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Abstract

Background: Social media have transformed the communications landscape. People increasingly obtain news and health
information online and via social media. Social media platforms also serve as novel sources of rich observational data for health
research (including infodemiology, infoveillance, and digital disease detection detection). While the number of studies using
social data is growing rapidly, very few of these studies transparently outline their methods for collecting, filtering, and reporting
those data. Keywords and search filters applied to social data form the lens through which researchers may observe what and
how people communicate about a given topic. Without a properly focused lens, research conclusions may be biased or misleading.
Standards of reporting data sources and quality are needed so that data scientists and consumers of social media research can
evaluate and compare methods and findings across studies.

Objective: We aimed to develop and apply a framework of social media data collection and quality assessment and to propose
a reporting standard, which researchers and reviewers may use to evaluate and compare the quality of social data across studies.

Methods: We propose a conceptual framework consisting of three major steps in collecting social media data: develop, apply,
and validate search filters. This framework is based on two criteria: retrieval precision (how much of retrieved data is relevant)
and retrieval recall (how much of the relevant data is retrieved). We then discuss two conditions that estimation of retrieval
precision and recall rely on—accurate human coding and full data collection—and how to calculate these statistics in cases that
deviate from the two ideal conditions. We then apply the framework on a real-world example using approximately 4 million
tobacco-related tweets collected from the Twitter firehose.

Results: We developed and applied a search filter to retrieve e-cigarette–related tweets from the archive based on three keyword
categories: devices, brands, and behavior. The search filter retrieved 82,205 e-cigarette–related tweets from the archive and was
validated. Retrieval precision was calculated above 95% in all cases. Retrieval recall was 86% assuming ideal conditions (no
human coding errors and full data collection), 75% when unretrieved messages could not be archived, 86% assuming no false
negative errors by coders, and 93% allowing both false negative and false positive errors by human coders.

Conclusions: This paper sets forth a conceptual framework for the filtering and quality evaluation of social data that addresses
several common challenges and moves toward establishing a standard of reporting social data. Researchers should clearly delineate
data sources, how data were accessed and collected, and the search filter building process and how retrieval precision and recall
were calculated. The proposed framework can be adapted to other public social media platforms.
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Introduction

Social media have transformed public and interpersonal
communications. The Internet and social media have quickly
become major sources of health information [1-3], providing
both broad and targeted exposure to such information as well
as facilitating information-seeking and sharing. As people
increasingly turn to social media for news and information [4,5],
these platforms can serve as novel sources of observational data
for infodemiology, public health surveillance (infoveillance,
digital disease detection) [6-11], tracking health attitudes and
behavioral intention [6, 7, 9,12-16], and measuring
community-level psychological characteristics related to health
outcomes [17,18].

While Facebook remains the most commonly used social media
platform, varying privacy settings and complex application
programming interface (API) streams make the collection and
interpretation of Facebook data for observational research
extremely challenging. In contrast, Twitter, which is by nature
a much more public-facing platform, has millions of active users
who provide rich qualitative data in the content of microblog
messages (tweets) as well as important quantitative data
embedded in the metadata. Metadata fields describe the reach
and patterns of the diffusion of a given message, along with
some limited characteristics of the users posting messages.
Similarly, YouTube has millions of active users who view, post,
rate, and comment on its rich video content and advertising. A
simple search of any social media platform can provide a
tantalizing bounty of information. Yet despite the rich potential
of these platforms for research and analysis, methods for
collecting, cleaning, and reporting social media data can vary
widely, making the evaluation and comparison of studies using
those data difficult at best.

Social media data collection in infodemiology is usually defined
by the keywords and search filters used to retrieve data from
the platform [6]. As such, search filters are the lens through
which we can observe what and how people communicate. If
our lens is appropriately focused, we can identify content of
interest and avoid collecting a lot of irrelevant information.
Conversely, if our search is too narrow, we may miss important
data and our conclusions may be biased. If it is too broad, we
risk collecting a lot of irrelevant and potentially misleading
material.

A search filter is a set of keywords integrated with search rules
that specify search strategies. While there is an intuitive
simplicity in identifying keywords and search rules for a given
research question, that seeming simplicity is deceptive. First,
keyword selection is not simple. Language and popular culture
vary by age, socioeconomic status, race/ethnicity, geographic
location, etc. The language used on social media is often
colloquial, creative, and varying. Further, users communicate

differently across platforms, partly driven by the norms and
technical constraints unique to each platform, and partly driven
by the social function of each platform [19]. For example,
Twitter users are limited to 140 characters and typically post
short messages using abbreviations and slang terms. Facebook
posts can be longer and thus are more likely to contain multiple,
different words for a single construct. YouTube videos are
posted with titles and often tagged by the poster with keywords.
Instagram posts typically have multiple hashtags that offer some
indication of the content. If a researcher is not fluent—or at
least familiar—with the language norms of a particular platform,
their search filter may be overly broad, too narrow, or simply
off-topic.

The keyword is only one part of a filter; without practical rules,
an intuitive search term can retrieve a lot of irrelevant
information. For example, in tobacco research, the term
“smoking” is critically important to any search for relevant
content. But without further rules to refine that term, the
keyword will retrieve plenty of content about “smoking
marijuana,” “smoking ribs,” and “smoking hot girls” [9,12]. A
sentiment analysis of data retrieved with the broad “smoking”
term would produce different results from data retrieved with
a search filter that excluded other key terms that appear in close
proximity to “smoking.” Therefore, developing reliable search
filters requires a rigorous process to weed out irrelevant content
and assure high-quality data collection [20].

While many studies have reported lists of keywords used to
retrieve social data [7-10,12-16,21-24], few describe
development of search filters [7,9,15,22,23], and fewer yet
attempt assessment of search filters by providing what fraction
of collected data are relevant [9,15,16,22,23]. One study
provided the probabilities of losing possible relevant tweets by
removing certain keywords [22] but did not fully assess their
search filter.

Because the quality of social data and the interpretation of
subsequent analyses depend on the quality of search filters, it
is imperative for social media researchers to provide evidence
of the quality and scope of their data: face validity is not
sufficient. Computer scientists, communication researchers, and
librarians, among others, use precision and recall as measures
of search filter quality [20,25,26]. Most studies that use social
media data, however, do not attempt to objectively assess the
quality of their data. There is often confusion about the meaning
of precision and recall because they are used to assess the
performance of machine learning classifiers or disease screening
tests, which is different from what we aim to assess: the quality
of retrieved data. To avoid confusion, we define the precision
and recall used to access the quality of retrieved data as the
retrieval precision and retrieval recall. We use the terms
precision/recall and retrieval precision/recall interchangeably
throughout the paper unless clear distinction is needed.
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In studies that do assess validity, search filters are compared
against a gold standard that is typically human coding. No
studies so far have considered the fact that human coders can
make errors. Some errors associated with coding social media
contents are inevitable despite well-trained human coders. An
imperfect gold standard may cause bias in the validity
assessment [27]. While a perfect coding standard may be
impractical, it is important that researchers are transparent and
consistent about how they report the quality of coding and the
strengths and limitations of their benchmark.

In this paper, we describe a framework for the collection and
assessment of social media data. The goal is to move toward a
reporting standard that researchers and reviewers can use to
compare the quality of data retrieved and analyzed across
different studies. For illustrative purposes, we use data collection
from Twitter to illustrate concepts that can be adapted for other
text-based social media platforms open to public. Further, we
use electronic cigarette (e-cigarette) content as a working
example of a salient public health topic that is rapidly changing,
with constantly emerging new brands and new slang [9,12] that
challenge researchers’ grasp of the language that social media
users use to communicate about and market these products.

Below, we first propose a conceptual framework for social
media data collection. Within this framework we describe the
development of search filters, illustrate the calculation of
retrieval precision and recall, and illustrate common challenges
and potential workarounds. Next, we apply our framework to
a real-world example using data on e-cigarette content:
approximately 4 million tweets retrieved from the Twitter
firehose. Finally, we discuss the challenges of applying this
rigorous approach to data collection and quality assessment and
propose a checklist for reporting data preparation.

Methods

Conceptual Framework for Social Data Collection and
Quality Assessment
We propose a framework that consists of three major steps to
develop and validate search filters (see Table 1). The proposed
framework is designed for users who can access partial or full
data streams and can be applied to a human-based process that
mainly relies on human judgment and coding, and an automated
process supported by machine learning techniques and less
human judgment [28].

Table 1. A framework for Twitter data collection and validation.

DetailsStep

1. Build a list of search keywords: (a) Generate a list of candidate keywords based on expert knowledge, systematic search of topic-
related language, and other resources, (b) Screen the keywords by examining relevance and frequency of posts, (c) Discard keywords
that return posts with high proportion of irrelevant contents or relatively low frequency, and (d) Add and screen new keywords when
new relevant terms and phrases emerge.

Develop
search filter

2. Integrate keywords with search rules (eg, Boolean operators) for a more focused search.

3. The search filter retrieves and splits data into a retrieved set and an unretrieved set.Apply search
filter

4. Cross-tabulate data by gold standard and search filter: (a) Randomly sample from retrieved and unretrieved data; stratified sampling
may be applied, (b) Manually code sampled data to determine relevance in both of retrieved and unretrieved sets, (c) Cross-tabulate
sampled data by human-coded relevance (coded relevant vs irrelevant) and search filter retrieval status (retrieved vs unretrieved).

Assess search
filter

5. Compute retrieval precision and retrieval recall.

Develop Search Filter

Build a List of Keywords
The first step in developing search filters is keyword selection.
Depending on the research topic, keywords should be generated
based on expert knowledge and systematic search of
topic-related language. It is helpful to brainstorm and categorize
keywords into subgroups. In our e-cigarette example, we
categorized e-cigarette–related keywords into three subgroups:
devices, brands, and behaviors.

Keyword selection also depends on social media platforms from
which data are gathered. Twitter data raise unique challenges
in keyword selection due to the limited number of characters
allowed in a message. Twitter users often shorten messages
they post by using hashtags, abbreviations, colloquialisms, and
slang terms. For example, the term “square” is slang for
cigarettes. A researcher without prior knowledge of this term
might create a search filter that does not include the term, likely
missing out on many tobacco smoking-related contents. It is

therefore crucial for researchers to keep up with current
abbreviations, colloquial expressions, and slang terms in their
research topics. Resources such as urban dictionary [29] and a
diverse team of researchers are essential to generate and
understand such keywords.

Despite these efforts, many important terms may still be left
out. It is therefore necessary to strategically employ broad search
terms rather than highly specific terms/expressions. For example,
a tweet like “A girl sitting next to me smokes squares” will be
captured using a broad term “smoke” even if one does not know
the term “square.” Although using broad search terms like
“smoke” generates many irrelevant tweets, it reduces the
probability of omitting relevant content. This is particularly
useful when researchers do not have access to historical archives
of social media platforms and are collecting data via streaming.

The list of keywords should be further screened and updated
iteratively based on relevance and frequency. The keywords
that return relatively few tweets (eg, <10 over a month) or that
return a small proportion of relevant tweets (eg, <30% precision)
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may be discarded. That is, the signal (relevant data) to noise
(irrelevant data) ratio should be considered [22] and proper
thresholds may depend on research questions. New keywords
should be added to the list when new relevant terms and phrases
emerge (eg, new e-cigarette brands, frequent co-occurring
terms). Repeating Steps 1-4 of Build a list of search keywords
in Table 1 improves the quality of keywords and provides a
good understanding of how social media users talk about a
specific topic. If the data are collected for surveillance or
forecasting, keywords should be updated periodically and related
media coverage (if any) should be accounted.

Integrate Keywords With Search Rules
A search filter is a combination of keywords and search rules.
Integrating keywords with search rules greatly improves the
ability of search filters to retrieve relevant messages. Search
rules can be used to weed out irrelevant messages retrieved by

broad terms. For example, in tobacco research, irrelevant tweets
can be excluded by specifying that terms such as “barbeque”
or “marijuana” do not appear in the tweets, while relevant tweets
could be kept if a tweet contains both terms “smoke” and
“square.” These search rules can be constructed using the
Boolean operators (AND, OR, NOT) and data pre-processing
techniques such as n-grams or proximity operator.

Apply Search Filter
Figure 1 displays a structure of data archive, search filter, and
relevant tweets in the Twitterverse. The archive contains data
returned by broad search terms (the blue circle with dotted line
indicates the archive, and the red rectangle indicates all tweets
relevant to a specific topic). The search filter returns “a + b”
tweets. The archive may omit a small fraction of topic-relevant
tweets “e” due to unknown terms, misspellings, etc.

Figure 1. The archive (a+b+c+d), retrieved tweets (a+b), and relevant tweets (a+c+e) in Twitterverse.

Assess Search Filter

Quality Measures: Definition
Any search filter should be validated based on its ability to
distinguish relevant and irrelevant messages. Two criteria are
typically used: retrieval recall and retrieval precision [25].
Precision measures how much of the retrieved data is not
garbage. Recall measures how much of the relevant data is
retrieved.

Table 2 is constructed to evaluate a search filter against human
coding. Precision is a conditional probability that a particular
post is relevant, given that it is retrieved, calculated by a/(a +
b). Recall is a conditional probability that a particular post is
retrieved given that it is relevant, calculated by a/(a + c).
Precision is also called positive predictive value, and recall is

often called sensitivity of search filter [30]. There is trade-off:
high recall may be achieved at the expense of low precision (or
low specificity), and vice versa. The F-score is used to report a
single measure combining precision and recall [31], computed
by:

F=(1 + β2)(precision)(recall)/(β2 precision + recall) (1)

Often β=1 is used and such measurement is called an F1 score.
It can be shown that, using the Bayes’ theorem [32], the recall
can be computed by:

Recall=(precision)P(retr)/[(precision)P(retr) +
P(relevant|unretr)(1   P(retr))] (2)
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P(retr) denotes the proportion of tweets retrieved, and
P(relevant|unretr) denotes the proportion of unretrieved tweets
found to be relevant.

Beyond precision and recall, specificity and negative predictive
value (NPV) may be used. Specificity measures how much of
the irrelevant tweets is discarded, defined by d/(b + d), and is

closely related to precision. NPV is the proportion of unretrieved
tweets found to be irrelevant, defined by d/(c + d). Note that
P(relevant|unretr)=1 NPV. The proportion of relevant tweets
may be obtained by (a + c)/n assuming that the data represent
a random sample of the population and human coding is not
subject to errors.

Table 2. Assessment of search filter with human coding as a gold standard.

TotalHuman codingSearch filter

Coded not-relevantCoded relevant

a + b=n1b (False Positive)a (True Positive)Retrieved

c + d=n2d (True Negative)c (False Negative)Not retrieved

nb + da + cTotal

Sampling Plan for Human Coding
Calculation of retrieval precision and recall depends on the
assessment of relevant versus irrelevant content. Typically,
trained coders inspect a sample of retrieved data to manually
evaluate relevancy as well as a sample of unretrieved data. This
poses two important questions: how to sample and how many
messages to sample. A practical sample size should be
determined because it is labor intensive and time consuming to
manually code millions of messages, and the estimates of
precision and recall should be precise.

We suggest stratified sampling with retrieval status as strata
and oversampling the retrieved messages. This is because
typically the size of retrieved messages is small relative to
unretrieved messages (n1/n2<0.1), and oversampling the

retrieved messages ensures a desired level of statistical precision.
Retrieval recall is more difficult to accurately estimate than
retrieval precision because estimating c is often similar to
finding a needle in a massive haystack of unretrieved messages.
Therefore the statistical precision of recall estimate is affected
by the sample size. Figure 2 displays how the average length
of confidence intervals for retrieval recall estimates decreases
as the sample size of unretrieved messages (=k) increases, while
the sample size of retrieved message is fixed. The gain in
statistical precision diminishes as the number of unretrieved
messages increases, and the gain is minimal above a certain
sample size. By conducting a simulation or using power analysis
tool, a sample size that satisfies the desired level of statistical
precision and feasibility can be determined. Multimedia
Appendix 1 describes how Figure 2 was generated and discusses
more about sample sizes.

J Med Internet Res 2016 | vol. 18 | iss. 2 | e41 | p. 5http://www.jmir.org/2016/2/e41/
(page number not for citation purposes)

Kim et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. The average limits of 95% confidence intervals for recall (vertical axis) as the sample size of unretrieved messages increases (horizontal
axis), fixing the sample size of retrieved data at 3000.

Estimation of Retrieval Precision and Retrieval Recall
Calculating retrieval precision and recall is straightforward
when (1) human coding performs well as a gold standard and
(2) Table 2 is complete. We discuss in detail the cases in which
one or both conditions are not satisfied and how to address them.

Assuming Human Coding Has No Error

Ideal Conditions

The definitions of precision and recall are directly used when
the two conditions are met. If stratified disproportionate
sampling is used, appropriate weights should be applied to
calculate recall. Confidence intervals can be estimated based
on usual asymptotic methods [33]. If Equation (2) is used to
calculate recall, the interval estimate should account for
variances of precision and P(relevant|unretr).

Unretrieved Messages Could Not Be Archived

Messages matching search filters may be retrieved directly from
a data provider so that only the retrieved messages are archived
[11,15,21]. Search filter precision can be estimated, but how
do we estimate the recall without knowing c and d? In this case,
the unretrieved total n2 may be known approximately. Joseph
et al used the Bayesian model to estimate recall and specificity
when only n1 and n2 were given [34]. Bayesian models often
provide a feasible solution when insufficient information is
contained in data to apply usual methods. Since a (thus b) can

be observed in addition to n1 and n2, we slightly modify their
method.

Let π be the prevalence of relevant messages, S be recall, and
C be specificity of search filter. The counts of tweets (a, b, c,
d) in Table 2 have multinomial distribution with respective
probabilities forming the likelihood function. Beta prior
distributions for π, S, and C seem sensible because its domain
of positive density is bounded in (0,1). Let Beta(απ, βπ), Beta(αS,
βS), and Beta(αC, βC) denote the prior distributions of π, S, and
C respectively, where Beta(α, β) is beta density function with
parameters α and β. Full conditional posterior distributions can
be derived for all unknown quantities including c, and realized
values are sampled from the posterior distributions using a Gibbs
sampler. A Gibbs sampler draws from each full conditional
posterior distribution sequentially, conditional on all other
sampled quantities [32]. It can be shown that the prevalence of
relevant messages and recall of search filter have the following
posterior distributions: π ~ Beta (a + c + απ, n   a   c + βπ), S ~
Beta (a + αS , c + βS).

The quantity c is obtained in a previous sampling step. The
Bayesian credible interval for an unknown quantity can be
obtained based on the random draws from posterior distributions.
The Gibbs sampling steps for all unknown quantities are
provided in Multimedia Appendix 2.
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Assuming Human Coding Is Subject to Error

Human Coding Is a Silver Standard

Evaluating search filters using imperfect human coding gives
a biased impression of data quality. Recall and precision of a
search filter depend on recall and specificity of the gold standard
[27]. Staquet et al considered a situation where a gold standard
has 100% specificity and unknown recall. It may be relatively
unlikely that a trained coder evaluates a given irrelevant tweet
as relevant. For example, a coder likely will not determine the
message “Come get a smoking hot jerk chicken wrap from us”
as relevant to tobacco smoking. Thus it may be safe to assume,
for a given topic, that the specificity of human coding is (close
to) 100%. When this assumption is met, the search filter’s recall
is unbiased and the bias-corrected equation for precision is given
by precision=a/[S2 (a + b)], where S2 denotes the recall of human
coding. Therefore, when human coding does not have perfect
recall (false negative error), the method assuming the ideal
conditions underestimates search filter precision.

Human Coding Is Not a Standard Classifier

Although in many cases human coding serves as a gold/silver
standard, it may be an inadequate standard classifier for some

topics because human language can be ambiguous (eg, “Leo
DiCap is smoking”). Language used on Twitter is often
colloquial and creative, and it may be difficult (or impossible)
to interpret meaning within 140 characters without looking at
related conversations (eg, “I can’t tell if that’s a chocolate Dutch
my”; this was a reply to a tweet about Dutch chocolate-flavored
cigarillo). Also, coders simply get tired. As a result, coders may
falsely determine irrelevant posts to be relevant or vice versa
(false positive and false negative error). Joseph et al extended
the Bayesian model to the situation where results of two filters,
neither of which was a gold standard, were available [34]. We
again modify their method to estimate search filter precision
and recall.

Similar to Table 2, search filter and human coding results are
cross-tabulated. Each cell can be split into truly relevant versus
irrelevant contents (see Table 3). Let y1 be the count of relevant
messages out of the a messages retrieved by search filter and
human-coded relevant; the count of irrelevant messages is a  
y1. The rest of the cells can be similarly split.

Table 3. Multinomial likelihood contributions of all possible cases of observed data and unknown quantities (the unknown quantities of truly relevant
tweets are denoted by y1, y2, y3, y4).

Human coding (j=2)Search filter (j=1)

Coded not-relevantCoded relevant

b − y2a − y1Retrieved

y2y1

y4y3Not retrieved

d − y4c – y3

Let π be the prevalence of relevant messages, S1 and C1 be recall
and specificity of search filter, and S2 and C2 be recall and
specificity of human coding. The eight cells in Table 3 can be
expressed as occurrences of multinomial events with
probabilities that are functions of the five parameters. Again, a
beta distribution can be used to set up prior distribution of each
parameter. Denote S1, S2, C1, and C2 are distributed Beta(αS1,
βS1), Beta(αS2, βS2), Beta(αC1, βC1), and Beta(αC2, βC2),
respectively. It can be shown that the prevalence of relevant
messages and search filter recall and specificity have the
following posterior distributions:

π ~ Beta (∑yi + απ , n   ∑yi + βπ) for i=1,2,3,4

S1~ Beta (y1+ y2+ αS1, y3+ y4+ βS1)

C1~ Beta (c + d   y3  y4+ αC1, a + b   y1  y2+ βC1)

The precision and NPV of search filter can be obtained by the
equations:

Precision1=S1π/[S1π + (1   C1)(1   π)]

NPV1=C1(1   π)/[C1(1   π) + (1   S1) π]

These are based on the random draws from posterior
distributions of π, S1, and C1. Multimedia Appendix 3 describes
the Gibbs sampling steps to obtain random draws from posterior
distributions of all unknown quantities including precision and
recall of human coding.

Results

Develop Search Filter
We obtained Twitter data via an API called Firehose from Gnip,
Inc., licensed to provide access to the full stream and historic
archive of Twitter data. Access to Firehose is not free as opposed
to publicly available data streams such as Streaming API. The
Twitter Firehose returned 3,954,575 unique tweets that matched
broad keywords about tobacco smoking in October 2012,
forming an archive. The archive provided a base to construct
Table 2.

We developed a search filter to retrieve e-cigarette-related
contents, building around three categories of e-cigarette-related
tweets: alternative terms and device parts of e-cigarettes, brand
names, and related behavior. We tested keywords using the
Twitter Search Engine [35] without logging into our Twitter
accounts to avoid search bias. We screened and discarded
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keywords that returned irrelevant tweets higher than 70% of the
time or that returned <10 tweets over a month. When unknown
but seemingly relevant terms and phrases that co-occur with
our keywords emerged, we checked them in an urban dictionary
and other social media platforms, added them to the list, and
screened them on Twitter Search. We repeated Steps 1-4 from
Table 1 until no more seemingly important keywords were
found.

The resulting keyword list included singular and plural forms
of e-cigarette terms, different verb forms of behavior terms, and
frequent misspellings. We filtered out tweets containing the
keywords “atomizer” AND “perfume” as those were likely to
describe perfume bottles. Those tweeted by or mentioning
@blucigs, an e-cigarette promoting account, were collected.
The final list of keywords and rules is presented in Multimedia
Appendix 4.

Assess e-Cigarette Search Filter

Sampling Plan for Human Coding
We conducted stratified sampling with retrieval status as strata.
A small simulation was performed to determine sample size in

each stratum. Data were generated assuming that N was 4
million, retrieval precision was 95%, and retrieval recall was
84%. The simulation details are described in Multimedia
Appendix 1 (Case 1). Based on the simulation, we determined
that random sampling above 4000 from retrieved tweets and
above 6000 from unretrieved tweets would be sufficient.

Assuming Human Coding Has No Error

Ideal Conditions

The e-cigarette search filter retrieved 82,205 tweets from the
archive, yielding P(retr)=0.0208. We randomly sampled 4373
from the retrieved set and coded 4176 of those as relevant,
resulting in 95.5% retrieval precision (95% CI 94.9-96.1). Table
4 represents number of tweets cross-tabulated by human coding
and search filter; the amount of retrieved tweets was adjusted
for the disproportionate sampling fraction. Out of 6305 randomly
sampled unretrieved tweets, 20 were found relevant, yielding
P(relevant|unretr)=0.0032. The retrieval recall was 86.37%
(95% CI 81.4-91.9) by Equation (2). The F1 score was 90.7%.

Table 4. Search filter versus human coding on sampled data adjusted for sampling fraction.

TotalHuman codingSearch filter

Coded not-relevantCoded relevant

1346128Retrieved

6305628520Not retrieved

64396291148Total

Unretrieved Messages Could Not Be Archived

To demonstrate the method, we assumed that the archive
contained only the tweets retrieved by the e-cigarette search
filter. After assigning initial values (Multimedia Appendix 2),
a value of precision was sampled from the uniform distribution
with limits equal to the 95% confidence interval of the precision
(94.9-96.1). We used n1=82,205 and n2=3,872,370 in the
subsequent steps. The Gibbs sampler was repeated 100,000
cycles, and the first 10,000 cycles were discarded as burn-in.
The prior distribution and posterior inference results are
presented in Table 5. Prevalence indicates the proportion of

e-cigarette–relevant tweets within the archive. Prior distributions
have been set based on our experience: the specificity is usually
high due to low prevalence, and we are confident that the search
filter captures the majority of e-cigarette tweets. Although rather
high uncertainty was reflected in the prior density of recall—as
low as 34%. The F1 score values are computed applying the
sampled values of recall and precision on Equation (1) at the
end of each cycle. The posterior mean of retrieval recall is 75%:
between 50% and 98% with 95% probability. Having no
information on the amount of false negative tweets caused a
wider interval.
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Table 5. Prior and posterior means and 95% credible intervals when unretrieved messages cannot be archived.

Posterior distributionBeta prior distribution

95% HPDbMean95% HDaMean

0.020-0.0380.0281×10 6-0.0310.010Prevalence

Search filter

0.505-0.9790.7520.340-0.9540.667Recall

0.949-0.9610.955––Precisionc

0.999-0.9990.9990.474-0.9620.733Specificity

0.663-0.9680.835––F1 scorec

aHD: highest density interval.
bHPD: highest posterior density interval. HPD interval gives narrower length than equal-tailed intervals for skewed distribution (computed using R
Package BOA [36]).
cPrior density functions of precision and F1 score are not specified but determined as a function of other parameters.

Assuming Human Coding Is Subject to Error

Human Coding Is a Silver Standard

We assumed that the coders could accurately evaluate irrelevant
contents with 100% specificity although they might falsely
determine relevant contents to be irrelevant (<100% recall).
When human coders make false negative errors, the method
assuming the ideal conditions underestimates retrieval precision
of search filter. The bias-corrected equation gave the precision
of 95.7%, indicating that precision determined assuming the
two conditions was minimally biased.

Human Coding Is Not a Standard Classifier

Finally we assumed that coders could falsely determine
irrelevant contents to be relevant and vice versa (<100% recall

and <100% specificity). Each cell of Table 4 can be split into
truly relevant and irrelevant tweets. Again let y1 be the count
of relevant tweets among those retrieved by search filter and
human-coded relevant; the count of irrelevant tweets is 128  
y1. The Gibbs sampler (see Multimedia Appendix 3) was
repeated 100,000 cycles, and the first 10,000 cycles were
discarded as burn-in. The prior distribution and posterior
inference results are presented in Table 6. Our belief that human
coding is slightly better than the search filter is reflected in the
prior distributions. The posterior mean of prevalence of
e-cigarette tweets is 2% in the archive. The posterior mean of
retrieval recall is 93% for the search filter and 96% for human
coding. Having more information resulted in smaller uncertainty
(ie, shorter HPD intervals).

Table 6. Prior and posterior means and 95% credible intervals when human coding is not a standard classifier.

Posterior distributionBeta prior distribution

95% HPDbMean95% HDaMean

0.018-0.0250.0211×10 6-0.0310.019Prevalence

Search filter

0.862-0.9920.9290.340-0.9540.667Recall

0.914-0.9940.956––Precisionc

0.998-1.0000.9990.474-0.9620.733Specificity

0.901-0.9820.942––F1 scorec

Human coding

0.923-0.9950.9610.474-0.9620.733Recall

0.824-0.9710.897––Precisionc

0.996-0.9990.9980.616-0.9750.800Specificity

0.883-0.9710.927––F1 scorec

aHD: highest density interval.
bHPD: highest posterior density interval. HPD interval gives narrower length than equal-tailed intervals for skewed density (computed using R package
BOA [36]).
cPrior density of precision is not specified but implied as a function of other parameters.
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Discussion

Principal Findings
While traditional survey data can take years to collect, social
media data offer insights into health behavior and public
sentiment around health-related topics in a much shorter time
frame. They enable researchers to conduct qualitative studies
previously only available via focus groups on a large scale.
However, a large quantity of data does not assure valid and
reliable results. In fact, biases may scale up with the quantity.
For example, surveillance systems based on poor data may
greatly overpredict or underpredict disease prevalence [37,38].
Without proper search filters, the quality of inferences from
social media data will be at best poor, regardless of analytical
techniques. Proper filtering and quality assessment are crucial
for research with social media data.

Building a search filter is rarely a one-step process, but rather
requires significant effort [22]. It is an iterative progression of
refining search keywords and rules that capture relevant social
data which satisfy pre-specified thresholds for precision and
signal to noise ratio. We developed the e-cigarette search filter
by monitoring frequency and precision for each keyword. The
search filter was refined until no more important new terms
were discovered. The keywords were combined with search
rules to increase retrieval precision. Wang et al has proposed a
method to automatically update the list of keywords by adding
the top frequent terms that appear among relevant tweets [28].
We are working toward semi-automating our iterative process
by incorporating their method.

We quantified search filter quality by computing retrieval
precision and recall in four different cases. Retrieval precision
was estimated above 95% in all cases. Retrieval recall was
estimated at 86% assuming ideal conditions, 75% when
unretrieved messages could not be archived, 86% assuming no
false negative errors by coders, and 93% assuming that human
coders make both false negative and false positive errors.
Researchers should determine which condition is appropriate
according to their expert knowledge and experience about the
topics and search filters. Regardless of which approach is
chosen, the rationale and approach should be clearly reported
in any presentation of the data and analyses.

The e-cigarette search filter (see Multimedia Appendix 4) was
developed in 2012. Since that time, e-cigarette popularity has
increased significantly [39,40], many new brands and various
types of vaping devices have entered the market, and
e-cigarette-related language and slang terms have evolved. If
we were to use the same search filter to study what people say
about e-cigarettes on social media in 2015, the retrieval precision
and recall would be poor. This underscores the importance of
reporting the search filters used, along with their retrieval
precision and recall at the time of data collection. When tracking
trends of behaviors, attitudes, and beliefs over time, it is crucial
to maintain an updated list of keywords/search filters for the
given topic.

Filtering Using Machine Classifiers
Machine learning classifiers are often used for content analysis
but also can be used to remove irrelevant messages from the
data retrieved by search filters [9,22]. A well-developed
classifier can reduce human labor. The accuracy of the classifier
should be validated on a hold-out sample by computing precision
and recall of the classifier. We refer the validation of classifiers
to machine learning literature [31,41,42].

The retrieval precision may be approximated by the classifier
precision, but the estimation of retrieval recall can be different
from the classifier recall. Classifier recall measures the model’s
ability to correctly identify relevant content among the data
retrieved by the search filters, whereas retrieval recall estimates
how completely relevant content is captured by the search filters,
relative to the universe of possible content (all Twitter messages
in our example). The estimation of retrieval recall, therefore, is
inherently theoretical because it is arduous and
resource-intensive to sample unretrieved messages. In practice,
its estimation involves examining unretrieved data from as many
sources/repositories as possible. Our team collects and manages
Twitter data in multiple archives to cover a broad range of topics
related to tobacco products and associated behaviors; thus, we
could sample from these other archives to see if they captured
any content that is potentially relevant to e-cigarettes. Others
may archive the Streaming API of Twitter or design another
sampling strategy. The important point is to approximate as
best as possible the universe in which relevant content may
appear.

Future Research
In addition to data collection and quality assessment, it is
important to report data sources, which can affect the validity
of inference. Public data on Twitter can be accessed by Firehose,
Search API, or Streaming API. The latter two have rate limits,
which may prevent retrieval of full data depending on the
volume of topics. A small random sample of full stream may
contain abundant information about popular topics, for example,
a movie star. Some topics may be so scarce in the Twitterverse
that rate limit may not be an issue, but sudden spikes in tweet
volume induced by, for example, policy change may not be
captured due to rate limits. Further research is needed to
investigate how the inference is affected by data sources and to
provide guidelines. Regardless of data sources, in order to
evaluate and compare results across studies, it is critical for
researchers using social media data to clearly report how their
data were collected and what assumptions were made about
unretrieved data, and to provide estimates of the quality of their
retrieved data. While strategies may vary by research topic
and/or data availability, transparent and thorough reporting is
crucial for the credibility of studies as well as the establishment
of a rigorous standard for social media research.

Limitations
Our methods have certain limitations. We constructed an archive
to store tweets potentially related to tobacco smoking. Such an
archive is not a random sample of Twitterverse and thus induces
selection bias; it may leave out a small fraction of relevant
tweets (“e” in Figure 1). This selection bias affects the recall
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estimate via P(retr) and P(relevant|unretr) in Equation (2). First,
if the Twitterverse was used instead of the archive, P(retr) would
be much smaller than 0.0208 due to a much larger denominator.
This implies that the retrieval recall should be lower. On the
other hand, the archive has a high chance of containing
e-cigarette messages. That is, it is more likely to contain false
negative contents than a random sample of the Twitterverse.
Accordingly if the Twitterverse was used, P(relevant|unretr)
should be lower and is likely to have many leading zeros. This
implies that the retrieval recall should be higher. The two
components affect recall estimate in opposite directions.
Although the archive has selection bias, it helps find false
negative contents and refine the search filter. In addition, the
ratio of retrieved to unretrieved messages is relatively larger in
the archive than in the Twitterverse. Validating the search filter
quality when this ratio is about 1/800 or smaller requires coders

to evaluate an impractically huge number of tweets for reliable
recall estimation (see Case 2 in Multimedia Appendix 1).

Call for Rigorous Research
The number of studies that rely on social media data is
increasing [43]. However, few have thoroughly described the
search filter building process or fully assessed data quality. In
order to assess data collection and quality, research involving
social media data should clearly describe data sources, including
how data were accessed and collected and how search filters
were built, as well as presenting retrieval precision and recall.
Data with low recall will poorly represent the target topic, and
data with low precision will give misleading information. In
light of moving toward a reporting standard, we propose a
checklist (see Textbox 1) for reporting social media data
preparation. Study findings should be replicable and comparable
with clearly described data and methods.

Textbox 1. Checklist for social media data preparation and reporting.

1. Data source

• Social networking site and time frame

• How the data are accessed (eg, Streaming API)

• Why the data source is suitable for the research topics? Is there any limitation with the data source?

2. Development of search filter

• How candidate keywords are generated

• How keywords are refined

• Complete list of final keywords and search rules

3. Assessment of search filter

• Assumptions about human coding

• Sampling frame and sample size for human coding

• Whether all necessary data are available to assess the search filter

• Whether and how retrieval precision and recall are estimated

Conclusions
In this paper, we proposed a framework for social media data
collection and validation and discussed how to quantify data
quality under different conditions. Our proposed methodology
is not limited to Twitter and can be adapted to other public social
networking sites (as opposed to online forums or closed online
networks). The length limit of posts, different data fields (title,
description, tag, comment, etc), main user characteristics, data

streaming, or crawling tools may be considered for modification.
Our method is primarily useful for text-based social data, but
it can be adapted to image-based social media. Instagram users,
for instance, post photos with hashtags; we can retrieve
potentially relevant contents based on hashtags [44] and remove
irrelevant contents by using an image classifier. We hope our
proposed framework and methods contribute to more rigorous
and transparent health research using social media data.
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