.org/2015/8/e208/
http://dx.doi.org/10.2196/jmir.4392
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26307512&dopt=Abstract
http://dx.plos.org/10.1371/journal.pone.0169772
http://dx.doi.org/10.1371/journal.pone.0169772
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28060903&dopt=Abstract
http://dx.doi.org/10.1016/S2215-0366(16)30171-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27569526&dopt=Abstract
http://medinform.jmir.org/2016/3/e28/
http://medinform.jmir.org/2016/3/e28/
http://dx.doi.org/10.2196/medinform.5909
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27694098&dopt=Abstract
http://www.jmir.org/2012/5/e130/
http://dx.doi.org/10.2196/jmir.2208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23041431&dopt=Abstract
http://dx.plos.org/10.1371/journal.pone.0088225
http://dx.doi.org/10.1371/journal.pone.0088225
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24520356&dopt=Abstract
http://europepmc.org/abstract/MED/26025597
http://europepmc.org/abstract/MED/26025597
http://dx.doi.org/10.1016/j.tube.2015.04.008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26025597&dopt=Abstract
http://dx.plos.org/10.1371/journal.pone.0096414
http://dx.doi.org/10.1371/journal.pone.0096414
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24823925&dopt=Abstract
http://dx.doi.org/10.3414/ME15-02-0008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27782289&dopt=Abstract
http://dx.doi.org/10.1109/EMBC.2012.6346392
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23366353&dopt=Abstract
http://dx.doi.org/10.3233/JPD-160936
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27662333&dopt=Abstract
https://dx.doi.org/10.5853/jos.2013.15.3.135
http://dx.doi.org/10.5853/jos.2013.15.3.135
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24396807&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15179998&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10668739&dopt=Abstract
http://dx.doi.org/10.1016/j.knosys.2015.05.014
https://dx.doi.org/10.3389/fpls.2016.01864
http://dx.doi.org/10.3389/fpls.2016.01864
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27999587&dopt=Abstract
http://dx.doi.org/10.1109/34.75512
http://www.w3.org/Style/XSL
http://www.renderx.com/


Abbreviations
AUC: area under the receiver operating characteristic
FS: feature selection
MRC: Medical Research Council
PDT: pronator-drift test
RBFN: radial basis function network
RF: random forest
SVM: support vector machine
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