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Abstract

Background: Electronic health records (EHRs) are a rich resource for developing applications to engage patients and foster
patient activation, thus holding a strong potential to enhance patient-centered care. Studies have shown that providing patients
with access to their own EHR notes may improve the understanding of their own clinical conditions and treatments, leading to
improved health care outcomes. However, the highly technical language in EHR notes impedes patients’comprehension. Numerous
studies have evaluated the difficulty of health-related text using readability formulas such as Flesch-Kincaid Grade Level (FKGL),
Simple Measure of Gobbledygook (SMOG), and Gunning-Fog Index (GFI). They conclude that the materials are often written
at a grade level higher than common recommendations.

Objective: The objective of our study was to explore the relationship between the aforementioned readability formulas and the
laypeople’s perceived difficulty on 2 genres of text: general health information and EHR notes. We also validated the formulas’
appropriateness and generalizability on predicting difficulty levels of highly complex technical documents.

Methods: We collected 140 Wikipedia articles on diabetes and 242 EHR notes with diabetes International Classification of
Diseases, Ninth Revision code. We recruited 15 Amazon Mechanical Turk (AMT) users to rate difficulty levels of the documents.
Correlations between laypeople’s perceived difficulty levels and readability formula scores were measured, and their difference
was tested. We also compared word usage and the impact of medical concepts of the 2 genres of text.

Results: The distributions of both readability formulas’ scores (P<.001) and laypeople’s perceptions (P=.002) on the 2 genres
were different. Correlations of readability predictions and laypeople’s perceptions were weak. Furthermore, despite being graded
at similar levels, documents of different genres were still perceived with different difficulty (P<.001). Word usage in the 2 related
genres still differed significantly (P<.001).

Conclusions: Our findings suggested that the readability formulas’ predictions did not align with perceived difficulty in either
text genre. The widely used readability formulas were highly correlated with each other but did not show adequate correlation
with readers’ perceived difficulty. Therefore, they were not appropriate to assess the readability of EHR notes.

(J Med Internet Res 2017;19(3):e59) doi: 10.2196/jmir.6962
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Introduction

Background
Patient engagement and effective patient-physician
communication are essential in patient-centered care, defined
by the Institute of Medicine as “respectful of and responsive to
individual patient preferences, needs, and values, and ensuring
that patient values guide all clinical decisions” [1]. Electronic
health records (EHRs) are a rich resource for developing
applications to engage the patients and foster patient activation
[2-4]. Thus, allowing patients access to their own EHR records
holds a strong potential to enhance patient-centered care. It may
improve the understanding of their own clinical conditions and
treatments, leading to improved health care outcomes (eg,
increased medication adherence [4]).

As patients express interests in reading their own EHR data [5],
health care institutions have also begun to open up access to
the EHR records [6]. However, EHRs are written by physicians
to communicate with other health care professionals [7].
Therefore, EHRs are full of medical jargon, abbreviations, and
other domain-specific usages and expressions that are ill-suited
for the lay people (patients). One study showed that nearly
two-thirds of the surveyed patients considered physicians’notes
difficult to understand, and radiology reports and nurses’ notes
were also perceived as difficult [8]. Another study recruited
healthy volunteers to read and retell medical documents [9].
Common retelling errors included misunderstanding clinical
concepts and physician’s findings during a patient’s visit. In a
study of electronic primary care records, many patients requested
explanations of medical terms and abbreviations [10]. A recent
patient survey on Web-based access to laboratory results
concluded that test result comprehension still needed
improvement [11]. Findings from an assessment of lay
understanding of medical terms suggested that a substantial
proportion of the lay public did not understand phrases often
used in cancer consultations and that knowledge of basic
anatomy could not be assumed [12]. In the emergency
department setting, patients understood less than 30% of
commonly used medical terms [13]. Moreover, the vocabulary
gap between professionals and laypeople has motivated a thread
of research to develop controlled vocabulary resources [14-16].

Merely providing patients with their own EHR records,
therefore, does not necessarily help the patients better understand
their own conditions. Further complicating the issue, it is
estimated in the National Assessment of Adult Literacy that the
average American has a reading level between the 7th and 8th
grade [17]. It is also reported in the same assessment that about
36% of the US population or 75 million Americans have basic
or below basic health literacy. The opaque narratives in the EHR
present a challenge to the average patient.

Electronic Health Records and Readability
Measuring the readability of the EHR notes is one important
step toward making the notes accessible to the patients.
Numerous studies [18-20] have evaluated the difficulty of health
information intended for patient consumption using readability
formulas. They conclude that the materials are often written at
a grade level higher than common recommendations. However,

the trust in these formulas to measure difficulty may be
overextended. Grade-level readability formulas were originally
developed to try to ensure that a school textbook for a particular
grade was appropriate for children at that grade level [21]. Their
capabilities in measuring documents of a highly technical nature
such as health care are not thoroughly validated. There are recent
attempts to develop methods for text in the medical domain
[22,23]. They have yet to enjoy wide adoption in the community,
which may be attributed to the fact that efforts in learning
models are inevitable.

Readability Formulas
Numerous readability metrics have been used for the purposes
of preparing texts for schoolchildren and language learners and
ensuring smooth written communication. These metrics assess
the grade level or the number of years of education needed for
a person to understand the content. Here we briefly introduce
3 of the metrics. For more discussions on these traditional
readability formulas, we refer the reader to the review in [24].

Flesch-Kincaid Grade Level (FKGL) [25] predicts a grade level
using the average sentence length and the average word length.
Simple Measure of Gobbledygook (SMOG) [26] predicts
readability based on the number of polysyllabic words (words
with more than 3 syllables) and the number of sentences.
Similarly, Gunning-Fog Index (GFI) [27] employs sentence
length and the proportion of polysyllabic words. Detailed
equations are shown in Multimedia Appendix 1.

These metrics are also used extensively in the health care
domain to measure the readability of patient handouts
[18,28-30], Web-based health information for patients
[19,31,32], medication inserts [33,34], informed consent forms
[20,35,36], clinical trial information [37], and Wikipedia medical
entries [38,39]. FKGL, in particular, is used in more than half
of readability studies compared in one review [40].

In general, these aforementioned metrics rely on the assumption
that the longer the words and the sentences, the more difficult
the text is. However, this assumption may not hold true for EHR
narratives, which contain lists of clinical events (eg, medication
list), abbreviations, and incomplete and short sentences, unduly
lowering the readability score.

One measurement that tailors to the medical domain was
proposed by Kim H et al [22]. This method compared surface
text, syntactic, and semantic differences to predefined easy and
difficult documents and reported normalized scores instead of
grade levels. Another method for health text based on a naive
Bayes classifier was developed [23]. The authors collected
training documents from Web-based blogs, patient education
documents, and medical journal articles. Vocabularies in these
documents were used as features for the classifier. Both of the
methods relied on manually curated documents. Therefore,
different choices in constructing the sets might result in variation
in the scores or classification results. Moreover, the classifier
was limited, as it assigned only 3 categories—easy, intermediate,
and difficult, and did not assign a grade-level scale. Furthermore,
the reference document sets were not available.

Less research has been conducted on whether the readability
grade levels predicted by these formulas or computational

J Med Internet Res 2017 | vol. 19 | iss. 3 | e59 | p. 2http://www.jmir.org/2017/3/e59/
(page number not for citation purposes)

Zheng & YuJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


models agree with actual users’ perceptions of text difficulty.
The objective characteristics are shown to not always align with
user perceptions in other research fields. In one study, user
perceptions of computer manufacturers’websites were different
from content analysis tools [41]. In this work, we explored the
relationship between users’ perceptions of text difficulty and
the readability formulas’ output.

We evaluated FKGL and other widely used traditional
readability metrics. These metrics usually hinged on a few
textual characteristics and did not take into account the domain
of the text. We also explored the effectiveness of the existing
readability formulas on predicting the users’ perceptions of
difficulty. We hypothesized that the perceived readability of
technical documents on complex topics was dependent on the
domain of the text, not an absolute measure of the difficulty of
a piece of text.

Methods

Overview
We evaluated existing metrics for assessing EHR readability
and investigated their utility in EHR notes. We used the
open-source Java library Flesh 2.0 [42] to calculate FKGL. In
addition, we used the same program to calculate the number of

sentences, words, and syllables, and then applied the other 2
formulas (SMOG and GFI). In the following sections, we first
describe the data we used for evaluation, followed by an analysis
of this corpus.

Data
We collected documents about diabetes from 2 different
resources: English Wikipedia (denoted as wiki) and deidentified
EHR notes (denoted as med). In wiki documents, we traversed
from the Diabetes category. The EHR notes were selected using
the International Classification of Diseases, Ninth Revision,
code range 250.00 to 250.93. The 2 sources provided a contrast
between texts aimed at the general audience and those written
with health care professionals in mind. The statistics of this
collection is shown in Table 1 under the columns labeled “all.”

Diabetes is a common disease that we can expect a large body
of readers to be aware of and can provide reasonable judgments
on readability. This is especially important in the EHR collection
because randomly selected EHR notes may contain information
about rare conditions, which can confuse the readers. The
common theme of the content in the 2 sources also helps address
the problem of variations of a user’s knowledge in different
areas. By constraining to a single condition, we can limit the
confounding effect of a user’s different levels of familiarity in
different areas.

Table 1. Document collection statistics.

FKGLcTokensSentencesDocumentsGenre

PairedAllPairedAllPairedAllPairedbAlla

7.33–17.827.33–21.8523, 185142, 1061084570358140Wiki

6.99–15.766.48–15.7657, 655120, 31542328715133242Med

aColumns labeled “all” include all documents.
bColumns labeled “paired” include only documents where another one with a similar length and FKGL score is also available.
cFKGL: Flesch-Kincaid Grade Level.

Amazon Mechanical Turk Annotators
To validate one of the most frequently used readability formulas,
FKGL, we paired analogous documents in our collection to ask
Amazon Mechanical Turk (AMT) users to compare them.
Specifically, documents were paired so that they had similar
lengths (within 50-token difference) and comparable readability
levels according to FKGL (within 0.5 grade level). The statistics
on documents that were paired are shown in Table 1 under the
columns labeled “paired.”

We recruited 15 AMT subjects to read and rate pairs of
documents. The readers were screened to have English as their
native language and be AMT master workers. Three readers

had a high school diploma, 7 had an associate degree, 4 had a
Bachelor’s degree, and 1 did not report education level. Each
reader was presented with 20 randomly selected pairs of
documents side by side on the computer screen. The 20
document pairs consisted of 5 pairs of wiki documents, 5 pairs
of med documents, and 10 pairs of mixed-genre documents.
The readers were requested to rate the readability of the
documents on a scale from 1 (easiest to understand) to 10 (most
difficult to understand). Each reader was given 6 hours to
complete the task, and was not explicitly prohibited from using
external resources. On average, they finished the assignment in
1 hour. Figure 1 is a screenshot of the interface with a
mixed-genre pair.
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Figure 1. Screenshot of the interface for the Amazon Mechanical Turk (AMT) users.

Corpus Analysis

Readability and User Rating Distributions
We first analyzed the empirical distribution of AMT users’
ratings on the text difficulty and compared it with the empirical
distribution of the readability formulas’ scores.

Correlation Between AMT Users
We next measured correlations between different AMT users.
For each user, all the documents that he or she provided a rating
were collected. Since the document pairs were randomly
assigned, in general no 2 users worked on an identical set of
documents. Only a subset of the documents were rated by any
2 users. On average, a document was rated by 2.3 users. Between
2 users, 8.6 documents were on average rated by both.

We calculated correlations for a user’s and any other user’s
ratings on the documents that were rated by both. The average
for each user was obtained by first transforming the correlations
by Fisher z-transformation, and then back-transformed [43].
Document genres were not separated in the calculation;
otherwise, it would result in too few instances.

Correlation Between AMT User and Readability
Formulas
To evaluate traditional readability formulas’ applicability in
technical documents, correlations between each AMT user’s
ratings and the 3 readability formulas were measured separately

for the wiki and med genres. The average over each user’s
correlations were also obtained by Fisher z-transformation.

Differences in Users’ Perceived Difficulty
To validate the generalizability of FKGL to different genres of
text, we tested whether users perceived a difference when the
readability scores were similar. The AMT users in our
experiments were presented with documents of comparable
difficulty (within a difference of 0.5) according to FKGL and
of similar length (within 50-token difference). We tested the
statistical significance of the difference between the difficulty
values assigned by the users to 2 similar documents, separately
for wiki, med, and mixed pairs. Two statistical tests are
employed—Wilcoxon signed-rank test and
Kolmogorov-Smirnov test.

We also tested the generalizability of 2 other formulas using
the same procedure. Among all of the document pairs, we
selected the subset of document pairs in which the SMOG scores
were within 0.5 between each pair. The same process was
repeated using GFI scores.

Furthermore, we explored the disparity in users’ perceived
difficulty when a readability formula reported a difference
between 2 documents. For each user, we generated pairs of
documents from all of the documents he or she rated and then
removed the pairs that were presented during the AMT work
session. These document pairs were separated into 3 types based
on the genres of the documents, as in the previous experiments.
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Correlation Between Readability Formulas
Since FKGL, SMOG, and GFI all involved similar variables
(sentence length in words or polysyllabic words, word length),
we examined the correlations between different readability
formulas on the 2 genres of text in our dataset. Many studies
adopted more than one of the traditional formulas to ascertain
readability grade level on documents intended for patient
consumption [44-49]. Analyzing the formulas’ correlations
would inform us of this approach’s utility.

Word Usage
We compared the word usage patterns in the 2 genres of text
by examining the common words. First, words in both med and
wiki sources were ordered by the frequency in which they
appeared in their respective genre. Then, the common words
that were in both genres of text in the top frequently used words
were counted. The shared vocabulary size might reveal a
difference in word usage in different text genres.

Impact of Medical Concepts
Medical jargon is one of the barriers for the patient to understand
health information. The eligibility criteria in clinical trials are
found to be too difficult for the average American population,
mainly due to the frequent use of technical jargon [50]. One
study has shown that linking medical terms in EHR notes to
Wikipedia pages can improve patient’s comprehension [51].
Moreover, many methods have been proposed to identify
important or potentially unfamiliar medical terms [52,53].

We explored the effects of the medical concepts by measuring
the correlation between users’ ratings and the number of
concepts. Medical concepts were identified by running MetaMap
[54] and excluding concepts from the following semantic groups

and types: Activities & Behaviors, Concepts & Ideas,
Geographic Areas, Objects, Occupations, Organizations, Age
Group, Animal, Family Group, Group, Human, Patient or
Disabled Group, Population Group, Professional or Occupational
Group, Educational Activity, Health Care Activity, and Research
Activity. These semantic groups and types usually do not contain
technical medical jargon, and are uncommon in EHR notes. We
also excluded Anatomical Structure because in our dataset
almost all terms in this category were “body,” with the rest
being such common body parts as “head” that would not pose
difficulty for an average reader.

Results

Readability and User Rating Distributions
Empirical distributions of the FKGL readability scores and
users’ ratings are shown in Figures 2 and 3. The FKGL
histograms (Figure 2) on the 2 genres have clear distinctions.
However, contrary to the general belief that EHR notes are more
difficult to read, the histogram on the med data peaks to the left
of the wiki data histogram. The users’ ratings (Figure 3),
although to a smaller degree, show a higher difficulty level for
the med than for the wiki data.

Table 2 shows the average score of each readability formula
and the AMT users’ ratings. All of the 3 readability scores
suggested that the technical EHR notes were significantly easier
than lay language wiki articles, whereas the AMT users rated
the opposite—wiki articles were 21.31% harder than EHR notes.

These results suggested that although FKGL might distinguish
the readability of different genres, its counterintuitive predictions
could lead to underestimation of difficulty levels on highly
complex documents.

Table 2. Average readability score and users’ ratings.

Average score or ratingGenre

AMTd user ratingGFIcSMOGbFKGLa

4.4112.3311.0714.75Wiki

5.358.168.749.87Med

21.31−33.76−21.03−33.09Differencee (%)

.002<.001<.001<.001P value

aFKGL: Flesch-Kincaid Grade Level.
bSMOG: Simple Measure of Gobbledygook.
cGFI: Gunning-Fog Index.
dAMT: Amazon Mechanical Turk.
eAll differences in scores between the wiki and med genres were statistically significant at level P=.01 (Mann-Whitney U test). The second to last row
shows that the percentage med score was higher than the percentage wiki score.
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Figure 2. Histogram of Flesch-Kincaid Grade Level (FKGL).

J Med Internet Res 2017 | vol. 19 | iss. 3 | e59 | p. 6http://www.jmir.org/2017/3/e59/
(page number not for citation purposes)

Zheng & YuJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Histogram of Amazon Mechanical Turk (AMT) users’ ratings.

Correlation Between AMT Users
Table 3 summarizes the correlations between 2 users’ ratings.
Most users showed moderate or strong correlation with other

users, suggesting that the AMT users’ perceptions of difficulty
were congruous among themselves.

Table 3. Average correlations between a user and everyone else.

No. of usersAverage correlation

3<0.4

50.4–0.6

7>0.6

Correlation Between AMT User and Readability
Formulas
Table 4 shows the average correlation coefficients between an
AMT user’s ratings and the 3 readability formulas’ output. All
the correlations were very low, especially in the med category.
The SMOG and user rating correlation on wiki data, although
slightly higher than that of FKGL and GFI, was barely moderate.

The low correlations suggested that users’ perceived difficulty
levels were inconsistent with the readability formulas’
predictions. For example, one user consistently assigned low
difficulty levels to documents with FK scores 12–16. However,
another user’s scores for documents with FK levels
approximately 13.5 varied considerably. In contrast, the
difficulty perceptions among different users were highly
consistent (Table 3).
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Table 4. Average correlation between users’ ratings and readability formulas.

MedWikiReadability formula

0.29990.1758FKGLa

0.10240.4134SMOGb

0.12720.2695GFIc

aFKGL: Flesch-Kincaid Grade Level.
bSMOG: Simple Measure of Gobbledygook.
cGFI: Gunning-Fog Index.

This pattern of inconsistency highlighted the inadequacy of
these formulas’ utility in measuring EHR readability. It also
highlighted their weakness in testing readability of documents
of complex topics such as medicine, as they were developed to
help users in the education community to gauge text difficulty
below 12 grade. All 3 formulas relied on word counts and
sentence counts to estimate text readability. The implicit
assumption that longer words were more difficult, however,
could often be violated. For instance, abbreviations that were
not normally used outside the medical domain, such as “CHF”
(Congestive Heart Failure) and “EKG” (electrocardiogram),
were prevalent in EHR notes, without full definitions. Because
these short abbreviations often comprised very few, if any,
syllables, they would have exactly the same impact on the
readability score as did the common stop words such as “the.”
However, the abbreviations were obviously one of the barriers
for a patient to understanding an EHR note. Furthermore, many

abbreviations were ambiguous. For example, “MI” can be the
shorthand for both “myocardial infarction” and “myocardial
ischemia,” 2 different clinical conditions. In fact, disambiguating
these abbreviations has been actively studied [55,56]. Finally,
SMOG and GFI’s use of polysyllabic words could also
exacerbate the problems with abbreviations. For example,
“COPD” might be considered a 1-syllable word in calculating
FKGL, but it would make no contribution to the calculation of
SMOG or GFI.

Differences in Users’ Perceived Difficulty
When 2 documents of similar length and FKGL score were
shown together, the ratings assigned by the AMT users exhibited
different patterns depending on the genres of the 2 documents.
Using a Wilcoxon signed-rank test, the P values are displayed
in Table 5 under “Wilcoxon signed-rank test.”

Table 5. Statistical significance of difference in AMT users’ perceived difficulty between documents of similar Flesch-Kincaid Grade Level.

P valueGenre of pair

Kolmogorov-Smirnov testWilcoxon signed-rank test

.95.80Wiki

.80.25Med

<.001<.001Mixed

The P values for a pair of same-genre documents showed that
the users’ assignments were not significantly different,
consistent with the traditional formula’s assessment. However,
the P value for a pair of documents from different genres
indicated that despite being assessed at similar difficulty, actual
users perceived them as significantly different in terms of
readability. Kolmogorov-Smirnov test (Table 5) also showed
the same trend.

The same tests, when repeated on a subset of document pairs
whose SMOG or GFI score difference was within 0.5, confirmed

that they were not generalizable to different text domains.
Detailed significance test results are displayed in Multimedia
Appendix 2.

AMT users’ perceptions of difficulty varied depending on the
genre of text, even though a readability formula shows no
difference. We then explored the disparity in users’ perceived
difficulty when a readability formula reported a difference
between 2 documents. Figure 4 shows the average difference
in users’ ratings on a pair of documents with varying differences
in FKGL scores.
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Figure 4. Average user’s rating difference on 2 documents of different Flesch-Kincaid Grade Level (FKGL) scores. Error bars are bootstrapped 95%
CI.

For a pair of EHR notes, as the difference in FKGL scores
widened, AMT users’ rating difference also gradually increased.
However, the users’ ratings were limited to at most 2.5 levels
difference even for large FKGL differences. For a pair of
Wikipedia documents, AMT users’ rating difference varied
slightly within 1 level. These patterns suggested that in a wide
range of FKGL scores, users’ ratings did not agree with FKGL.

A similar trend was present in a mixed pair of documents: AMT
users’ rating difference stayed close to 0. The limited difference
in AMT users’ ratings indicated that FKGL scores did not align
well with user perceptions across different genres.

Correlation Between Readability Formulas
The correlation coefficients between different formulas
confirmed that all 3 formulas were strongly correlated on our
dataset regardless of text genre, consistent with the findings
from previous studies [57,58]. Detailed plots and table showing
the correlation are displayed in Multimedia Appendix 3. The
substantial correlation implied that there was limited utility in
employing multiple formulas, especially those relying on word
and sentence lengths, to reduce potential bias of the individual

ones when assessing text readability, as is often done in research
studies [44-47,59].

Word Usage
In 2 similar corpora, the N most frequent words from each
corpus would be similar. Therefore, the number of common
words would increase at approximately the same rate as more
frequent words were examined from the 2 corpora. Significant
deviations from this pattern were indications of different word
usage patterns. As shown in Figure 4, in our set of diabetes
documents, the rate of increase in common words between wiki
and med documents was significantly smaller (at the level
P<.001) than 1 (shown as the solid line in the figure). This
suggested that the word usage patterns in the technical (med)
and lay language (wiki) documents on the same topic were
different.

Expanding to more topics, we built the same word frequency
statistic in all Wikipedia articles and about 100,000 EHR notes.
Shown in Figure 5 as the “expanded” collection, the slope of
common word count was also significantly smaller than 1 (at
the level P<.001).
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Figure 5. Common words in the med and wiki genre texts.

Impact of Medical Concepts
The correlation coefficients between the number of medical
concepts and user difficulty ratings, shown in Table 6, were
measured for each user and averaged. The average correlation
was again obtained by Fisher z-transformation. Correlations
with unique concepts were slightly higher than correlations with
all concepts in both med and wiki texts. More unique medical
concepts were likely to result in more cognitive load for a user
to comprehend. It was also worth noting that EHR notes showed

a lower level of correlation than the Wikipedia documents. This
could be in part attributed to the multitude of complexities of
EHR notes not limited to the abundance of technical jargon.
Writing style such as choice of words and textual cohesion
might also account for some of the variances in the difficulty
in perceptions of EHR notes. In spite of the differences, these
correlations suggested that medical jargon was a substantial
contributor to readers’ perceived difficulty of both genres of
text.

Table 6. Average correlations between users’ ratings and number of medical concepts.

MedWikiNumber of medical concepts

0.39870.4434Number of all concepts

0.43290.5041Number of unique concepts

Discussion

Principal Findings
We evaluated 3 widely used readability formulas’ predictions
of text difficulty and their correlation with users’ perceived
difficulty. Our results showed that although the formulas’
predictions were highly correlated, they did not align well with
user perceptions. Furthermore, despite being graded at similar
levels by a readability formula, documents of different genres
were still perceived with different difficulty.

Numerous studies have used the traditional readability formulas
to evaluate a variety of information sources for patients. Many
conclude that the materials intended for patients to improve
understanding of their health conditions are too complex,
exceeding the recommended grade levels for this purpose. Some
also suggest areas of improvements to help align the documents
to recommendation levels.

Unlike these studies that focus on documents mainly for patient
consumption (patient handouts, education materials, Web-based

information sources), we aimed to provide insight into users’
perceptions of EHR notes readability. EHR notes are foremost
a tool for physician communication, and a large portion of them
are not originally written with easy patient comprehension in
mind. However, they are shown to be beneficial to the patients.
As more institutions allow patients access to their own EHR
records, patients are also interested in reading them. Research
has shown that patients may need help in understanding them.
An accurate readability metric for the EHR notes can encourage
physicians to write notes in a simpler language. It may make
patient portals more useful. For example, it can be helpful in
EHR record presentation by highlighting the easier ones that
are within a patient’s reading capabilities and providing
comprehension assistance on the difficult ones. Such a metric
may also enable the assistance tools to locate education materials
that are easier to read than the EHR notes.

We noted that readability was not the only factor affecting
patients’ comprehension of EHR notes. For example, reader
interest and motivation have been pointed out in the literature
to be a factor contributing to comprehension [60]. In a more
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realistic scenario where patients read their own EHR notes, they
are likely to be motivated and show interest in knowing their
own health conditions. Comprehension may also depend on a
user’s existing knowledge of the subject matter. Since we
evaluated on many anonymous AMT users, the bias in individual
prior knowledge was reduced due to such a random selection
of participants. Nonetheless, higher readability could facilitate
patient comprehension. Existing formulas are widely used in
the health domain, but our analysis suggested that they were
not accurate when applied on complex documents. A better
metric should incorporate features beyond simple word and
sentence length, such as the complexity of the concepts involved
in the document.

Developments in computer science have led to new methods
that utilize statistical language modeling and machine learning
to predict text readability. For example, readability levels are
modeled as a linear combination of a unigram language model
and a normal distribution-based sentence length model [61].
This approach is expanded by introducing smoothing into the
language models [62]. A Support Vector Machine model to
assess text readability is proposed in [63] to learn from features
including syntactic information such as noun phrases, traditional
readability formulas, and language models.

However, language model-based approaches do not receive so
widely an adoption in the medical domain as the traditional
formulas. This can be in part due to the need to learn a language
model, a much more involved task than using a formula. FKGL
and other formulas, on the contrary, are readily available, free
of charge, and easy to use [64]. We will explore these new
models’ performance in differentiating user perceptions of
difficulty in the future.

Limitations
Our analysis was based on recruiting volunteers from AMT to
evaluate readability of EHR records. Having patients directly
perform this evaluation might represent a more realistic user
experience. The patient, through his or her interactions with a
health care professional, might have a better context than an
AMT user to rate his or her own record’s readability. In our

study, to mitigate the problem, we selected documents based
on a common condition.

Our sample documents were from one condition, selected to
provide some context so that users would not be surprised by
an unfamiliar topic. Thus, the user’s prior knowledge might
affect their ratings of text difficulty.

There are several other avenues we plan to pursue in future
work. Clustering users based on their pre-existing knowledge
may reveal readability formulas’ differing capabilities in
predicting users’ perceptions of difficulty for different
populations. We also plan to develop new methods that can
better capture the readability of complex technical documents
so that both health care providers and patients can benefit from
focusing first on EHR notes that are at an appropriate difficulty
level.

Conclusions
Studies have shown that providing patients with access to their
own EHR notes may lead to improved health care outcomes.
Measuring the readability of the EHR notes is an important step
toward making the highly complex and technical narratives
accessible to the patients. Despite being widely used in the
health care domain, existing readability formulas are not
thoroughly validated for their appositeness in this domain. In
this study, we evaluated several such formulas’ abilities in
predicting perceptions of difficulty in health-related text from
Wikipedia and EHR notes. We collected AMT users’ ratings
on text difficulty from these 2 different genres. Word usage in
the 2 genres differed significantly despite their sharing a
common topic. We found that the readability formulas’
predictions did not align with perceived difficulty in either text
genre. Furthermore, there was significant difference in the user’s
perceived difficulty in the general English and medical language
when similar scores were predicted by readability formulas.
Therefore, the widely used and highly correlated FKGL, SMOG,
and GFI readability scales did not show adequate agreement
with human ratings, and thus were not appropriate to assess the
readability of EHR notes.
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