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Abstract

Background: Standardizing the background diet of participants during a dietary randomized controlled trial is vital to trial
outcomes. For this process, dietary modeling based on food groups and their target servings is employed via a dietary prescription
before an intervention, often using a manual process. Partial automation has employed the use of linear programming. Validity
of the modeling approach is critical to allow trial outcomes to be translated to practice.

Objective: This paper describes the first-stage development of a tool to automatically perform dietary modeling using food
group and macronutrient requirements as a test case. The Dietary Modeling Tool (DMT) was then compared with existing
approaches to dietary modeling (manual and partially automated), which were previously available to dietitians working within
a dietary intervention trial.

Methods: Constraint optimization techniques were implemented to determine whether nonlinear constraints are best suited to
the development of the automated dietary modeling tool using food composition and food consumption data. Dietary models
were produced and compared with a manual Microsoft Excel calculator, a partially automated Excel Solver approach, and the
automated DMT that was developed.

Results: The web-based DMT was produced using nonlinear constraint optimization, incorporating estimated energy requirement
calculations, nutrition guidance systems, and the flexibility to amend food group targets for individuals. Percentage differences
between modeling tools revealed similar results for the macronutrients. Polyunsaturated fatty acids and monounsaturated fatty
acids showed greater variation between tools (practically equating to a 2-teaspoon difference), although it was not considered
clinically significant when the whole diet, as opposed to targeted nutrients or energy requirements, were being addressed.

Conclusions: Automated modeling tools can streamline the modeling process for dietary intervention trials ensuring consistency
of the background diets, although appropriate constraints must be used in their development to achieve desired results. The DMT
was found to be a valid automated tool producing similar results to tools with less automation. The results of this study suggest
interchangeability of the modeling approaches used, although implementation should reflect the requirements of the dietary
intervention trial in which it is used.
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Introduction

The measurement of nutrients and prescription of foods for
clinical studies can be a difficult task requiring consideration
of a number of different elements [1]. When conducting a dietary
intervention, it is imperative that researchers ensure consistent
allocations of macro- and micronutrients across participants,
while also tailoring the required dietary approach to the food
requirements, for example, food preferences, of the individual
participants as needed. Many high-quality published dietary
studies do not report on the use of such tailored approaches and
rather apply the underlying assumption that usual dietary intake
will be maintained by participants throughout the duration of a
trial [2]. However, within a randomized controlled trial design,
intervening using a food-/nutrient-based approach will inherently
result in changes to dietary intake during the trial, potentially
affecting the outcomes. This is particularly evident when a target
food is provided to participants, with studies showing that the
target food will be eaten in addition to rather than substituted
into the usual diet [3], resulting in increased energy (calories
or kilojoules) intake due to the intervention. To reduce the effect
of these changes, predefined, personalized, energy-focused
dietary prescriptions should be implemented via the use of
dietary modeling before the intervention.

Modeling is employed to test logic, demonstrate a concept or
an idea, and serve as a representation of reality. It often has a
mathematical basis [4]. The term “model” also implies
variability of the outcomes; hence, multiple options are often
tested. In practice, modeling is a theoretical process allowing
different scenarios [5] to be created. These scenarios typically
stem from an idea, concept, or change of practice. For dietary
modeling, the concept generally relates to achieving dietary
targets (food or nutrient) by consumption of given amounts
(servings) from a range of food groups. It utilizes a combination
of food consumption data and/or food composition data [5],
although it is not limited to these. In one example of modeling
of dietary intake, the concentration of a known nutrient within
a food is multiplied by the amount of the food consumed to
determine the contribution to the total nutrient intake. This type
of modeling requires access to food consumption data, such as
that of a national survey [6,7]. Modeling conducted by the
Australian regulatory authority, Food Standards Australia New
Zealand, use tailored software based on the SAS statistical
package using the following equation: dietary
intake=Σ(nutrient/chemical concentration × food consumption)
[6]. The software was custom developed to create high-level
dietary models at a population level to address chemical
exposure and the effect of food contamination [8]. Modeling
may also be used to standardize dietary intake across a
participant group at the point of intervention such as in a dietary
intervention trial, although resource limitations are likely to
reduce the opportunity to develop customized software.

The use of tailored tools, specifically for dietary modeling, has
the potential to aid the translation from nutrient to food
information and incorporate nutrition recommendations [4]

related to diet-disease relationships. The tools should ensure a
consistent and streamlined process is applied across the entire
trial to minimize variability. Manual approaches to prescribing
individualized diets are common to dietary studies [9-13]. They
are heavily user dependent, providing the potential for a high
degree of variability between prescribed outcomes. Manual
methods do, however, allow some consideration of the practical
issues related to dietary prescriptions at an individual level and
food-based guidelines to be incorporated. Practice-based
examples include a Microsoft Excel spreadsheet that is manually
manipulated to achieve food group targets [14,15] whereby the
user, often a dietitian or nutritionist, aims to achieve energy
(calories or kilojoules) and macronutrient (total fat, protein,
carbohydrate) proportions with minimal variability from the
overall trial targets. Modeling is achieved by manually adjusting
the number of prescribed servings within a given range
(commonly based on dietary guidelines). This process is
cumbersome and time consuming for the user and may have
significant resource implications within a clinical trial if the
dietitian is also needed to monitor the dietary intake of the
participants.

Alternatively, adding automation to the modeling process has
the potential to decrease the variability and time taken to create
the models while still employing a user-dependent approach.
The approach utilized to formulate the Australian Dietary
Guidelines is an example of modeling with an element of
automation, using the Solver Platform for Microsoft Excel [16].
Solver applies a computerized method for finding optimal
solutions using predetermined constraints (data limits) to
Excel-based spreadsheets. These constraints must be imputed
into the tool before it is applied to a spreadsheet. Solver has the
potential to minimize the user burden by minimizing
inconsistencies from trial targets at a group level but does
require extensive input of constraint details. Additionally, Solver
does not present the ability to easily optimize across competing
objectives that may be found in a clinical trial as it has been
designed to primarily provide user-defined constraint
satisfaction. The aforementioned spreadsheet-based tools are
also limited to food-based output only. They do not consider
the need for individualized modeling, a process that would
require separate calculation of estimated energy requirements
(EER). This individualized approach is common to the highly
controlled environment of a dietary intervention clinical trial
where each individual needs a targeted dietary prescription
rather than a generic one.

The process of dietary modeling in food-based clinical trials
when performed manually required dedicated time and resource
commitments and the need to calculate energy requirements
before development of each model. By applying constraint
optimization techniques to this process, it can be automated,
saving both time and resources and streamlining the overall
approach used. The development of the Dietary Modeling Tool
(DMT) [17] has the potential to provide an automated method
for dietary prescription, tailored to individual characteristics
within the food and/or nutrient-based constraints of a clinical
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trial. The objectives of the DMT were that it would take on a
simple, Web-based (widely accessible), and user-friendly format
and target the individual energy requirements of participants.
Its development would result in a reduction of between user
variability that may become evident when calculating target
servings for food groups based on energy requirements using
manual and partially automated approaches. Development of
streamlined models would also allow users who are not trained
in dietetics to create the models, and the dietitians would be
employed to address only those models where specific
considerations such as food preferences or avoidances need to
be addressed. The context for the DMT applied the following
assumptions. The clinical trial (study) targets would be generated
based on selected food groups to match the nutrition targets
defined in the trial. Modeling targets may be specific to the trial
or may relate to default nutrition guidelines such as the Dietary
Guidelines and Nutrient Reference Values. The clinical trial
would have baseline measures for all participants, that is, age,
gender, height, and weight (also used to calculate body mass
index), available to generate individualized models. This type
of demographic information is commonly collected. The overall
aim of the tool was that the developed DMT could be easily
reconfigured to use multiple macronutrient trial targets; could
be adjusted to accommodate a wide range of participant dietary
preferences, for example, vegetarian dietary patterns; and could
be used across multiple studies, that is, maintain the default
preferences for studies A, B, C...X, which may be occurring
concurrently. This paper describes the first-stage developmental
process of a tool to automatically perform dietary modeling
using food group and macronutrient requirements as a test case.
The DMT was then compared with existing approaches to
dietary modeling (manual and partially automated), which were
previously used by dietitians for dietary modeling.

Methods

The development of the DMT applied lessons from an existing
tool developed for the Australian food guidance system (AFGS)
that used a linear programming approach to modeling.
Algorithms published as part of the AFGS were used as the
basis for developing the DMT using nonlinear modeling.
Constraint optimization was also used to ensure the DMT was
suited to developing individual dietary prescriptions that are
needed in dietary intervention trials as the AFGS targeted
population groups. The developed algorithms were combined
with existing manual advice models [18] that had been used in
published dietary intervention trials conducted by the Smart
Foods Centre, University of Wollongong. Second, this paper
describes the comparative validation of the DMT against an
existing validated manual modeling tool and compares the
output with partially automated approaches to dietary modeling.
It was hypothesized that the DMT would provide clinically
valid results when compared with its manual counterparts while
also minimizing user burden.

The Constraint Optimization Problem
Formally, a constraint is a function CF(Dxi,...,Dxj) resulting in
a Boolean output {True, False}. The result is true if the
combination of all values is allowed and false otherwise. An

objective function OF(Dxi,...,Dxj) results in a set of Solutions
R, where R is a set of solutions that are optimal with respect to
the objectives OF. A constraint optimization problem is a tuple
(X,D,C,O) where X is a set {x1,...,xm} of variables, D is a set
{d1,...,dm} of variable domains, C is a set {c1,...,cj} of
constraints defined over X, and O is a set {o1,...,op} of objective
functions defined over X [19].

Food Guidance Modeling (Using Linear Programming)
Modeling conducted for the AFGS [20] used linear
programming [21,22] with population data. Linear programming
was used to allow more complex diets to be created within
energy and macronutrient restrictions. For example, if a food
item or a food group referred to as i (i=1...m) is consumed in
set amounts shown as si grams (ie, the target serving size), then
the daily total intake of a given nutrient j is shown by the
summation Σ ni.si.(cij/100), where ni = the consumed number
of servings of the food item or food group i and cij is the amount
of the nutrient j per 100 g of the food item or food group i. If
100 g of the food item or food group i provides ei kilojoules of
energy to the daily diet, the dietitian then needs to decide on
the set of servings (ni≥ 0, i=1...m) from a total list of all possible
foods items or food groups m, such that the daily total energy
intake of m is

E=Σ n.s.e [1]

and i=1 is minimized, and such that the guidelines for each of
the “nutrients” j=1...v are all simultaneously satisfied, that is,

mΣ ni.si.cij/100³ NRVj, j=1...v

Using this approach, it may be necessary to break down the
information by food groupings to achieve an outcome.

Further consideration then needs to be given to cultural norms,
food preferences, intolerances, palatability, and a number of
other factors by applying fixed, a “no more than” or “no less
than,” constraints to particular elements of the equation. For
example, a maximum intake level might be applied to a food
group. At the population level, individual considerations such
as food allergies are not addressed. When limitations are applied
to the aforementioned process with the aim to minimize energy
intake, in order to minimize population obesity levels, a number
of solutions may be apparent. These solutions (expressed as
numbers) are not always whole integers. As food is generally
consumed as a whole item, rounding is required to allow
recommendations to be made for a given frequency of
consumption, for example, per day or per week. This process
results in some minor adjustment to the target energy intake,
although this adjustment was found to be negligible [20].

Dietary Modeling Tool Development
Constraint optimization techniques were used to determine
whether nonlinear constraints are better suited to the modeling
process when a smaller sample (such as the participants of a
dietary randomized controlled trial) is targeted. Constraint
optimization is a process whereby a set of rules is created and
refined and needs to be upheld for a model to be developed. A
constraint optimization problem is a problem that is used to find
an optimal assignment of values to a given a set of variables,
their domain, a constraint function, and an objective function.
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A set of variables x1,...,x2 represent values that can be changed;
their domain are the acceptable values that each variable can
be assigned. For example, given a variable for “servings of
vegetables per day” an acceptable domain is 0 to 10. A
constraint over the set of variables is a restriction on variables;
for example, the energy (calories or kilojoules) of all servings
must be less than X. A constraint function is an abstract function
that takes a set of variables and their values and returns a True
or False answer indicating if they violate the constraints or not.
True is returned if all of the constraints are satisfied. A constraint
solver is an application that takes in variables and their domain
and changes the values of the variables until it can find a
satisfactory solution. A satisfactory solution is one where all of
the constraints are satisfied and the constraint function returns
true. An objective function is a function that takes a set of
solutions and determines the best given measure; for example,
the objective function “minimize kilojoules” will take a set of
results found by the constraint solver and pick the result with
the lowest number of kilojoules.

In contrast to the AFGS, it is likely that these constraints will
follow a nonlinear form because of the varied considerations
needed when modeling a diet, as outlined earlier. The DMT
will draw on existing food consumption data collected from
published dietary intervention trials as the basis for the
weighting of food groups rather than population-focused food
consumption data as was applied to AFGS. Output will be
provided as the number of servings of key food groups required
by a participant, of given energy requirements, to meet the
criteria of the clinical trial in which it is being used, optimized
against key food group serving suggestions. This is so that a
solution diet is not composed of one single food group or
presented based on an irregular food group split.

Development of the DMT followed a stepwise process. Food
data from completed dietary trials [23-25] were pooled and the
percentage contribution of common food groups determined
based on macronutrient composition. These food groups were
rank ordered under each macronutrient (total fat, protein,
carbohydrate) to determine the primary sources. Foods seen to
contribute to <75% of the total for each macronutrient were
taken as the top foods consumed. Individual foods belonging
to the food groupings determined were then categorized by the
relative proportions of all macronutrients contained in a single
serving. From this the mean energy (kilojoules) and
macronutrient content (grams) were determined. Subcategories
of food groupings were created based on secondary
macronutrients (saturated, monounsaturated, and
polyunsaturated fatty acids) and on other nutritive components
such as the presence of starch or sugar, which may be required
for particular participant groups such as persons with diabetes.

For each food group, the mean nutrient content, standard
deviation (SD), range, and coefficient of variation
(CV=SD/mean × 100) were determined for all foods within that
group. Acceptable variation was set at a CV of < 15% for the
macronutrients; otherwise, acceptability of the variation was
assessed by comparison with an existing food guidance system.

Standard deviation and range results were compared with those
reported in the 2003 American Diabetes Association Exchange
Lists for Meal Planning lists [26]. These lists were considered
to be the only comprehensive food exchange lists suited to
provide specific data on within-list variations from mean nutrient
estimates.

Setting Up the Interface
Developed online, the DMT [17] relies on 2 data sources that
are not seen by the user to populate the nutrient data (eg,
macronutrients) for each of the food groups (eg, vegetables,
fruits, and so on):

1. NUTTAB, a reference food composition database [27] for
Australia containing a list of all available foods, food groups,
their energy, and macro- and micronutrient composition.

2. Dietary intervention trial database containing pooled baseline
food intake data from completed trials before intervention.

An overview of the process is shown in Figure 1. In summary,
to use the tool, users (likely dietitians) access a website [17].
Initially, the user provides as input to the tool the following data
related to the trial:

1. Macronutrient targets for the trial including total fat, protein,
and carbohydrate.

2. Target servings T1, T2, T3,..., Tn where Ti is the target serving
for a food group. For example, T1 is the target serving for
vegetables (eg, 5 serves), T2 for grains (eg, 6.5), T3 for fruits
(eg, 3).

These values are maintained across the trial, and adjustment
will be applied to all models created for participants of that trial.
Via a separate interface (see Multimedia Appendix 1), the user
then inputs the participant details (including height, weight,
age, and gender).

The tool then computes the EER from resting energy expenditure
(REE) [28] using the following formulae:

For females, REE=9.99×weight+6.25×height–4.92×age–161

For males, REE=9.99×weight+6.25×height–4.92×age+5

EER=REE×PA

Physical activity (PA) is accounted for by standardized activity
factors as used in dietetic practice. For the purpose of this
first-stage development an activity factor of 1.6 (light activity)
was applied [29]. The user may then enter any study-specific
macronutrient percentages and desired food group servings (lean
meats, dairy, and so on) to suit the participant food preferences.
For example, if the participant follows a vegetarian diet the food
group servings for meat may be removed by the dietitian and
replaced with meat alternatives. This would return to the default
trial criteria for the next participant who may not follow a
vegetarian diet. The automated DMT would then provide the
user with target servings per food group to meet the trial
requirements suited to each participant.
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Figure 1. A schematic of the underlying process of using the Dietary Modeling Tool. Note: a dietitian defines the patient details and study targets and
target servings per food group and/or per nutrient (study specific), which is entered into the Dietary Modeling Tool.The tool draws data from both a
clinical trial and NUTTAB (nutrient tables) database to provide information related to the number of servings suited to the patient details (gender, height,
weight, age). These servings are provided to the patient for implementation of the dietary approach.

Creation of the Models
Then, let X1, X2,..., Xn be the servings described for the food
groups, for example, X1 for vegetables and X2 for grains. The
DMT is needed to determine the “best” value for Xi that meet
the constraints and objective functions. Therefore, for

carbohydrate (CHO), let TotalCHO be the total of carbohydrates
in the servings prescribed shown in Figure 2, equation (a), where
CHOi is the CHO nutrient data for Xi. Similarly, total protein
and fat as per equations (b) and (c) in Figure 2 respectively. The
resultant total energy of the servings prescribed is then
calculated as:

Figure 2. Constraint and objective functions for calculation of food groups based on carbohydrate, protein and fat content.

TotalEnergy = TotalCHO + TotalPTN + TotalFAT,

with the percentage energy for macronutrients calculated as
given below.

%CHO = [(TotalCHO × 17)/TotalEnergy] × 100

%PTN = [(TotalCHO × 17)/TotalEnergy] × 100

%FAT = [(TotalCHO × 36)/TotalEnergy] × 100

The Euclidean distance between (%CHO, %PTN, and %FAT)
and (TargetCHO, TargetPTN, and TargetFAT), referred to as
d(CHO, PTN, FAT), was therefore calculated as seen in Figure
3, and, in turn, the tool needs to find the servings prescribed,

Xi, such that d(CHO, PTN, FAT) is minimized, that is, as close
to 0 as possible, while the following constraints are satisfied:

1. For every food group i, Xi ≥ Ti (ie, the servings prescribed
are greater than or equal to the target serving for every food
group).

2. TotalEnergy ≤ EER (ie, the total energy of the servings
prescribed is less than or equal to EER).

By example, using the following constraints for prescribed
servings the following might be used: X1 ≥ 6.5/day (grains), X2

≥ 3/day (fruits), X3 ≥ 3/day (dairy).

Figure 3. Equation for calculating the Euclidean distance between carbohydrate (CHO), protein (PTN) and fat.

Validation and Use in Practice
To evaluate validity, the automated process was compared with
a partially automated and manual diet modeling process, and
the consistency in servings was compared using the different
methods, for a variety of energy levels. As there is no gold
standard for validation of dietary models, the manual approach
was considered the standard of reference.

For the manual process, a Microsoft Excel calculator [18] used
in previous clinical trials conducted at the University of
Wollongong was used, and for the partially automated process
Microsoft Excel Solver [16] was applied. As all tools were
developed based on the same underlying process of food
groupings, a consistent food group–based approach could be
compared across tools (for vegetables, breads and cereals, fruits,

low fat dairy, lean meat, cheese, eggs, oily fish,
monounsaturated fatty acid products, and polyunsaturated fatty
acid products). Models were created in accordance with the
recommendations of the Australian Guide to Healthy Eating
[30]. They provided outcomes for the number and size of
servings for each food group within the model. Diet models, by
food group, were created for 5000 kJ through to 10000 kJ daily
intakes, in 500-kJ increments. For comparative purposes the
percentage of energy provided from macronutrients was set to
be 50% carbohydrate, 20% protein, and 30% fat for all
approaches (manual, partially automated, and DMT).

To create comparative data, EER values using sample participant
height, weight, age, and gender were calculated using a separate
spreadsheet. These data were applied to the Excel calculator
and Solver modeling tools. Data for the number of food groups
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and calculated energy and macronutrient levels were provided
by each of the tools.

Excel Spreadsheet Calculator (Manual)
An experienced Accredited Practising Dietitian (APD) manually
manipulated the number of target servings of food groups in
order to achieve appropriate diet models for each kilojoule
increment. For repeatability, a less experienced dietitian also
performed the same task separately using the Excel spreadsheet
calculator [18]. This process created a second comparative set
of dietary models for each of the kilojoule targets.

Excel Solver (Partially Automated)
The Excel Solver add-in was applied to the aforementioned
calculator. In order to determine the appropriate output and
ensure consistency, the constraints outlined in Table 1 were
applied.

Dietary Modeling Tool (Automated)
The sample data for a participant’s height, weight, age, and
gender were entered directly into the DMT. Trial targets in the
study interface were set to the default macronutrient distributions
as outlined above.

Table 1. Number of serving constraint details per food group applied to the Microsoft Excel Solver modeling tool based on the study by Gillen and
Tapsell [19,26].

Additional number of serving constraints

(required for 8500-10,000 kJ models)

Number of serving constraint details (per day)Food group used for modeling

≥ 5,  aVegetables

≥ 4,  Whole grains

≥ 2, <4Fruits

Unrestricted≤ 3Sugar

≥ 2.5Milk/yoghurt (low/reduced fat)

≤ 0Milk/yoghurt (whole)

≤ 0Soy milk (whole)

≥ 5≥ 3Meat (lean choice, per 30 g)

≥ 0Cheese (reduced fat, per 30 g)

≥ 0Eggs (per 30 g)

≥ 0.43bOily fish

≥ 0Monounsaturated fatty acids

≥ 0Polyunsaturated fatty acids

a : No upper constraint limit.
b Equates to at least 1 serving per week.

Data Analysis
The variability of the percentage of energy from each of the
macronutrient targets was calculated for all tools. The outcomes
from each of the dietary modeling approaches were compared
for grouped food data for each of the kilojoule increments tested.
The percentage difference of each of the methods, in comparison
with the reference method (output from the manual process
created by an experienced dietitian), was calculated in order to
determine the comparative validity of the processes.

Results

Constraint optimization was found to be a suitable approach to
tool development. As outlined earlier, the DMT was developed
with 2 interfaces for users: a study interface, for defining default
constraints for a study, and a user interface for modeling
individual participant diets within the selected trial. Screenshots
of these user screens are provided in Multimedia Appendix 1
[17]. This approach to development allows multiple users to
model diets in different studies simultaneously. The forms were
hosted online [17] also allowing multi-user access from varied
locations.
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Table 2. Target servings prescribed for each food group using the manual, partially automated, and automated approaches applied to different energy
frameworks.

Fishe, 90 g
(%∆)

Eggsd, 1 egg
(%∆)

Cheesec, 30
g (%∆)

Lean meat,
30 g (%∆)

Dairy (%∆)Fruits (%∆)Grains (%∆)Vegetables
(%∆)

Modela (kJb target)No.

0.430.580.293.002.002.005.005.00Reference (5000)1.

0.43 (0)0.00 (100)0.00 (100)3.00 (0)2.50 (25)2.00 (0)4.00 (20)5.00 (0)Partially automated

0.00 (100)0.00 (100)0.00 (100)3.00 (0)2.00 (0.)2.00 (0)4.50 (10)5.00 (0)DMTf

0.43 (0)0.29 (51)0.00 (100)3.00 (0)2.50 (25)2.00 (0)5.00 (0)5.00 (0)Manual

0.430.580.293.502.002.005.005.00Reference (5500)2.

0.43 (0)0.00 (100)0.00 (100)3.00 (14)2.50 (25)2.30 (15)4.00 (20)5.00 (0)Partially automated

0.00 (100)0.00 (100)0.00 (100)3.00 (14)2.00 (0)2.07 (4)7.00 (40)6.00 (20)DMT

0.43 (0)0.29 (51)0.00 (100)3.00 (14)2.50 (25)2.00 (0)5.00 (0)5.00 (0)Manual

0.430.580.293.502.002.006.005.00Reference (6000)3.

0.43 (0)0.00 (100)0.00 (100)3.00 (14)2.50 (25)2.99 (50.)4.00 (33)5.00 (0)Partially automated

0.12 (73)0.00 (100)0.00 (100)3.00 (14)2.17 (9)2.50 (25)7.00 (17)6.44 (29)DMT

0.43 (0)0.29 (51)0.00 (100)3.50 (0)2.50 (25)2.00 (0)6.00 (0)5.00 (0)Manual

0.430.580.294.003.002.006.005.00Reference (6500)4.

0.43 (0)0.00 (100)0.00 (100)3.00 (25)2.50 (17)4.00 (100)4.21 (30)5.00 (0)Partially automated

0.43 (0)0.03 (96)0.09 (69)3.20 (20)2.49 (17)2.50 (25)7.38 (23)7.00 (40)DMT

0.43 (0)0.29 (51)0.29 (0)3.50 (13)2.50 (17)2.00 (0)6.00 (0)5.00 (0)Manual

0.430.580.294.003.002.006.005.00Reference (7000)5.

0.18 (58)0.16 (72)0.09 (69)3.31 (17)2.53 (16)4.00 (100)5.21 (13)5.00 (0)Partially automated

0.17 (60)0.00 (99)0.04 (85)3.00 (25)2.51 (16)2.50 (25)9.25 (54)7.00 (40)DMT

0.43 (0)0.29 (51)0.29 (0)3.50 (13)2.50 (17)3.00 (50)6.00 (0)5.00 (0)Manual

0.860.580.294.003.002.007.005.00Reference (7500)6.

0.43 (50)0.00 (100)0.00 (100)3.04 (24)3.00 (0)4.00 (100)5.78 (17)5.00 (0)Partially automated

0.86 (0)0.01 (99)0.00 (100)3.00 (25)3.07 (2)4.00 (100)9.25 (32)7.00 (40)DMT

0.43 (50)0.29 (51)0.00 (100)4.00 (0)2.50 (17)3.00 (50)7.00 (0)5.00 (0)Manual

0.860.860.294.503.003.008.005.00Reference (8000)7.

0.43 (50)0.00 (100)0.00 (100)4.50 (0)3.00 (0)4.00 (33)6.27 (22)5.00 (0)Partially automated

0.75 (13)0.00 (100)0.26 (10)3.00 (33)4.00 (3)4.00 (33)9.25 (16)7.00 (40)DMT

0.43 (50)0.58 (33)0.29 (0)5.00 (11)2.50 (17)3.00 (0)7.00 (13)5.00 (0)Manual

0.860.860.435.003.003.008.005.00Reference (8500)8.

0.43 (50)0.00 (100)0.00 (100)5.00 (0)3.00 (0)4.00 (33)7.34 (8)5.00 (0)Partially automated

0.43 (50)0.00 (100)0.26 (40)3.32 (34)4.00 (33)4.00 (33)9.25 (16)7.00 (40)DMT

0.43 (50)0.58 (33)0.29 (33)5.00 (0)3.00 (0)3.00 (0)7.50 (6)5.00 (0)Manual

0.860.860.295.003.003.009.005.00Reference (9000)9.

0.58 (33)0.04 (95)0.00 (100)5.00 (0)3.00 (0)4.00 (33)8.12 (10)5.00 (0)Partially automated

0.50 (42)0.17 (81)0.29 (0)5.00 (0)4.00 (33)4.00 (33)9.25 (3)7.00 (40)DMT

0.86 (0)0.58 (33)0.43 (50)5.00 (0)3.00 (0)3.50 (17)8.00 (11)5.00 (0)Manual

0.860.860.436.003.004.009.005.00Reference (9500)10.

0.58 (33)0.18 (79)0.00 (100)5.23 (13)3.00 (0)4.00 (0)9.01 (0)5.00 (0)Partially automated

0.50 (42)0.57 (33)0.29 (33)5.00 (17)4.00 (33)4.00 (0)9.25 (3)7.00 (40)DMT

0.86 (0)0.58 (32)0.43 (0)5.00 (17)3.00 (0)4.00 (0)8.50 (6)5.00 (0)Manual
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Fishe, 90 g
(%∆)

Eggsd, 1 egg
(%∆)

Cheesec, 30
g (%∆)

Lean meat,
30 g (%∆)

Dairy (%∆)Fruits (%∆)Grains (%∆)Vegetables
(%∆)

Modela (kJb target)No.

0.861.430.436.003.004.009.005.00Reference (10,000)11.

0.55 (36)0.15 (90)0.05 (88)5.45 (9)3.00 (0)4.00 (0)10.07 (12)5.00 (0)Partially automated

0.50 (42)0.57 (60)0.29 (33)5.00 (17)4.00 (33)4.00 (0)9.25 (3)7.00 (40)DMT

0.86 (0)0.86 (40)0.43 (0)6.00 (0)3.00 (0)4.00 (0)8.50 (6)5.00 (0)Manual

a Reference method employed was the use of a manual spreadsheet-based tool used by an Accredited Practising Dietitian. Partially automated process
applied Microsoft Excel Solver application.
b kJ: kilojoule.
c 0.14=1/week, 0.286=2/week.
d 0.286=1/week, 0.58=2/week, 0.86=3/week.
e 0.43=1/week, 0.86=2/week.
f DMT: Dietary Modeling Tool.

When data were compared with the other modeling forms, the
general trend for the output across the 4 dietary models in each
kilojoule increment was relatively similar (Table 2). The greatest
consistency was seen between the 2 manual approaches.
Notably, for a considerable number of food groups across the
kilojoule targets, there was no difference between these 2
models, justifying use of the manual process as the standard of
reference due to repeatability of the data. The DMT outcomes
were the most varied from those created using the reference
process. The outcomes for monounsaturated fatty acids and
polyunsaturated fatty acids (subnutrients) across the modeling
tools were highly variable, with differences of up to 200% for
the 5000-kJ and 5500-kJ targets, data not shown. In this instance
the reference model was prescribing 1 teaspoon
monounsaturated fatty acids, as opposed to 3 teaspoons from
the DMT. Less variation was evident for these particular food
groups in the higher kilojoule targets (≥8000 kJ). The lean meat
prescription was largely consistent across all of the dietary
models. The largest difference in the lean meat outcomes was
seen for the 8000-kJ and 8500-kJ targets, with 33% and 34%
differences, respectively, between the DMT and reference
model. This difference equated to one and a half servings (one
serving = 30 g) of lean meats. Furthermore, the prescription of
fish from the 5000-kJ to the 7000-kJ targets for the reference
method and solver models all equated to 90-g servings of fish
per week. The DMT produced the same results for the 6500-kJ
target; however, for kilojoule targets between 5000 kJ and 7000
kJ it prescribed either much less or no oily fish for the dietary
models. Furthermore, there was little difference in the
prescription of vegetables for each of the kilojoule targets,
although the DMT prescribed up to 2 extra servings (up to 1
cup extra) than the other models.

Discussion

Principal Findings
The study described in this paper addressed the first-stage
development of and comparative validation of an automated
DMT. Applying lessons from previous linear modeling work,
a dietary modeling tool using constraint optimization and
nonlinear programming was developed online incorporating the
expected energy requirement calculations in the same system
rather than as separate data as per other less automated tools.

Having the DMT online has the potential for improved user
access, and creating an algorithm with constraints applied to it
should also minimize the variability by comparison with manual
modeling approaches. The identified differences between the
approaches were not found to be clinically relevant. Although
it was not the focus of this paper, it is likely that improved time
efficiencies were created by automation of the DMT because
of the incorporation of the EER calculation into the user
interface. Furthermore, a reduced need for “guess work,” as is
common to manual approaches, is also a significant advantage.

When comparing the dietary models created by the APD as the
reference for comparison, and the models created by the less
experienced dietitian student (manual models), the results across
each of the kilojoule increments were most similar. It is likely
that because of their training both users were aware of practical
servings of particular food groups. Resultantly, excessive or
limited servings of certain food groups were not identified in
these 2 methods. Furthermore, being trained in the field of
nutrition and dietetics and working closely with the Australian
Dietary Guidelines, the diet models created by both users were
most consistent with these recommendations. The partially
automated models produced the next most similar outcomes to
the reference models, although they still produced acceptable
output for the majority of the kilojoule increments based on the
Australian Dietary Guidelines. A benefit of using the Solver
add-on was the restrictions that were able to be placed on the
variability of energy coming from the macronutrients, ensuring
the maximum reliability of individualized diets within a trial.
Where possible, these were set within 3 percentage points of
the macronutrient targets specified across each of the tools (50%
carbohydrate, 20% protein, and 30% total fat). The DMT was
also able to suggest appropriate dietary models for the majority
of the kilojoule increments within these set limits. This was
particularly evident for the higher kilojoule targets. The
reference model and manual approach were not able to maintain
such limited variability. The variability of the percentage of
energy from macronutrients in the DMT fluctuated. For the
majority of the models the variation between macronutrient
contribution and the target was smaller than that seen in both
the reference and manual models. The DMT output
demonstrated the greater variation from the reference models;
however, it must be noted that models could not be created
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based on the exact kilojoule increment required for comparison
as the other 3 models, as the DMT results were created based
on a subject’s exact EER rather than rounded to the nearest
500-kJ increment, demonstrating that it could be tailored to
each individual participant of a clinical trial. The manual and
partially automated methods were not tailored specifically to
each individual because of the time-consuming nature of
obtaining the modeling outcomes. Therefore, the outcomes
gathered were closest to the required kilojoule increments. For
a dietary intervention trial, diet models that have been
specifically designed to meet the individual requirements of a
participant are more desirable and, consequently, the method
employed by the DMT would be preferable over the comparative
methods in this study.

The largest variation across the dietary models was seen first,
for the polyunsaturated fatty acids and second, for the
monounsaturated fatty acids food groups. Interestingly, there
is no exact recommendation in the Australian Dietary Guidelines
in terms of servings related to these nutrients that could be
referenced to create the models. It can be seen that these fats
were largely used to make up the difference in energy and
percentage of energy from fats required once all other food
groups had been assigned, potentially explaining the difference.
They also flag the need for a modification to the algorithms
when nutrients beyond the macronutrient level are to be
considered.

Limitations
Challenges arose with the partially automated method and the
DMT in terms of gaining appropriate outcomes. The Solver had
to be tested with a range of constraints until desirable outcomes
were being achieved across the kilojoule increments, again
taking additional time until the desired result was achieved.
When too many restrictive constraints were added, the tool was
unable to compute a result. Therefore certain limitations
(particularly leniency with the degree of variability from the set
macronutrient targets) had to be made more liberal. The dietary
modeling framework described in this paper had a number of
developmental challenges to be overcome in order to produce
comparative data. This included having the same results
produced for each participant, irrespective of significant
differences in age, height, and weight. Second, the outcomes
produced were excessive in certain food groups (prescribing up
to 7 servings of fruit daily) and limited in others (food groups
contributing fatty acids, which were adjusted to be more liberal).
Each challenge was overcome by modifying the constraints of
the algorithm. Furthermore, serving sizes were altered to those
traditionally recommended in dietetics, such as half a cup of
cooked vegetables and 30 g of cheese for a serving, to make the
tool more practical for use in food-based trials rather than based
directly on the Excel calculator, which was developed based on
exchange lists. A final alteration required the number servings
of food groups to change depending on the EER of the
participant rather than manipulating the frequency (in hours)
that a food group should be consumed. The latter method
assumed that individuals eat continuously over a 24-hour period,
a case where professional judgment was needed to adjust the
algorithm. Again, overcoming these issues when validating the
DMT has ensured it is much more practical and simple to use

and demonstrated that it can produce dietary models for
macronutrient-based targets. It does, however, emphasize the
importance of a nutrition expert, using the professional judgment
[31], and working alongside computer programmers when
developing tools for use in practice. Some limitations that could
not be overcome within the current project include the inclusion
of key nutrients beyond macronutrients. Inclusion of key
nutrients in DMT, beyond the current macronutrients, will allow
for a wider application to practice. The current form limits the
use of the tool to studies related to overall energy constraints
such as weight management or diabetes. Studies that aim to
control dietary intake of vitamins and minerals could not use
the tool in its present form. Furthermore, there is still a degree
of professional judgment required with regard to the
development of diet models. Complete individualization for
food allergies or intolerance is not possible, although the
researchers believe care professional judgment of appropriately
qualified professionals such as dietitians should still be
maintained in this instance.

Comparison With Prior Work
It was also found that despite the type of modeling used in this
study, careful consideration needed to be given to the rounding
up or down of target servings. This was also identified in the
AFGS [20] with rounding found to have minimal effect on the
total energy being recommended. For the models of this study,
models were largely rounded up to the nearest whole integer,
although an underlying assumption was held that the final values
would be used to create practical advice. Furthermore, the
translation of food information from numbers determined in a
model to practical suggestions provided by a dietitian in practice
can vary significantly. This was also noted in the AFGS models
as an additional consideration that needs to be addressed when
liaising with an individual. Food allergies, food intolerances,
and food preferences are only 3 of these considerations and are
separate from those such as economic shifts, which may affect
willingness to buy or purchase particular meat cuts, for example,
or sustainable produce in relation to fish intake. Although DMT
was developed to minimally address food preferences at a food
group level, considerations in addition to this do require
professional input and may not be appropriate to automate.
Limitations were also apparent in comparing the data as certain
food groups varied across the modeling methods. The DMT
grouped fish with the other meats and protein-containing foods
as is evident in the Australian Dietary Guidelines, instead of
being a separate group as the other models. For the purpose of
this study, to translate the information into practical suggestions
for a participant and for the comparison to be made, these foods
were separated by the dietitian into an appropriate amount of
lean meats (based on what was prescribed by the tool) and the
remaining portion considered as the fish.

Conclusions
Dietary modeling is essential for the formulation of food-based
prescriptions and useful to standardize background diets within
randomized controlled trials. In its present form DMT provides
this by using predefined macronutrient proportions for all
participants of a dietary trial at the point of intervention. As
demonstrated in this study, different dietary modeling tools with
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the same dietary targets produced similar results. Manual
methods for dietary modeling are less ambiguous in terms of
the desired outcomes, as the model creator is aware of quantity
prescriptions classified as being “appropriate.” This method,
however, requires trained dietary professionals to be able to
produce desired results. When creating individualized
prescriptions this can be a time-consuming process. Partially
or fully automated methods such as the use of Solver and the
developed DMT have the potential to be practically applicable
for widespread use in dietary research. The DMT was found to
be a valid automated tool producing similar results to tools with
less automation. Once the underlying constraint systems have
been formulated appropriately, use of such tools may not require
trained professionals or those familiar with the Australian
Dietary Guidelines for the development of all models, saving
this expertise for practical translation of the models. This has
significant resource implication for a research trial and even
more so when considering the time saved when compared with
the manual approaches used for dietary modeling. Future

refinements are necessary to consider other nutrients such as
key vitamins and minerals in the models to increase the
flexibility of the tool and widen its application to practice.
Further to this, inclusion of prompts within DMT related to food
allergies or intolerances could also be included for further
refinement of the model with a qualified practitioner.

Partially automated approaches such as that of Solver still
require increased time to set the constraints; however, they will
not produce results that are practically viable. Although by
comparison with the manual method Solver does save some
time, it continues to require the input of a professional to ensure
the models produced are realistic. It is observed that although
time was not monitored as part of this study, increased
automation appears to relate to an increase in time saved and
may in turn result in a reduction in resource allocations to the
trial. With respect to the DMT the results of this study suggest
interchangeability of the approaches, although implementation
should reflect the requirements of the trial in which it is used
and the available resources that can be used.
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NRV: Nutrient Reference Value
PA: physical activity
REE: resting energy expenditure
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