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Abstract

Background: Groups and individuals that seek to negatively influence public opinion about the safety and value of vaccination
are active in online and social media and may influence decision making within some communities.

Objective: We sought to measure whether exposure to negative opinions about human papillomavirus (HPV) vaccines in Twitter
communities is associated with the subsequent expression of negative opinions by explicitly measuring potential information
exposure over the social structure of Twitter communities.

Methods: We hypothesized that prior exposure to opinions rejecting the safety or value of HPV vaccines would be associated
with an increased risk of posting similar opinions and tested this hypothesis by analyzing temporal sequences of messages posted
on Twitter (tweets). The study design was a retrospective analysis of tweets related to HPV vaccines and the social connections
between users. Between October 2013 and April 2014, we collected 83,551 English-language tweets that included terms related
to HPV vaccines and the 957,865 social connections among 30,621 users posting or reposting the tweets. Tweets were classified
as expressing negative or neutral/positive opinions using a machine learning classifier previously trained on a manually labeled
sample.

Results: During the 6-month period, 25.13% (20,994/83,551) of tweets were classified as negative; among the 30,621 users
that tweeted about HPV vaccines, 9046 (29.54%) were exposed to a majority of negative tweets. The likelihood of a user posting
a negative tweet after exposure to a majority of negative opinions was 37.78% (2780/7361) compared to 10.92% (1234/11,296)
for users who were exposed to a majority of positive and neutral tweets corresponding to a relative risk of 3.46 (95% CI 3.25-3.67,
P<.001).

Conclusions: The heterogeneous community structure on Twitter appears to skew the information to which users are exposed
in relation to HPV vaccines. We found that among users that tweeted about HPV vaccines, those who were more often exposed
to negative opinions were more likely to subsequently post negative opinions. Although this research may be useful for identifying
individuals and groups currently at risk of disproportionate exposure to misinformation about HPV vaccines, there is a clear need
for studies capable of determining the factors that affect the formation and adoption of beliefs about public health interventions.
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Introduction

In the last decade, vaccination refusal has increased in the United
States and many countries have recorded substantial proportions
of parents expressing concerns about the safety of vaccines
[1,2]. Although variability in access to health care is an
important factor influencing vaccine coverage rates, vaccination
refusal also directly affects these rates and is a significant
contributor to outbreaks—especially where vaccination refusal
is geographically clustered and population immunity is
compromised [3]. Outbreaks of pertussis and measles are known
to spread through populations where rates of vaccination refusal
are high [4-7].

Refusal has also been a problem for the recently introduced
human papillomavirus (HPV) vaccine. The vaccine was first
licensed for use in the United States in 2006 with the purpose
of reducing the incidence of HPV, to which the majority of
cervical cancers are attributed, as well as genital warts and some
oral, anal, and penile cancers [8]. HPV vaccination in Australia
has led to a marked reduction in rates of high-grade cervical
abnormalities and early evidence of herd immunity [9-12].
However, uptake of HPV vaccines varies substantially across
and within countries [13-16].

The introduction of HPV vaccination was hampered by
controversy in some countries, where some parents attributed
illness or death in their children to the vaccine despite evidence
affirming the vaccine’s good safety record [17]. The quality
and variety of information available online about the safety and
efficacy of HPV vaccines varies [18], as does the representation
of HPV vaccines in the news media [19]. Evidence from a study
set in Greece suggests that the perception of risks in the
community appears to have negatively influenced the intention
to vaccinate [20]. More generally, there is some evidence to
suggest that influence from online media and celebrities can
increase vaccine risk perception and rates of vaccination refusal
[21-23]. Given the importance of information sources in
influencing vaccination decision making, social media platforms
are seen as an opportunity for both the tracking and influencing
of vaccination decision making [24].

Few studies have considered the surveillance of opinions about
vaccination on social media as a precursor to vaccination
decision making. Existing studies on public health surveillance
applications in social media have focused primarily on finding
early indicators of infectious diseases incidence [25-28]. The
exceptions include examinations of responses to an influenza
outbreak [29] and influenza vaccination [30]. Beyond social
media, media surveillance systems have been built to track news
media and other reports online [31,32]. One example considered
negative sentiment in online news media and notes that systems
that rely on manual classification of documents are prohibitively
resource intensive [33].

Our aim was to examine the association between exposure to
negative opinions about HPV vaccines and the expression of
negative opinions about HPV vaccines among Twitter users.

To do this, we examined sequences of messages posted on
Twitter (tweets) as well as a static view of the social connections
between every user that posted a tweet about HPV vaccines in
a 6-month period.

Methods

Data
Tweets posted by public users were retrieved programmatically
via the Application Programming Interface (API) using repeated
searches of combinations of the terms human papillomavirus,
HPV, vaccine, vaccination, Gardasil, and Cervarix, and labeled
by Twitter as English language. These terms were fixed
throughout the data collection period, which was from October
1, 2013 to April 1, 2014. We additionally collected metadata
associated with the tweets, including the date and time,
information about the user, related tweets such as retweets and
replies, and the geo-tag (location) information if it was available.
For each user who posted one or more tweets about HPV
vaccines in the period, we separately used the API to retrieve
the lists of users they followed and the users that followed them
shortly after the first time they posted a tweet about HPV
vaccines during the period.

Tweets were classified as negative if they rejected the safety or
value of HPV vaccines or promoted refusal. Due to the very
large number of tweets collected in the period, we used a
supervised machine learning approach to classify the tweets
that involved the manual labeling of a random sample of tweets,
which were then used to train algorithms that recognized similar
patterns in the remaining tweets. For each tweet, we determined
an estimate of the likelihood of it being the expression of a
negative opinion about HPV vaccines. The specific classifier
we constructed was an ensemble of 4 classifiers that used the
content of the tweets (the words and word combinations in the
tweets themselves) or the social relations between users (the
users followed by the user responsible for the tweet). A set of
2098 tweets were randomly sampled and then independently
graded by 2 investigators (95% agreement, Cohen’s κ=.87),
with disagreements resolved by discussion to produce the final
training set. The accuracies of the 4 machine learning classifiers
ranged between 87.6% and 94.0% when trained and tested in a
10-fold cross validation. The complete details of the
development of the classifier are described elsewhere [34].

Analyses
To analyze population-level information exposure, we measured
how users may have been exposed to tweets about HPV vaccines
during the 6-month observation period. For each user that
tweeted at least once about HPV vaccines during the period,
we created timelines of their own tweets about HPV vaccines
and the tweets about HPV vaccines posted by the users they
followed. For the purpose of measuring information exposure,
we handled retweets in the same way as other tweets to conserve
the definition for exposure. This means that we defined an
exposure as the potential flow of information between users
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along social connections. Not all tweets are seen by all
followers, but by observing the aggregate flow of exposures
through network structure, it was possible to estimate how the
heterogeneous mixing of the population might affect the
information to which each user is exposed.

We determined the prior exposure of a user each time they
posted a tweet about HPV vaccines during the time period by
compiling the list of tweets to which they were potentially
exposed prior to the timestamp of the index tweet. This
proportion served as an indicator of the prior exposure to
negative information about HPV vaccines in the time period.
To account for a potential length sampling bias (later tweets
tended to be preceded by a greater number of exposures), we
limited the sequence-based analysis to tweets that were preceded
by at least 3 exposures.

To test our hypothesis directly, we counted how many times a
user posted a negative tweet following a majority of prior
negative exposures and compared that count with the number
of times a posted tweet was negative when the majority of prior
exposures were neutral or positive. These counts were then used

to calculate the relative risk of posting a negative tweet about
HPV vaccines given majority prior exposure to negative tweets.
To avoid sampling biases resulting from counting the same
users repeatedly, we randomly sampled only 1 tweet from each
eligible user and repeated the analysis until the median
proportions and relative risk measures did not change value at
3 significant figures.

Results

We identified 83,551 tweets or retweets from 30,621 users
relating to HPV vaccines between the period October 1, 2013
to April 1, 2014, after eliminating tweets that were eventually
deleted and tweets from users that became protected or
suspended after the initial collection. Of the 83,551 tweets and
retweets, 20,994 (25.13%) were classified as negative by an
ensemble of supervised machine learning classifiers. Table 1
includes some examples of the different classes of tweets. There
were 10 days (5.5% of 183 days) in which the number of
negative tweets outnumbered the number of positive and neutral
tweets about HPV vaccines (Figure 1).

Table 1. Examples of different classes of Twitter messages identified in the searches.

Twitter message textClassification

“HPV vaccination has the potential to reduce cervical cancer deaths worldwide by as much as two-thirds. [URL
removed]”

Positive

“Oral sex & male gender indep assoc with oral HPV infection: shows need for HPV vaccination of boys. #endhpv
New study [URL removed]”

Positive

“Potential of the quadrivalent human papillomavirus vaccine in the prevention and treatment of cervical cancer
[URL removed]”

Neutral

“Gardasil has generated nearly 30,000 adverse reaction reports to US govt, including 140 deaths [URL removed]
#vaxfax”

Negative

“Lead Developer of HPV Vaccine Warns Parents Young Girls It’s a Giant Deadly Scam [URL removed]”Negative

“Young woman’s ovaries destroyed by Gardasil: Merck ‘forgot to research’ effects of vaccine [URL removed]”Negative

There were 30,621 users that tweeted about HPV vaccines in
the period. Each user in the set posted between 1 and 1842
tweets about HPV vaccines during the period with a median of
2 tweets per user (IQR 1-2) (Figure 2). The distributions differed
between users posting mostly negative tweets and users posting
mostly neutral or positive tweets. Although there were more
users posting neutral/positive tweets overall, the most prolific
users during the time period were posting mostly negative
opinions about HPV vaccines.

We defined social connections as the sets of users that followed,
or were followed by, the users that tweeted about HPV vaccines.
The total number of unique followers for all users that tweeted
about HPV vaccines in the 6-month period was 51,397,377.
The total number of followers per user varied between 0 and
5,136,595 with a median of 274 followers per user (IQR 36-996)
(Figure 3, left). Considering only the connections between users
that tweeted about HPV vaccines, 957,865 social connections
were identified and this defined the internal network of social
connections among the 30,621 users. Followers per user in this
internal network varied from 0 to 10,945 with a median of 8
followers per user (IQR 2-33) (Figure 3, right). Although news
organizations and magazines made up the majority of users with

the greatest number of followers overall, government health
organizations and academic institutions or groups were more
consistently featured among the set of users with the most
followers in the internal network. Practitioners and writers
(books and blogs) of specific forms of alternative medicine as
well as antivaccine activists and celebrities did not feature
among the set of users with the most followers overall, but
occupied higher ranks when counting the number of followers
in the internal network.

Although only 25.13% (20,994/83,551) of tweets were classified
as negative, 29.54% (9046/30,621) of users that tweeted about
HPV vaccines appeared to be exposed more often to negative
tweets than to neutral and positive tweets. This difference, and
a visual interpretation of the network, suggests that users posting
negative tweets about HPV vaccines were not evenly mixed in
the network and often belonged to communities primarily
consisting of users who also posted negative tweets about HPV
vaccines (Figure 4).

Among the 30,621 users that tweeted about HPV vaccines,
18,657 users had timelines in which at least 1 tweet was posted
after at least 3 exposures and were thus eligible for a temporal
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analysis of exposures and subsequent tweets. The likelihood of
posting a negative tweet about HPV vaccines following a prior
majority exposure to negative tweets was 37.78% (2780 of 7361
users). For users whose prior exposures were mostly
neutral/positive, 10.92% (1234 of 11,296 users) subsequently
posted a negative tweet. These results corresponded to a relative
risk of 3.46 (95% CI 3.25-3.67, P<.001) indicating that users
with greater prior exposure to negative opinions about HPV
vaccines were more likely to express negative opinions.

To further test the association between exposure and expression
within different groups of users, we undertook a post hoc

subgroup analysis. Among the set of users that met the inclusion
criteria and also had fewer than 1000 followers (n=11,845), we
calculated the relative risk in the same way and found that the
relative risk of posting a negative opinion about HPV vaccines
after having been more often exposed to negative opinions about
HPV vaccines was 3.61 (95% CI 3.32-3.93). For users with
fewer than 500 followers (n=8790), the relative risk was 3.57
(95% CI 3.23-3.95) and for users with fewer than 300 followers
(n=6521), the relative risk was 3.76 (95% CI 3.33-4.24). The
results suggest that the association between previous exposure
and subsequent expression was slightly stronger among Twitter
users with fewer followers.

Figure 1. The number of tweets posted each day during the data collection period, including tweets rejecting the safety or value of HPV vaccines
(orange) and all other HPV vaccine tweets (cyan). Gray vertical lines indicate Sundays. No corrections for time zone differences were applied.

Figure 2. The ordered distribution of tweets per user related to HPV vaccines posted to Twitter between October 1, 2013 and March 31, 2014. Each
user’s number of tweets is represented by a dot and illustrated separately for users that posted a majority of negative tweets (orange) and all other users
(cyan).
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Figure 3. The ordered distribution of users according to the total follower counts (left) and follower counts within the network of 30,621 users (right).
Each user is represented by a dot and colored by users that tweeted mostly negative tweets (orange) compared to all other users (cyan). The vertical
axes are zero-adjusted to accommodate users that had zero followers.

Figure 4. The network of 30,621 users that tweeted about HPV vaccines during the period between October 2013 and April 2014 organized via heuristic
so that users are closer to other users with whom they are connected. The sizes of the nodes are proportional to the number of followers within the
network. Users are colored according to information exposure (orange: those exposed to a majority of negative opinions; cyan: users that were exposed
to mostly neutral/positive tweets; gray: users not exposed to HPV vaccine tweets).
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Discussion

Principal Findings
Approximately one-quarter of the tweets about HPV vaccines
that were posted in the period were critical of the safety or value
of HPV vaccines or actively encouraged vaccine refusal. These
tweets, which included misinformation, anecdotes, and opinions
that may result in vaccine hesitancy or refusal, made up the
majority of HPV vaccine-related information exposures for
nearly 30% of users that tweeted about HPV vaccines in the
period. Our analysis of the network of follower relationships
suggests that users expressing negative opinions about HPV
vaccines tended to be more closely connected to users expressing
the same opinions. Our analysis of the sequences of HPV-related
tweets demonstrated an association between prior exposure to
negative tweets about HPV vaccines and the subsequent posting
of negative tweets about HPV vaccines. Together, these results
suggest that homophily or contagion may play a role in the
expression of negative opinions about HPV vaccines, but the
study does not help to quantify their specific contributions [35].

To the best of our knowledge, ours is the first empirical study
to consider the association between information exposure and
subsequent expression for vaccines on social media. Other
studies have used supervised machine learning to automatically
classify tweets about vaccination [30] and the frequency of
tweets over time exhibits a similar temporal pattern to the one
we observed. Other studies have used Twitter as a laboratory
to measure the propagation of negative news content,
complaints, and rumors [36-38]. Other studies that considered
misinformation were specifically aimed at differentiating
between credible and not credible information, the containment
of misinformation, and the identification of misinformation
sources [39-41].

It is important to note that the study design we used precluded
conclusions about what proportions of negative opinions
expressed in the period were the consequence of exposure
(contagion of opinions), the consequence of users creating
connections to other users who already hold similar opinions
(homophily), or if other external factors caused connected users
to express similar opinions [35]. Alternative study designs that
measure or model contagion from observable or synthetic
networks are common in other application domains and more
generally in network science [42-46], including where
connections between nodes change over time [47-49].

Other studies have considered the news and online media
representation of vaccines in different ways. One study
examining the representation of vaccines in the media identified
a rate of negative opinions in media reports for vaccines
generally of 31% [33], with similar percentages in a study of
US and Canadian news articles about HPV vaccines [50]. In
comparison, 29% of US parents have reported being unsure
about the vaccines for their children or otherwise delayed or
refused vaccinations [51]. In the United Kingdom, very few
newspaper articles (including tabloids) were classified as
negative [52], whereas 19% of parents in England responded
that they would not vaccinate their children in the future [53].
An Australian study found that HPV safety concerns were

present in 39% of newspaper articles between 2006 and 2009
[19]. A study examining news media in the mid-1990s found
that a small number of individuals were responsible for nearly
half of all the statements opposing vaccination [54]. We found
a similar pattern on Twitter for HPV vaccines using data from
nearly 20 years later—where a small number of individuals
posting negative opinions on Twitter produced a substantial
proportion of the negative opinions. Given that these proportions
are much higher than the average rates of vaccination refusal
recorded in registries at approximately 2% [55,56], more work
is needed to understand how population-level indicators of
negative opinions might relate to vaccination decision making.

Implications
Implications of this work include new avenues for understanding
how community affiliation on Twitter corresponds to the
exposure to misinformation, the subsequent expression of
opinions, and individual decision making. The simple methods
we used here may be of practical value for answering questions
about how new information becomes established in different
communities. For example, do the results of scientific studies
demonstrating efficacy tend to spread primarily through
scientific communities and not through communities of hesitant
parents? Which popular news websites, influential users, or
organizations are better connected to communities that are at
higher risk of being exposed to, and subsequently affected by,
misinformation? How often do young teenagers or their parents
pass along negative opinions following encounters with
misinformation or negative experiences with the vaccine
process? Using new methods for classifying the location and
characteristics of Twitter users [57,58], it may be possible to
construct Twitter-derived indicators of skewed misinformation
exposure in geographic areas and demographic strata, and these
may be useful for predicting or reflecting localized shifts in
decision making such as increases in refusal. From a practical
perspective, this kind of information risk surveillance could be
used to complement existing methods for gathering localized
information (surveys, interviews, and registry analysis) and
improve community engagement and public health actions by
targeting resources more efficiently.

Limitations
Limitations of this study come from our inability to track social
connections as they appear and disappear during the period.
Due to limits in the rates at which we access this information
on Twitter, the social connections associated with each user
were collected only once during the period, shortly after the
first time we identified a relevant tweet by the user. However,
by checking the consistency of connections between users within
the set, we found that 81.6% of users’ connections were
confirmed by the information from the other user (eg, a user’s
follower is confirmed as someone the user follows), so we are
reasonably confident that the connection structure was relatively
consistent over time.

Our search terms were fixed and although we were careful to
select search terms that covered the vast majority of the
discussion about HPV vaccines without collecting irrelevant
tweets, we may have missed a smaller number of tweets about
the topic and these tweets may not have had the same proportion
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of negative opinions. Query-expansion techniques used to
improve search strategies over time could be applied to address
this limitation in future work [59-61]. Finally, we relied on an
ensemble classifier rather than manual labeling, so a small
proportion of the tweets will have been misclassified. However,
the imperfections in the classifier are unlikely to have affected
the results because the study was across large groups, our
measure of exposure was based on counting the majority across
a number of tweets rather than individual tweets, and the
associations were clear.

Conclusions
We found that Twitter users who were more often exposed to
negative opinions about the safety and value of HPV vaccines

were more likely to tweet negative opinions than users who
were more often exposed to neutral or positive information.
Although we were unable to determine the differential
contributions of homophily, user characteristics, and contagion
to this effect, the results provide a detailed view of negative
opinions about HPV vaccines on Twitter in the period and
indicate associations between the community structure,
information exposure, and expression of negative opinions about
vaccines among social media users. Ongoing surveillance of
opinions about vaccination on social media may complement
surveys and other public health surveillance methods to improve
the efficiency and efficacy of public health communication
strategies.
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