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Abstract

Background: Mass gatherings, such as music festivals and religious events, pose a health care challenge because of the risk of
transmission of communicable diseases. This is exacerbated by the fact that participants disperse soon after the gathering,
potentially spreading disease within their communities. The dispersion of participants also poses a challenge for traditional
surveillance methods. The ubiquitous use of the Internet may enable the detection of disease outbreaks through analysis of data
generated by users during events and shortly thereafter.

Objective: The intent of the study was to develop algorithms that can alert to possible outbreaks of communicable diseases
from Internet data, specifically Twitter and search engine queries.

Methods: We extracted all Twitter postings and queries made to the Bing search engine by users who repeatedly mentioned
one of nine major music festivals held in the United Kingdom and one religious event (the Hajj in Mecca) during 2012, for a
period of 30 days and after each festival. We analyzed these data using three methods, two of which compared words associated
with disease symptoms before and after the time of the festival, and one that compared the frequency of these words with those
of other users in the United Kingdom in the days following the festivals.

Results: The data comprised, on average, 7.5 million tweets made by 12,163 users, and 32,143 queries made by 1756 users
from each festival. Our methods indicated the statistically significant appearance of a disease symptom in two of the nine festivals.
For example, cough was detected at higher than expected levels following the Wakestock festival. Statistically significant agreement
(chi-square test, P<.01) between methods and across data sources was found where a statistically significant symptom was
detected. Anecdotal evidence suggests that symptoms detected are indeed indicative of a disease that some users attributed to
being at the festival.

Conclusions: Our work shows the feasibility of creating a public health surveillance system for mass gatherings based on
Internet data. The use of multiple data sources and analysis methods was found to be advantageous for rejecting false positives.
Further studies are required in order to validate our findings with data from public health authorities.

(J Med Internet Res 2014;16(6):e154) doi: 10.2196/jmir.3156
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Introduction

Background
Historically, infectious diseases have devastated societies.
Examples include the “Black Death” bubonic plague of the 14th
century in which between 30-40% of Europe’s population is
estimated to have died [1], and the influenza epidemic of
1918-1920, in which as many as 50 million are estimated to
have died [2]. Despite very significant advances in medicine,
infectious diseases remain potentially very serious threats to
society. For example, a pandemic influenza is rated as the
greatest national risk on the UK government risk register [3].
An estimated 35.3 million people are HIV-infected [4],
drug-resistant Methicillin-resistant Staphylococcus aureus
(MRSA) is a major public health concern [5], about 2 million
cases of cancer are caused by infections each year [6], and
infection is a major source of morbidity in primary care [7].
Moreover, emerging new infections, such as H1N1 influenza,
can cause pandemics, spreading rapidly and unpredictably. Early
diagnostics play a crucial role in prevention, treatment, and care
but most tests require samples to be sent to specialist laboratories
leading to inherent delays between tests, results, and clinical
interventions. Public health intervention may be further delayed
by the time lag of 1-2 weeks associated with retrospective
surveillance. There are increasing national and international
drivers to dramatically improve our capacity to rapidly respond
to infectious diseases by widening access to tests in community
settings and drive innovative real-time surveillance

Protection against infectious diseases includes the development
of new medicines, vaccination programs, improved hygiene,
and promotion of behavioral modifications. While together
these efforts may reduce the risk of infectious diseases, the risk
cannot be eliminated. Consequently, infectious disease
surveillance networks at national and international levels have
been established. The purpose of public health surveillance
networks is to provide “Ongoing systematic collection, analysis,
interpretation and dissemination of data regarding a
health-related event for use in public health action to reduce
morbidity and mortality and to improve health” [8].

The most reliable sources of data for public health surveillance
networks are confirmed diagnoses of diseases. Unfortunately,
confirming a diagnosis may take days or weeks, due to a variety
of delays including (1) time to ship a patient sample to a testing
laboratory, (2) time to perform the test, and (3) time to report
the results.

Delays in identifying the onset of an infectious epidemic result
in delayed responses, which can significantly exacerbate the
impact of the epidemic on a society. Consequently, there is
strong interest in reducing delays. One way to accomplish this
is through syndromic surveillance, which emphasizes “the use
of near ‘real-time’ data and automated tools to detect and
characterize unusual activity for further public health
investigation” [9]. There is a range of pre-diagnostic data that
can and has been used, including clinical data such as nurse

advice line activity, school nurse visits, poison control center
data, EMS records, emergency department visits, outpatient
records, laboratory/radiology orders and results, prescription
medication sales, and electronic health records, and non-clinical
data such as over-the-counter (OTC) medications, work and
school absenteeism records, ambulance dispatch data, zoonotic
surveillance data (eg, dead birds from West Nile virus activity),
health-related Web searches, and other data from online social
networks.

The use of syndromic surveillance systems dates back to at least
1977, when Welliver et al [10] reported the use of OTC
medication sales in Los Angeles. The early 2000s saw renewed
interest in syndromic surveillance as a result of a US Defense
Advanced Research Projects Agency (DARPA) initiative called
ENCOMPASS (ENhanced COnsequence Management Planning
And Support System) to provide an early warning system to
protect against bioterrorism. As early as 2001, it was suggested
to use query logs associated with health care websites as one
form of syndromic data [11]. The advantage of online data
sources is that the data collection is usually straightforward and
very timely, that is, the lag between data creation, collection,
and analysis can be very short (possibly seconds). We are
therefore interested in online syndromic surveillance, which is
discussed in more detail in the next section.

The World Health Organization (WHO) states that “an organized
or unplanned event can be classified as a mass gathering if the
number of people attending is sufficient to strain the planning
and response resources of the community, state, or nation
hosting the event” [12]. Examples of mass gatherings include
very large religious gatherings such as the Hajj (approximately
2 million people) and the Hindu Kumbh Mela (estimated at
80-100 million people), large international sporting events such
as the Olympics, and national music festivals such as
Glastonbury in the United Kingdom. Mass gatherings have been
sources for the spread of infectious diseases. The spread of
cholera from a well in Mecca was documented as far back as
1883 [13]. More recently, during the 1992 Glastonbury music
festival attended by 70,000 people in the United Kingdom, 72
cases of Campylobacter infection were reported due to drinking
unpasteurized milk [14]. In 2009, [15] reported an outbreak of
H1N1 influenza at the Rock Werchter festival in Belgium. Also
in 2009, [16] reported outbreaks of H1N1 influenza at a sports
event and at a music festival, called EXIT, where 62 confirmed
cases were identified. In the same year, a further case was
reported at a music festival in Hungary [17]. The issue of mass
gatherings, medicine, and global health security was the subject
of a series of reports in The Lancet in 2012.

In the next section, we provide a discussion of prior work on
syndromic surveillance based on online social networks and
search engine query logs.

Related Work
In 2001, Wagner et al [11] first suggested the utility of query
terms to detect infectious diseases. In particular, they presented
data on the number of queries to a health website (WebMD)
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using words such as “cold” and “flu”. Though no quantitative
assessment was provided, qualitatively a correlation is visible
between the query frequency and measures of infectious disease.
A related quantitative analysis was documented in subsequent
work [18], which took “the weekly counts of the number of
accesses of selected influenza-related articles on the Healthlink
website and measured their correlation with traditional influenza
surveillance data from the Centers for Disease Control and
Prevention (CDC)”. The results showed a clear correlation;
however, interestingly, the Web log data was no more timely
than that of the CDC, that is, the Web log data did not allow an
influenza outbreak to be detected any sooner than with
traditional surveillance methods.

Later, Eysenbach [19] used information from Google’s AdSense
to indirectly estimate the number of queries for particular search
terms that contained keywords related to influenza. Specifically,
Eysenbach reported correlations between the “number of clicks
on a keyword-triggered influenza link” and traditional measures
such as (1) the number of lab tests, and (2) the number of
positive lab test results (cases). Pearson correlation scores of
between .85 and .91 are reported. Interestingly, the higher
correlation score was obtained when correlating with the number
of cases reported for the next week, indicating the Web-based
information was more timely.

A number of systems have been developed to gather and analyze
unstructured information that is openly available on the Web.
The earliest example of this is Global Public Health Intelligence
Network (GPHIN) developed by the Canadian government and
the WHO [20]. A number of systems have subsequently been
deployed, including BioCaster [21,22], EpiSPIDER [23], and
HealthMap [24,25]. Comparisons of these various systems can
be found in [26,27].

Interest in Web-based surveillance increased significantly with
the publication by Polgreen et al [28] and Ginsberg et al [29]
of relationships between query search terms and influenza-like
illness (ILI) based on Yahoo and Google search logs,
respectively. Polgreen et al showed that it was possible to
estimate the percentage of positive cultures for influenza and
the deaths attributable to pneumonia and influenza in the United
States, and to do so several weeks ahead of actual culture results.
Ginsberg et al reported similar findings. A further contribution
of [29] was to automatically determine the best set of query
search terms that correlate with CDC estimates. The work by
Ginsberg et al has subsequently been developed as Google Flu
Trends and its more generic service, Google Trends [30].

A large body of research has since been developed that utilizes
data from online social network or query logs to infer health
information. This includes work on mining blog posts that
mention influenza. For example, Corley et al [31,32] describe
collecting blogs from a variety of sources and looking for the
frequency of occurrence of keywords such as “influenza”. After
normalization, they reported Pearson correlation scores of .77
and .55 for two datasets with corresponding ILI reports from
the CDC (CDC ILINet reports). This work also discusses the
possibility of identifying relevant online communities and
developing associated targeted intervention strategies.

The analysis of microblogging data from Twitter for health
purposes has recently received attention [33-40]. Inspired by
the approach in Ginsberg et al [29], Cullota et al [35] applies a
similar approach to Twitter data revealing the benefits of having
longer, more complete messages as opposed to unstructured
search query entries. This allows for simpler classification
algorithms that can also filter out many of the erroneous
messages that typically occur and would sometimes overwhelm
the classifier predictions [38]. Lampos and Cristianini [33,34]
performed an analysis of tracking influenza rates throughout
the United Kingdom. Their major contribution to the existing
regression-based models was proposing a new automatic way
of selecting the keywords used by the classifier. These were
learned from a large pool of candidates extracted from Web
articles related to influenza, imposing a scarcity constraint via
an L1 norm penalty in the least squares prediction error. This
method yielded a correlation of 97% with respect to the reported
influenza rates. Unfortunately, the proposed way of
automatically building the vocabulary is based solely on
correlation and sometimes produces terms that, although highly
correlated with the flu trends, may not make good candidates
to track for future predictions: for instance, automatically
selected keywords “phone”, “nation”, or “mention” might not
be good indicators of the presence of ILI conditions.

Methods

Data
We examined 10 events, nine of which were in the United
Kingdom and one (the annual Hajj in Mecca) that had significant
participation from people in the United Kingdom. All events
took place in the second half of 2012.

We extracted two datasets for each event, one from the entire
set of Twitter users and the other from that of the Microsoft
Bing search engine. The population of Twitter users relevant
to an event was defined as any user who mentioned a hashtag
associated with an event at least twice between 30 days before
and 30 days after the event. We refer to the relevant users as
the target population. We also identified a population of users
who could be used as a reference population (see Analysis
Algorithms below) for each event by randomly sampling 1%
of users who did not mention the event in their Twitter
messages, but had the United Kingdom listed as their location
in their profile. It comprised 345,849 users over the entire study
period. For each Twitter message, we extracted an anonymized
user identifier, the date and time of the message, and its text.

We followed a similar methodology for detecting relevant users
according to queries made on the Bing search engine by users
who agreed to share their queries, and marked as relevant any
user who mentioned an event at least twice in their queries. For
each query made by the relevant users, we extracted the query
text, time and date, and an anonymized user identifier. In order
to maintain user privacy, data were first anonymized by hashing,
before the investigators had access to them. They were then
aggregated prior to analysis and no individual-level user datum
was examined by the experimenters.
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On average, we identified approximately 14,000 Twitter users
and 5650 Bing users. The list of events and basic statistics
concerning the events are shown in Table 1, including the
number of Twitter users who mentioned the event more than
twice, the number of tweets that mentioned each event, the
number of users who queried for each event, and the number
of queries.

We extracted all queries and Twitter messages for the relevant
users from 30 days before an event until 30 days after it. The
queries and messages were stemmed using a Porter stemmer
[41]. We then marked each query and Twitter message as to
whether it contained one or more words or phrases describing
medical symptoms given in a list of 195 medical symptoms and

457 corresponding synonyms described in Yom-Tov and
Gabrilovich [42]. This list of terms was derived from a set of
terms in International Statistical Classification of Diseases and
Related Health Problems, 10th Revision (ICD-10), expanded
to include ways in which non-specialist people frequently refer
to the medical terms. The expansion is based on terms that
people use in order to reach the Wikipedia page referring to a
medical symptom and the terms frequently associated with it
in Web documents. A complete explanation of how the list was
constructed can be found in Yom-Tov and Gabrilovich [42].

A table listing the number of tweets that contained each of the
symptom words or their synonyms in each of the festivals
analyzed is provided in Multimedia Appendix 1.

Table 1. List of analyzed events and statistics.

BingTwitterCapacityaDatesEvent

Number of festival
queries

Number of usersNumber of festival
mentions

Number of users

3750117712,180387810,0006-8 JulyWakestock

69092309191,76223,10550,0006-8 JulyWireless Festival

44,41611,899175,88124,74685,0006-8 JulyT in the Park

50,79614,70492,72222,01890,00017-19 AugustV Festival

23,3306715104,55013,35930,0006-9 SeptemberBestival

19,0715533191,66321,70380,00024-26 AugustCreamfields

13,8923402129,13717,4733,161,57324-27 OctoberHajj

14,22244001398627660,00022-24 JuneIsle of Wight Festi-
val

17,267459814979360120,0008-10 JuneDownload Festival

62661764106812,93535,0008-10 JuneRockNess

15,744449998,63615,41670,000Median

aCapacity information from Wikifestivals and Wikipedia websites.

Analysis Algorithms

Overview
We analyzed each dataset using three methods, described below.
Briefly, Method 1 tests how well the probability of a word
occurring as a function of time fits a lognormal distribution with
variance between 1.2 and 1.5, since this is the epidemiological
distribution predicted in [43] for spread of infectious disease.
Method 2 compares the number of times a symptom was
mentioned before and after the date of an event, and uses a
statistical test based on the False Discovery Rate (FDR) to
determine significance. Method 3 computes the likelihood that
symptoms would be measured at an observed frequency in a
target population compared to what would be expected by
chance. All three methods are described in detail below.

Method 1: Comparison to Background With
Epidemiological Profile

Let PT
i(w,t) be the probability that the i-th word will appear in

the target population on day t, where, in our data

t∈[−30,−29,...,29,30]. Similarly, we denote PR
i(w,t) as the same

probability in the reference population, that is, in a population
that is disjointed from the target population, but is located in a
similar geographic area.

We assume that if there is an epidemic of an infectious disease
in the population, users mention its symptoms in their text (eg,

Twitter messages). In that case, a word PT
i(w,t) describing a

symptom of the disease should follow the appearance profile
of such a disease, which takes into account its incubation period.
This profile should fit a lognormal distribution with a variance
of between 1.2 and 1.5 [43].

Thus, for each of the symptom words, we compute its
probability over time and normalize this by the same probability
for the reference population, in order to exclude diseases that
are unrelated to the event. Therefore, for each symptom word

(and its synonyms), we compute a score given by PT
i(w,t)/

PR
i(w,t), and fit to it a lognormal distribution with a center that

varies from the first day of the event and until 14 days later.
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The day on which the best fit is found (in the least squares sense)
is chosen to represent the distribution of this word.

In order to ascertain if the fit of the distribution is statistically
significant, we employ the FDR procedure [44] and conduct
the same procedure for a random set of 1950 non-symptom
words (10 times larger than the symptom list) and display a
symptom only if its fit to the lognormal distribution is greater
than would be expected at an FDR of 1%.

This method should work well if there is a large enough target
population to generate information pertaining to the epidemic
and should enable not only the identification of the outbreak
but also its temporal profile.

Method 2: Comparison to Background and Time
Here, we follow Yom-Tov and Gabrilovich [42] and construct
a 2×2 contingency table that measures the number of times a
symptom was mentioned before and after the date of the event
(see Table 2 for an example), for either the target or reference
population. Each symptom is then scored according to the
chi-square score computed from the table.

A threshold for statistical significance is computed using FDR
[44] with a random set of non-symptom words. We report
symptoms with a chi-square score higher than that expected at
an FDR of 1%.

Table 2. The 2x2 contingency table for computing the chi-square score of Method 2.

User queried for or tweeted about the festival?Number of times that the user mentioned/queried for the
symptom or its synonym

YesNo

N12N11Before Day 0

N22N21After Day 0

Method 3: What’s Strange About Recent Events
Following the approach in [45] (What’s Strange About Recent
Events [WSARE]), for each day after the mass gathering,
t∈[1, ,30], we compute a one-term rule score for each symptom
in our vocabulary. The score is computed using a hypothesis
test in which the null hypothesis is the independence between
history records and current day counts. We apply the Fisher’s
exact test on a 2×2 contingency table, as shown in Table 3,
made out of the current day’s symptom count and the number
of times the symptom was mentioned in the time prior to the
festivals.

The test generates a P value, given by P(x=k)=C(K, k)C(N-K,
n-k)/C(N, n), with C(n, k) being the binomial coefficient (“n
choose k”) – C(n,k)=n!/k!(n-k)! and where k is the number of
tweets containing the keyword wi today, K is the number of
times the keyword wi was mentioned in the period before the
festival, n is the number of tweets today, and N is the number
of tweets in the period before the festival.

Since we are computing a score for each day, we consider as
baseline the corresponding weekdays in the 30-day time window
(ie, if the current day is Tuesday, we will look back to all
Tuesdays in the time before the mass gathering and take that as
our history baseline). This is done primarily to eliminate false
detection due to periodic weekly trends in Twitter postings.

Table 3. The 2×2 contingency table (rule wi=1: tweet contains keyword wi) for Fisher’s exact test.

C historyC today

# history tweets containing wi(K)b# today tweets containing wi, (k)awi=1

# history tweets not mentioning wi(N-K)# today tweets not mentioning wi, (n-k)wi=0

N dn c

ak: the number of tweets containing the keyword wi today.
bK: the number of times the keyword wi was mentioned in the period before the festival.
cn: the number of tweets today.
dN: the number of tweets in the period before the festival.

Results

As noted above, the target population was defined as any user
who tweeted a hashtag related to the event during the data
period. To validate this heuristic, a random sample of 200 twitter
users who mentioned the Wakestock festival in their tweets
were analyzed. Their tweets were labeled as to whether or not
the tweets of a user implied that they were at the event. The
area under the receiver operating characteristic (ROC) curve

for this label as a function of the number of tweets a user made
that had the event hashtag was 0.91 and the true detection rate
at the threshold of two tweets was 0.70. Therefore, the majority
of people who were detected by our heuristic did, in fact, attend
the festival. The remaining users either did not attend the event,
and thus added noise to our analysis, or did not mention their
attendance in their tweets.

Table 4 shows the list of statistically significant symptoms (at
P<.01) identified in the Twitter data for each of the 10 events.
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Several observations are in order. First, though most identified
symptoms are mild (eg, tired), in some events, the symptoms
could be a cause for concern. For example, in the Bestival event,
the symptom was “tremor”.

In only two of the events (Wakestock and V Festival) did all
three methods identify the same symptoms. Anecdotally, once
“cough” was identified as a possible symptom after the
Wakestock festival, we found tweets such as “anyone else still
suffering from the wakestock cough? can’t be only me”, which
were made by people who were identified as having been to the
festival, suggesting that this is a true symptom that was also
self-identified as due to the event. This, together with the fact
that it was identified by all three analysis methods, indicates
that this symptom is very unlikely to be a spurious false positive,
especially as it was identified by making different comparisons
within the data (eg, target vs control population and before vs
after the event in the target population). Thus, the use of more
than one analysis method strengthens the analysis and reduces
the likelihood of false positives.

We tested the agreement between all pairs of analysis methods
for each of the events using a chi-square test at a threshold of
P=.01. Methods 2 and 3 had a statistically significant agreement
in six of the 10 events, Methods 1 and 3 in two of eight events
(two of the events had no identified symptoms), and Methods
1 and 2 in three of eight of the events. We also found a
statistically significant agreement between sources for three of
the events: Wakestock, V Festival, and T in the Park. The
agreement rate expected by chance, as computed using an FDR

procedure, is 5 of 1000 comparisons. Therefore, these
agreements are much higher than expected by chance and lend
support to the hypothesis that the different methods identified
real signals, through alternative means.

Table 5 shows the list of statistically significant symptoms (at
P<.01) identified in the Bing data for each of the 10 events using
Method 2. We applied only this method because there was
insufficient daily activity in the Bing data to allow the
application of Methods 1 and 3. As this table shows, the
symptoms identified in the Bing data were potentially more
serious (eg, “diarrhea” and “vomiting”) and also more personally
sensitive. This is probably because users tend to share more
sensitive information in anonymous media [46]. Thus, the use
of Bing data complements Twitter data in the kinds of symptoms
that are identified. However, the relative sparseness of this data,
which is at least partly related to the number of Bing users in
the United Kingdom, also means that not all methods are
applicable to it.

In order to validate whether our methods might result in false
positive symptoms, we also applied our methods to an event
with a small physical footprint, but one that had significant
media attention. Specifically, we chose the opening of The
Shard building in London (the tallest building in the European
Union) on July 5, 2012. This event was mentioned by 2007
users in 5553 tweets. No symptoms were reported at statistically
significant levels by any of these methods. This provides
evidence that when no symptoms exist, our methods will not
report spurious symptoms.

Table 4. Statistically significant symptomsa from Twitter data for each event and three analysis methods.

Method 3Method 2Method 1Event

Tired, coughCoughCoughWakestock

Tired, flatulenceTired, pain, tremorNoneWireless Festival

Tired, coughTired, pain, coughTiredT in the Park

DepressionTired, pain, depressionDepressionV Festival

Tired, feverTired, pain, tremorNoneBestival

NoneTired, pain, blindnessNoneCreamfields

TiredTiredRash, woundHajj

NoneBleedingNoneIsle of Wight Festival

NoneNoneNoneDownload Festival

NonePhobia, swellingNoneRockNess

aWhen more than three symptoms were significant, only the top three are shown.
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Table 5. Statistically significant symptomsa from Bing data for each event using Method 2.

Method 2Event

PainWakestock

PainWireless Festival

Wound, cough, diarrheaT in the Park

Perspiration, edema, woundV Festival

Vomiting, diarrheaBestival

Wound, rash, itchCreamfields

Fever, flatulence, painHajj

Headache, fever, flatulenceIsle of Wight Festival

Diarrhea, wound, headacheDownload Festival

FeverRockNess

aWhen more than three symptoms were significant, only the top three are shown.

Discussion

Principal Findings
Mass gatherings are potentially significant to the spread of
infectious diseases. However, traditional surveillance methods
are challenged by the fact the participants may congregate and
disperse very quickly. In this paper, we investigated whether
syndromic surveillance based on Twitter and query logs could
be used to monitor mass gatherings.

We looked at nine music festivals that took place in the United
Kingdom in 2012 as well as the 2012 Hajj religious gathering
in Mecca. When analyzing the Twitter data, we considered three
different statistical methods. The three methods did not always
give the same results, with Methods 1 and 3 finding no
statistically significant symptoms almost half of the time.
However, when all three methods did identify statistically
significant symptoms at the same concert, there was almost
always agreement with at least one of the symptoms.

Each of the three methods compares different attributes of the
data in order to detect medical symptoms. Because of this, each
method might be better in the analysis of data from some
festivals, while for others it will perform less accurately. By
using more than one method, we afford two benefits. First, if
more than one method discovers a symptom has appeared with
an unexpectedly high probability (as noted above), this
strengthens the evidence that this symptom has indeed appeared
in festival participants. Second, at the cost of higher false
positive rates (but also higher true positives), health authorities

might choose to use symptoms discovered by any of the methods
as possible candidates for further investigation.

The relative lack of data provided by the Bing query logs
permitted only Method 2 to be used. Generally, the statistically
significant symptoms that were identified were different from
the symptoms identified by Twitter. We hypothesized that this
is because users rightly perceive that tweets are public, while
queries are private. Consequently, the symptoms identified by
the query log describe more private indicators such as
“flatulence” and “diarrhea”. Nevertheless, for two concerts,
namely “Wirelessfest” and “T in the Park”, using Method 2 for
both Tweets and query logs, the same symptoms were identified
as “pain” and “cough” respectively.

Limitations and Conclusions
To the best of our knowledge, no infectious outbreaks at mass
gatherings were reported to health authorities during the last 18
months, the period for which query logs are available. While
this is, of course, fortunate, it prevents any comparison with
ground truth data. Future work is needed to compare results
from Internet data with results obtained from traditional
methods. Note, however, that the use of traditional surveillance
methods can be challenging in the context of mass gatherings
due to the combination of an incubation period prior to onset
of symptoms and dispersal of participants to their home regions.

An additional drawback of our method is that some of the
identified symptoms (eg, tired) might not be a symptom of a
disease, but instead the outcomes of going to specific types of
events. Therefore, an additional filtering stage might be required
so as to remove symptoms that regularly appear in similar
events.
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