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Abstract

Background: Multiple waves of transmission during infectious disease epidemics represent a major public health challenge,
but the ecological and behavioral drivers of epidemic resurgence are poorly understood. In theory, community structure—aggregation
into highly intraconnected and loosely interconnected social groups—within human populations may lead to punctuated outbreaks
as diseases progress from one community to the next. However, this explanation has been largely overlooked in favor of temporal
shifts in environmental conditions and human behavior and because of the difficulties associated with estimating large-scale
contact patterns.

Objective: The aim was to characterize naturally arising patterns of human contact that are capable of producing simulated
epidemics with multiple wave structures.

Methods: We used an extensive dataset of proximal physical contacts between users of a public Wi-Fi Internet system to evaluate
the epidemiological implications of an empirical urban contact network. We characterized the modularity (community structure)
of the network and then estimated epidemic dynamics under a percolation-based model of infectious disease spread on the network.
We classified simulated epidemics as multiwave using a novel metric and we identified network structures that were critical to
the network’s ability to produce multiwave epidemics.

Results: We identified robust community structure in a large, empirical urban contact network from which multiwave epidemics
may emerge naturally. This pattern was fueled by a special kind of insularity in which locally popular individuals were not the
ones forging contacts with more distant social groups.

Conclusions: Our results suggest that ordinary contact patterns can produce multiwave epidemics at the scale of a single urban
area without the temporal shifts that are usually assumed to be responsible. Understanding the role of community structure in
epidemic dynamics allows officials to anticipate epidemic resurgence without having to forecast future changes in hosts, pathogens,
or the environment.
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Introduction

Epidemics of infectious diseases are frequently characterized
by multiple waves of infection [1-3]. Notably, the 1918 influenza
pandemic spread through several US and European cities in
multiple waves with local variation in the frequency and timing
of individual epidemic peaks [4-8]. Predicting when and where
disease will resurge is critical to effective prevention and
control. However, the drivers and dynamics of multiwave
epidemics are unclear. For influenza pandemics, possible
explanations include antigenic drift [8-12], waning immunity
[13], changing environmental conditions [12,14,15], and social
distancing behavior [15-17].

Community structure—aggregation into highly intraconnected
but loosely interconnected groups—is a common feature of
social contact networks [18] that can potentially drive multiwave
epidemics as a disease spreads through one group before
emerging in another. However, community structure has been
neglected as a possible explanation for multiwave influenza
pandemics, in part because it is difficult to detect and estimate
[19]. Most studies describing routine human contact patterns
have relied on diary- or questionnaire-based surveys [20] or
specially deployed wireless sensors [21] and, thus, rarely yield
data sufficient for inferring large-scale aggregations. Social
networks estimated from electronic “contacts” (ie, cell phones,
social networking websites) have been shown to exhibit
community structure at larger scales [22-26], but do not capture
the physical interactions through which diseases spread.
However, the ubiquity of community structure across these
networks suggests that it may be a general hallmark of social
networks.

Here, we address the hypothesis that contact patterns in a large,
empirical, urban contact network are sufficient to generate
multiwave epidemics for pandemic influenza-like diseases in
the absence of any temporal changes in the hosts, pathogen, or
environment. We find that the fate of an epidemic in such a
network—whether and when multiple waves occur—depends
not only on community structure but also, critically, the presence
or absence of bridge superspreaders who forge connections
between communities. Direct links between the popular
members of different communities synchronize outbreaks; the
occasional absence of such bridges provides the epidemiological
separation underlying multiwave epidemics.

Interactions between strangers can serve as critical transmission
routes for respiratory diseases such as influenza, yet they are
difficult to capture in traditional sociological surveys. Using
data indicating the physical proximity of more than 100,000
Wi-Fi hotspots users, we characterize the structure of an urban
extrasocial interaction network and assess its epidemiological
implications.

Methods

Data
Île Sans Fil (ÎSF) is a not-for-profit organization established in
2004 in Montreal, Canada, that operates a system of public
Internet hotspots. Hotspots are located in cafes, community and
recreation centers, salons, markets, and other small businesses
and public places. They are maintained by ÎSF staff and
volunteers with the Internet connection provided by the
establishment. We analyzed the database of all connections to
the system of 352 hotspots between August 2004 and March
2010. Raw data from the ÎSF database consisted of 2.18 million
connection records. Each record included an anonymized user
ID, latitude and longitude coordinates for each ÎSF hotspot
location, connection and disconnection times, and the unique
media access control address for the user’s wireless device. The
data reported in this paper are available from the Community
Resource for Archiving Wireless Data at Dartmouth
(CRAWDAD) archive [27].

Network Construction
We built a contact network by interpreting each individual user
as a node and concurrent ÎSF usage at the same hotspot as an
edge. This preliminary network contained 114,810 nodes and
1.2 million edges. It contained both self-loops (users connecting
multiple devices at once) and parallel edges (pairs of users with
multiple overlapping hotspot visits) that we removed to produce
a nonredundant network with 637,430 edges. We analyzed the
largest connected component of this network, which consisted
of 103,425 nodes and 630,893 edges.

Community Structure Analysis
Modularity (Q) quantifies the extent of community structure in
a network relative to a comparable random network. Given a
network and a particular partitioning of the nodes into
communities, Q is defined as the number of edges contained
within communities minus the number of edges expected to fall
within communities if the edges were distributed randomly
(preserving the degrees of all nodes), normalized for network
size. Q ranges from zero for randomly connected networks to
greater than 0.3 for networks with substantial community
structure [28]. We used a heuristic method to divide the
Montreal network into a set of communities that maximized Q
using an algorithm [28] that initially assigned each node to its
own community and then iteratively aggregated whichever pair
of communities resulted in the largest increase in Q. We
identified 1420 distinct communities associated with a Q value
of 0.69.

Epidemic Simulations
Epidemic curves were simulated by EpiFire [29] using a
chain-binomial [30] network epidemic simulator with a
susceptible-infectious-recovered state progression. Each
epidemic begins with all nodes susceptible except for a single,
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randomly selected, infectious node. Nodes remain infectious
for a fixed period with arbitrary time units, after which they
become recovered for the remainder of the simulation.
Transmission from infectious nodes to susceptible neighbors is
attempted once per time unit with transmission probability Tcb.
We assumed an infectious period of 5 time units because it
yielded sufficient temporal resolution to distinguish epidemic
waves. Tcb relates to the percolation transmission probability

as given by T=1–(1–Tcb)
d, where d is the infectious period. We

simulated epidemics across 3 transmission scenarios defined
by the value of the basic reproduction number, R0, which is
defined as the expected number of secondary cases produced
by a typical infection in a completely susceptible population: a
low R0=1.9, similar to estimates for recent influenza pandemics
[31-33]; a moderate R0=2.4, which maximizes the probability
of multiwave epidemics and is in the range estimated for the
1918 influenza pandemic in the United States [34,35]; as well
as a high R0=7.5, where spread is rapid both within and between
communities. Finally, we performed a sensitivity analysis with
respect to the length of the infectious period and considered
values of 1, 5, 10, and 50 time steps.

Detecting Multiwave Epidemics
To automatically identify epidemic curves exhibiting multiple
waves, we defined a new 2-peak metric (TP), indicating the
depth of the deepest valley in the epidemic time series
(specifically, the geometric mean of the heights of on each side
of the deepest valley). Additional details are provided in
Multimedia Appendix 1. Example epidemic curves and their
corresponding value of TP are shown in the supplementary
information (see Figure S1 in Multimedia Appendix 2). The
distribution of TP values tended to be bimodal with single-wave
epidemics yielding values close to zero and multiwave
epidemics yielding higher values (see Figure S2 in Multimedia
Appendix 2).

Percolation-Based Approximations of R0, Epidemic
Size, and Community Bridging
We adapted methods from percolation theory [36] to estimate
global and community-specific values of R0, final epidemic
sizes, and epidemiological connectivity among different
communities to test the hypothesis that multiwave epidemics
occur in the absence of between-community degree assortativity.
The details and derivations of these percolation-based quantities
can be found in Multimedia Appendix 1.

Network Shuffling
To examine the epidemiological impact of community structure
we constructed “null” networks that shared many properties of
the original Montreal network (eg, the degree distribution) but
lacked community structure. Specifically, we iteratively
randomized the network by shuffling connections; that is, we
chose random pairs of connections and swapped the ends (eg,
A-B, C-D became A-D, C-B). This slowly degraded community
structure while preserving the number of contacts for each
individual. We selected a fraction f of edges and broke them to
form stubs (half-edges still attached to their nodes). Then, the
list of stubs was randomized and each sequential pair of stubs

was connected. We eliminated newly formed self-edges and
redundant edges via edge swaps with randomly chosen edges,
leading to randomization of slightly more than the intended
fraction of edges (~1.01f). Modeling each community as a
semirandom network with the observed within- and
between-community degree distributions, we estimated the
impact of random shuffling and variation in R0 on the
epidemiological proximity of communities. We built 2048 new
networks by randomly shuffling from 0.1% of edges (631 edges)
to 3% of edges (18,927 edges) in increments of 0.1%. All
estimates are averages based on the networks built for each
shuffling level.

Results

We analyzed the network of more than 600,000 physically
proximal contacts between 103,425 users of a free public Wi-Fi
hotspot system in Montreal, Canada (hereafter the Montreal
network) to examine the effects of ordinary urban contact
patterns on epidemic wave dynamics. We used an established
heuristic method [28] to divide the Montreal network into 1420
distinct communities (Figure 1; also see Figure S3 in Multimedia
Appendix 2). The 3 largest communities together contained
82,228 of 103,425 (79.50%) users in the network, with 38,569
(community I), 28,101 (community II), and 15,558 (community
III) users. The mean degree (number of contacts) per user in
each of these communities was 13.4 (SD 40.2), 8.3 (SD 23.7),
and 26.7 (SD 76.4), respectively, compared with a mean of 4.6
(SD 9.3) for the 21,197 (20.50%) remaining users. The
communities exhibited distinct geographic signatures
corresponding to large mixed commercial and residential areas
in the city, with considerable overlap occurring in Downtown
Montreal (Figure 2).

R0 is related to the likelihood and extent of a sustained outbreak
[37]. R0 depends on the transmissibility of the pathogen, host
recovery, and the structure of the host contact network [38].
Assuming that within-community contacts are approximately
random and using a percolation-based model [39], we estimated
that a disease with a global R0 equal to 1 had local R0 values of
0.8, 0.4, and 1.6 in communities I, II, and III, respectively (when
considering only within-community edges) and exhibited
considerable variability in epidemiological vulnerability across
communities (Figure 3).

We simulated epidemics through the Montreal network with a
stochastic susceptible-infected-recovered model [37] across a
range of R0 values. At low R0, only 2 of 3 communities (I and
III) sustained transmission, whereas at high R0, epidemic spread
was relatively synchronized between communities. Under both
of these scenarios, multiwave epidemics were possible but
relatively infrequent (Figure 3). At an intermediate value, in
the range estimated for the 1918 influenza pandemic in the
United States (R0=2.4) [34,35], 44.60% (446/1000) of all
epidemics exhibited multiple waves and 87.9% (392/446) of
these had an initial epidemic wave in community III with a
subsequent wave dominated by the 2 larger communities
(Figures 4 and 5). When the first wave was dominated by
community III, its peak occurred a mean of 27 time steps (SD

J Med Internet Res 2015 | vol. 17 | iss. 7 | e169 | p. 3http://www.jmir.org/2015/7/e169/
(page number not for citation purposes)

Hoen et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


7; n=4074) before that of the second wave. When the second
wave was dominated by community III, its peak lagged behind
the peak of the first wave by a mean of 22 time steps (SD 8;
n=572). The relative size of the second wave increased with R0

because community III became epidemiologically saturated
more quickly than the other 2 communities (Figures 3 and 4).
Sensitivity analysis suggested that these results are robust to
the length of the infectious period (see Figure S4 in Multimedia
Appendix 2).

A modest amount of network shuffling (<3% of edges) almost
entirely eliminated multiwave epidemics (Figure 6), whereas it
minimally impacted the extent of community structure according
to standard metrics including Q (Figure 7) and the numbers of
edges linking distinct communities (see Figure S5 in Multimedia
Appendix 2). This suggests that the critical driver of 2-peaked
epidemics is not the number but the nature of intermodule
contacts. We hypothesized that epidemiological synchrony
arises when locally popular users in one community tended to
be connected to locally popular users in another
(between-community degree assortativity) and multiwave
epidemics can occur only when communities lack such
connectivity.

We formalized and tested this idea by assuming, again, that
within-community edges form semirandom networks and used
new percolation-based estimates to characterize the
epidemiological bridges between the 3 major communities.
Given the degree distribution of the Montreal network (see
Figure S6 in Multimedia Appendix 2), we found that the number
of users in community III expected to form epidemiological
bridges to community I increased rapidly with shuffling, whereas
communities I and II were tightly connected by bridging
individuals in the original network and this connection persisted
through shuffling (Figure 8). Shuffling also led to a rapid
decrease in the probability that an epidemic starting in
community III would spark an epidemic in community I
sufficiently late to appear 2-peaked (Figure 9). The precipitous
decline in two-wave epidemics with shuffling coincides with
the rapid creation of epidemiological bridges and decrease in
the expected waiting time between community outbreaks.

The rapid deisolation of the internally well-connected
community III occurred because random shuffling targeted users
proportional to their degree, which tended to connect
high-degree individuals inside community III with high-degree
users from elsewhere in the full network. The locally popular
but highly insular users of community III thereby quickly formed
bridges to popular users in the other major communities.

Figure 1. Visualization of connectivity between 1420 communities identified at maximum modularity (Q). Each circle represents a community with
filled circle diameter indicating the relative number of within-module edges. Lines joining pairs of communities are drawn with a thickness that is
proportional to the number of edges connecting them. The largest 3 communities (community I, II, and III) are labeled and filled in color. Darker rings
superimposed on communities I, II, and III are proportional in diameter to the number of nodes making up each.
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Figure 2. Map of hotspot locations with points on map represented by pie charts indicating the relative contributions of each community to the total
visits recorded at that hotspot. Community III was primarily concentrated in the Gay Village neighborhood of the Ville-Marie borough of Montreal,
whereas communities I and II primarily occupied the high-traffic commercial areas on either side of the Plateau-Mont-Royal neighborhood; all 3
communities coincided downtown. Each grid square is colored to represent the locally dominant community. Squares with no hotspots are colored to
represent the dominant community at the nearest hotspot.
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Figure 3. Expected within-community epidemic size assuming that communities were approximately random networks and maintained their empirical
within-community degree distributions (colored lines; primary y-axis). The epidemic threshold for each community (ie, R0 value for which transmission
is sustained) is lowest for community III, followed by communities I and II. The frequency of multiwave epidemics depended on R0 and is highest
when R0=2.4 (gray line; secondary y-axis).
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Figure 4. Taxonomy of epidemic curves. For each R0, 1000 simulated epidemics were classified as either single-wave (left), multiwave starting with
a community III wave followed by a community I and II wave (middle), or multiwave ending in a community III wave (right). At R0=2.4, 554 of 1000
(55.40%) had a single wave and 446 of 1000 (44.60%) had 2 waves; of the 446 with 2 waves, community III dominated the first wave in 392 (87.89%).
At R0=1.9 and R0=7.5, only 22.20% (222/1000) and 20.60% (206/1000) of epidemics exhibited 2 waves, respectively. Time series are superimposed
so that the peaks of the largest waves align.

Figure 5. A typical epidemic curve with 2 waves (R0=3.7). Community III drove the first wave; communities I and II drove the second wave.
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Figure 6. The frequency of multiwave epidemics at varying values of R0 and network shuffling with warm colors indicating a higher proportion of
multiwave epidemics and cool colors indicating a low proportion of multiwave epidemics (frequency values indicated on contours). Frequencies were
calculated across all epidemics (top left) and stratified by starting community (top right and bottom). Each pixel is based on 81,920 simulated epidemics
originating in the specified community (10 simulations on each of 8192 uniquely shuffled networks).

Figure 7. Relationship between modularity (Q) and network shuffling. Shaded area indicates the conventional community structure threshold of 0.3.
Note larger x-axis range in this figure compared with other figures.
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Figure 8. The proportion of nodes in community II (gray line) and community III (black line) with the ability to spark an epidemic (i.e., ϕ >0; see
Multimedia Appendix 1) in module I across varying levels of network shuffling at R0=2.4.
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Figure 9. The probability that one community will seed an epidemic in another sufficiently late to produce an asynchronous secondary wave is shown
for epidemics spreading from community I to II (left) and community III to I (right).

Discussion

Principal Findings
Community structure is a prominent feature of the Montreal
network, with the 3 major communities exhibiting substantially
different epidemiological thresholds and dynamics. However,
community structure alone is insufficient to produce multiwave
epidemics because direct contacts between highly connected
individuals in different communities can fuel rapid
intercommunity transmission. It is the insularity of the most
intraconnected community that makes multiple waves not just
possible, but likely, when R0 resembles that estimated for the
1918 influenza pandemic. The Montreal network shows

anecdotally that both strongly connected and insular
communities can emerge naturally in human social systems and
exist side-by-side. However, insularity is fragile, disappearing
with minimal perturbation to the network. In contrast, the
presence of strong bridges between communities is more robust
and arises by random (or other) processes that link highly
connected individuals to one another. Conversely, we expect
that social differences, geographic heterogeneity in contact
patterns (eg, city vs suburbs), and polarizing events would
generate insularity.

The 3 large Montreal hotspot communities exhibit substantially
different epidemiological characteristics, including epidemic
thresholds and sensitivity to the reproduction number. For mildly
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transmissible diseases just above the epidemic threshold, some
communities may be fully protected by the sparseness of their
within-community network. Well above the epidemic threshold,
the attack rate may vary considerably among communities,
depending again on the structure of their within-community
network.

Ball and Neal [40] introduced a theoretical framework
addressing the epidemiological interplay between local and
global connectivity, and showed that transient long-range
connections can fuel epidemics even when local network
structure is too sparse to sustain epidemics. Although their
model considers transient global contacts rather than fixed
community structure, a similar approach may ultimately provide
a theoretical perspective on the epidemiological phenomena we
observed in the Montreal network.

The insularity of the most intraconnected Montreal community
is likely to produce a multiwave epidemic when an outbreak
originates in that community and the R0 is moderate, close to
that estimated for the 1918 influenza pandemic. For less
contagious diseases, epidemics are unlikely to escape beyond
this community; for highly contagious diseases, epidemics flow
readily among communities. Our results thus support an
alternative nontemporal explanation for multiwave
epidemics—insular community structure—that arises naturally
from social network structure fundamental to human
interactions.

All historical influenza pandemics have produced multiple
epidemic waves in many North American cities [1]. Specifically,
Montreal experienced 2 distinct waves of influenza-related
mortality during the 1957-1958 pandemic, which did not occur
elsewhere in Quebec. McDonald [41] attributed this difference
to population density. The 2009 pandemic also produced dual
waves in Montreal [42]. Prior attempts to explain these patterns
have largely overlooked population structure in favor of dynamic
phenomena, such as pathogen evolution or host behavior

[14,15,43,44]. This omission stems partly from the chronic lack
of data and insight into the structure of urban contact networks.
Although this remains a challenge, our study suggests that urban
community structure may naturally produce multiwave
pandemics, even without any temporal forcing.

Limitations
The major limitation of our study lies in the inherent difficulty
of capturing and characterizing human contact patterns at an
individual level. The Montreal ÎSF network excludes many
interactions important to disease transmission, such as those
occurring in homes and schools. In addition, some of the
colocation contacts in our dataset may not have been sufficient
for disease transmission. For these 2 reasons, the ÎSF network
does not fully reflect the human contact patterns responsible
for disease spread; however, it reveals previously
uncharacterized urban-scale community structure that may
reflect fundamental geographic, economic, and cultural
processes that shape physical contact networks.

Conclusions
Anticipating the emergence of secondary epidemic waves is
vital to epidemic and pandemic preparedness and response. For
example, in the midst of an outbreak, it may allow public health
officials to target interventions toward subpopulations still at
risk for significant transmission. Identifying informative
indicators of urban community structure, including the insularity
estimates proposed in this study, will allow us to construct
temporal epidemiological risk maps and target interventions
(eg, vaccination) toward highly connected individuals reaching
outside their own communities that can potentially serve as
bridge superspreaders. In the Montreal network, communities
had distinct geographic signatures, suggesting that investigations
of community structure may also facilitate the effective
placement of surveillance or intervention sites such as
vaccination clinics.
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