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Abstract

Background: There is abundant global interest in using syndromic data from population-wide health information
systems—referred to as eHealth resources—to improve infectious disease surveillance. Recently, the necessity for these systems
to achieve two potentially conflicting requirements has been emphasized. First, they must be evidence-based; second, they must
be adjusted for the diversity of populations, lifestyles, and environments.

Objective: The primary objective was to examine correlations between data from Google Flu Trends (GFT), computer-supported
telenursing centers, health service websites, and influenza case rates during seasonal and pandemic influenza outbreaks. The
secondary objective was to investigate associations between eHealth data, media coverage, and the interaction between circulating
influenza strain(s) and the age-related population immunity.

Methods: An open cohort design was used for a five-year study in a Swedish county (population 427,000). Syndromic eHealth
data were collected from GFT, telenursing call centers, and local health service website visits at page level. Data on mass media
coverage of influenza was collected from the major regional newspaper. The performance of eHealth data in surveillance was
measured by correlation effect size and time lag to clinically diagnosed influenza cases.

Results: Local media coverage data and influenza case rates showed correlations with large effect sizes only for the influenza
A (A) pH1N1 outbreak in 2009 (r=.74, 95% CI .42-.90; P<.001) and the severe seasonal A H3N2 outbreak in 2011-2012 (r=.79,
95% CI .42-.93; P=.001), with media coverage preceding case rates with one week. Correlations between GFT and influenza
case data showed large effect sizes for all outbreaks, the largest being the seasonal A H3N2 outbreak in 2008-2009 (r=.96, 95%
CI .88-.99; P<.001). The preceding time lag decreased from two weeks during the first outbreaks to one week from the 2009 A
pH1N1 pandemic. Telenursing data and influenza case data showed correlations with large effect sizes for all outbreaks after the
seasonal B and A H1 outbreak in 2007-2008, with a time lag decreasing from two weeks for the seasonal A H3N2 outbreak in
2008-2009 (r=.95, 95% CI .82-.98; P<.001) to none for the A p H1N1 outbreak in 2009 (r=.84, 95% CI .62-.94; P<.001). Large
effect sizes were also observed between website visits and influenza case data.

Conclusions: Correlations between the eHealth data and influenza case rates in a Swedish county showed large effect sizes
throughout a five-year period, while the time lag between signals in eHealth data and influenza rates changed. Further research
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is needed on analytic methods for adjusting eHealth surveillance systems to shifts in media coverage and to variations in age-group
related immunity between virus strains. The results can be used to inform the development of alert-generating eHealth surveillance
systems that can be subject for prospective evaluations in routine public health practice.

(J Med Internet Res 2014;16(4):e116) doi: 10.2196/jmir.3099
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Introduction

There has been abundant global interest in the use of interactive
health information technology—referred to as eHealth
systems—to improve the effectiveness of infectious disease
surveillance [1]. However, similar to other eHealth applications,
surveillance systems based on eHealth data must live up to two
potentially conflicting requirements: they must be both
evidence-based and adapted to how people live within their
specific environments [2]. In other words, eHealth systems’
development, specification, and evaluation in any setting are
dependent on the infrastructure, habits, and culture in that setting
and at that point in time. This fact must be taken in regard when
transferring an eHealth system for use at other locations and
periods of time. An example of eHealth technology employed
in infectious disease surveillance is Google Flu Trends (GFT),
an Internet-based software system that uses aggregated data
from the Google search engine to estimate influenza activity
[3]. Early studies comparing GFT data to census region
influenza-like illness (ILI) data in the United States [4] and
prospectively collected sentinel data from two systems in
Australia demonstrated strong correlations [5]. However, similar
evaluations performed during the influenza A (A) pH1N1
circulation in 2009 in New Zealand [6], Singapore [7], and the
United States [8] reported inconsistencies between the GFT and
ILI data. One hypothetical reason for such inconsistencies is
that mass media coverage of an influenza outbreak can influence

behavior by motivating the layperson to seek additional
information [9]. Another possible reason may be that because
the proportion of adolescents and young adult cases varies
between influenza seasons [10], age-related information
technology and Internet use consequently impacts eHealth
surveillance performance [11].

The purpose of this study is to support evidence-based strategies
for eHealth system development in infectious disease control.
The primary study objective is to examine correlations between
GFT data, telenursing call data, health service webpage usage
data, and influenza case rates during seasonal and pandemic
influenza outbreaks. The secondary objectives are to investigate
associations between eHealth data, the media coverage of
influenza outbreaks, and the interaction between the circulating
influenza strain(s) and age-related variations in population
immunity. To avoid climate and sociogeographic factors
affecting the analyses [12,13], all data were collected from one
Swedish county (Östergötland, population 427,000) located in
South-East Sweden. The entire county population is covered
by an electronic health data repository maintained by the county
council to systematically and continuously insure the quality
of service [14]. The repository collects data from all health care
encounters provided in the county at primary and secondary
levels, as well as eHealth data from calls made by the county
residents to the nation-wide telenursing service, GFT outputs
relevant for the county, and data from visits at the county council
website (Table 1).
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Table 1. eHealth systems in Östergötland county, Sweden, investigated in the study.

DescriptioneHealth systems

The GFT service was launched by the Web search engine provider Google in
2008 to track changes in the volume of online search queries related to influenza
or its symptoms [3]. For Sweden, the GFT data on Web queries are derived at
country and regional levels from a pool of search terms that relate to symptoms,
remedies, and complications of influenza and generate a trend that closely corre-
lates data on ILI.

Google Flu Trends (GFT)

Telenursing is defined as computer-supported call centers staffed by registered
nurses who perform counselling and patient triage as a means of augmenting self-
care support and regulating patient access to medical services [15]. The Swedish
national telenursing system “Healthcare Direct” is a 24/7, nurse-led, telephone
advice service with one country-wide phone number (1177). Specially-trained
nurses use a computerized decision-aid program and an Electronic Health Record
(EHR) system for every call. After each call, a chief complaint from a fixed-field
terminology register is recorded in the EHR.

Swedish “Healthcare Direct/1177” telenursing service

“Healthcare Direct/1177” also maintains a national Internet-based health informa-
tion service, with a specific website for each participating county council. This
service consists of general information pages, arranged according to topics such
as symptom evaluation guidelines and disease facts and self-management infor-
mation. Each website is also connected to a Web traffic analysis facility, which
at the time of the study was Google Analytics (GA).

Swedish “Healthcare Direct/1177” Internet health information
service

Methods

Study Design
The study used an “open cohort” design based on the total
population of Östergötland county. Open cohort denotes that
new cohort members were included by birth or moving into the
county and other members were excluded when passing away
or moving out from the county as the cohort follow-up
progressed. To update the open study cohort, annual aggregated
data on the sex, age, and residence of the county population
were collected each year from Statistics Sweden. In accordance
with Swedish legislation (SFS 2008:355), personal identifiers
were removed from the records. The start and end time of an
influenza outbreak was defined as 8 incident ILI cases diagnosed
in the county during a floating seven-day period. The study
design was approved by the Regional Research Ethics Board
in Linköping (dnr. 2012/104-31).

Data Collection
Data on clinical influenza cases and eHealth data were collected
between November 2007 and April 2012 using the electronic
health data repository maintained by the county council. Data
from the clinical laboratories were, for this study, collected
during the period 2009-01-01 to 2010-09-15. Influenza cases
were identified by the ICD-10 codes for influenza (J10.0, J10.1,
J10.8, J11.0, J11.1, J11.8). Influenza-related telenursing calls
were identified by the chief complaint codes associated with
influenza symptoms: dyspnea, fever (child, adult), cough (child,
adult), sore throat, lethargy, syncope, dizziness, and headache
(child, adult), from the fixed-field terminology register. GFT
data for the study period were collected using a Google account
to download data on Google searches from Östergötland county
on seasonal and pandemic (for the 2009-2010 outbreak)
influenza to a database. The downloaded dataset did not consist
of absolute search rate data, but consisted of influenza Web
search data normalized with regard to total Web search volumes
by the GFT software. Usage data from the county council

webpages were collected beginning in May 2009. For technical
reasons associated with a change of software providers, data
could not be retrieved for the 2010-2011 influenza season. Usage
data from January 2012 for the Web-based information service,
measured by the numbers of visits of a certain type of page,
were collected by directly accessing the Google Analytics (GA)
Web traffic analysis instances and by retrieving data through
its application programing interface. The Web traffic data
contain information about the location of the Web user based
on the IP address of the user’s computer (at the granularity of
counties). Filters can also be applied based on keywords in page
titles or page addresses (URLs) or by pre-selecting certain
URLs. Page type refers to the kind of content the page contains,
such as factual information about influenza, self-care
information, frequently asked questions and answers, or news
pages, respectively. Data on media coverage of influenza
outbreaks were collected from the online database of the largest
newspaper in the county (Östgöta Correspondenten). The
database was searched for articles with the term “influenza”
(influensa) for the period between November 2007 and April
2012.

Data Analysis
The influenza case data defined by clinical diagnoses were
validated against case data from the microbiological laboratories
for the period 2009-01-01 to 2010-09-15. In these analyses,
both datasets were separately adjusted for week-day effects on
care resource utilization. The correlations between the number
of cases reported each day from the clinical and laboratory data
were analyzed with a 0–6 day lag. Thereafter, to analyze the
relative distribution of influenza cases between age groups, the
Relative Illness Ratio (RIR), which is the ratio of the percentage
of individuals with an influenza diagnosis in a given age group
to the percentage of the general population belonging to the
same age group, was computed for each age group and outbreak
(circulating virus type) using the formula:

RIRi=(Ci / C) / (Ni / N)
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where Ciis the number of influenza cases in age group i, C is
the number of influenza cases in total, Niis the population in
age group i, and N is the total population in Östergötland county.
Further, 95% confidence intervals were calculated for each RIR,
using a method based on normal approximation of the Poisson
distribution.

In the main analyses of associations between eHealth and
influenza case data, Pearson’s correlation coefficients (r) were
examined to compare influenza case rates with the eHealth data
sources (ie, GFT data and all possible combinations of
telenursing chief complaints and website page visits with a
2-week time lag to influenza case rates). The three groupings
of chief complaints and combinations of website page types,
respectively, with the strongest correlation to the influenza case
rate for each time lag were listed. The chief complaint grouping
and website page combination with the largest correlation effect
size were chosen to be used in the final analyses. Separate
analyses were performed of correlations between media reports
(weekly rate of articles in the regional newspaper mentioning
influenza), influenza case rates, and the eHealth data sources
(GFT data and all possible combinations of telenursing chief
complaints and website page visits with a 2-week time lag to
media reports) respectively. The level of statistical significance
was set to P<.05. To denote the strength of correlations, limit
values were applied as suggested by the Cohen Scale [16]. This
scale defines small, medium, and large effect sizes as .10, .30,
and .50 respectively. The analyses were performed using SPSS
version 19, R Statistical Software version 2.15.2, and Minitab
Statistical Software version 16.1.1.

Results

Overview
The results from the validation analyses showed correlations
with large effect sizes between the number of clinically
diagnosed influenza cases per day and the corresponding number
of cases verified daily by microbiological analyses during the
validation period. The correlation with largest effect size (r=.63,
P<.001) was observed between the clinically and the
microbiologically verified cases with a two-day lag.

The five-year study period covered four winter influenza seasons
and one pandemic outbreak; winter influenza seasons occurred
between 2008-01-21 to 2008-04-30 (B and A H1) and
2008-12-24 to 2009-03-30 (A H3N2), the pandemic outbreak
lasted from 2009-08-21 to 2009-12-22 (A pH1N1), and the two
winter influenza seasons occurring after the pandemic lasted
from 2010-12-21 to 2011-04-21 (B and A pH1N1) and
2012-01-09 to 2012-04-14 (A H3N2).

The relative infection ratios for the different age groups and
outbreaks are displayed in Figure 1. Higher-than-expected
proportions of cases were distributed in the middle-aged groups
(30-39 and 40-49 years) during all outbreaks, while
lower-than-expected proportions of cases among adolescents
and young adults (10-19 and 20-29 years) were recorded for
those winter influenza seasons when the pandemic A pH1N1
virus was not circulating.
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Figure 1. Relative infection ratios (RIRs) with 95% confidence intervals for influenza outbreaks between 2007 and 2012 in Östergötland county
displayed by decennial age groups. ¤ Too few observations to allow statistical analysis.

Correlations Between Local Media Coverage, Influenza
Rates, and eHealth Data
The correlations between local media coverage data and
influenza case rates showed large effect sizes only for the A
pH1N1 outbreak in 2009 (r=.74, 95% CI .42-.90; P<.001), and
the severe seasonal A H3N2 outbreak in 2011-2012 (r=.79, 95%
CI .42-.93; P=.001). For both outbreaks, media coverage
preceded case rates by one week. In addition, media reports
about influenza showed a peak for weeks 18-22 of 2009 that
coincided with a sharp increase in GFT activity, but these peaks

had no correspondence with influenza rates or telenursing data
(Figure 2). Correlations between media coverage and GFT
showed large effect sizes for the seasonal outbreak in 2008-2009
(r=.62, 95% CI .15-.86; P=.014), the A pH1N1 outbreak in 2009
(r=.69, 95% CI .35-.87; P=.001), and the seasonal A H3N2
outbreak in 2011-2012 (r=.77, 95% CI .39-.93; P=.002). The
strongest correlations were found for no time lag except for the
seasonal outbreak in 2012, when GFT activity preceded media
coverage by one week. Neither telenursing data nor the data
from health service provider webpages showed statistically
significant correlations with the local media coverage data.
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Figure 2. Display of (a) daily rates of influenza cases, (b) daily rates of telenursing calls for indicator chief complaints (fever and syncope), (c) Google
Flu Trends output, (d) Influenza-specific website usage at local health service provider, and (e) articles mentioning influenza in major regional newspaper.
All data were collected from Östergötland County, Sweden, from November 2007 to April 2012.

Correlations Between GFT and Influenza Case Data
The correlations between GFT and influenza case data showed
large effect sizes for all outbreaks, varying between r=.69 (95%
CI .22-.90), P=.010, for the B and A H1 outbreak in 2007-2008

to r=.96 (95% CI .88-.99), P<.001, for the seasonal A H3N2
outbreak in 2008-2009 (Table 2). The time lag between GFT
and influenza case data decreased from two weeks during the
first outbreaks to one week from the 2009 A pH1N1 pandemic,
with GFT data preceding influenza case data.
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Table 2. Associations on a weekly basis between GFT data and influenza case data displayed by the correlation coefficient r (95% CI), for the five
influenza outbreaks observed in Östergötland county, Sweden, during the study period 2007-2012.

2011-20122010-201120092008-20092007-2008Outbreak time lag

A H3N2B and A pH1N1A pH1N1A H3N2B and A H1

(14 weeks)(18 weeks)(19 weeks)(15 weeks)(15 weeks)(weeks)

r (95% CI)r (95% CI)r (95% CI)r (95% CI)r (95% CI)

.83 (.54-.95)

P<.001

.57 (.14-.82)

P=.013

.79 (.53-.92)

P<.001

.66 (.23-.88)

P=.007
nsc0

.95 (.83-.98)

P<.001

.75 (.42-.90)

P=.001

.92 (.79-.97)

P<.001

.86 (.61-.96)

P<.001

ns1a

.83 (.50-.95)

P=.001

.81 (.53-.93)

P<.001

.69 (.31-.88)

P=.002

.96 (.88-.99)

P<.001

.69 (.22-.90)

P=.010
2b

aTime lag 1 week=Influenza diagnoses 1-week time shift, ie, people first Google the terms “influenza” or “swine flu” and 1 week later visit the health
services.
bTime lag 2 weeks=Influenza diagnoses 2-week time shift, ie, people first Google the terms “influenza” or “swine flu” and 2 weeks later visit the health
services.
cns=not statistically significant

Correlations Between Telenursing Call Data and
Influenza Case Data
The correlations between telenursing data and influenza case
data showed large effect sizes for all outbreaks except for the
seasonal B and A H1 outbreak in 2007-2008. The preceding
time lag for the optimal correlation changed from two weeks

for the seasonal A H3N2 outbreak in 2008-2009 to none for the
A p H1N1 outbreak in 2009 and one week for the most recent
two seasonal outbreaks (Table 3). The telenursing chief
complaints included in combinations showing the correlations
with largest effect size to influenza case data during most
seasons were fever (child, adult) and syncope.

Table 3. Associations on a weekly basis between telenursing call data and influenza case data displayed by the correlation coefficient r (95% CI), for
the five influenza outbreaks observed in Östergötland county, Sweden, during the study period 2007-2012.

2011-20122010-201120092008-20092007-2008Outbreak time lag

A H3N2B and A pH1N1A pH1N1A H3N2B and A H1

(14 weeks)(18 weeks)(19 weeks)(15 weeks)(15 weeks)(weeks)

r (95% CI)r (95% CI)r (95% CI)r (95% CI)r (95% CI)

.90 (.70-.97)

P=.008

.91 (.77-.97)

P=.001

.84 (.62-.94)

P<.001

nsnsc0

.97 (.91-.99)

P<.001

.95 (.86-.98)

P<.001

.80 (.52-.92)

P<.001

.81 (.48-.94)

P=.001

ns1a

.93 (.77-.98)

P=.002

.88 (.69-.96)

P=.001

ns.95 (.82-.98)

P<.001

ns2b

aTime lag 1 week=Influenza diagnoses 1-week time shift, ie, people first call Healthcare Direct/1177 and 1 week later visit the health services.
bTime lag 2 weeks=Influenza diagnoses 2-week time shift, ie, people first call Healthcare Direct/1177 and 2 weeks later visit the health services.
cns=not statistically significant

Correlations Between Log Data From County Council
Website and Influenza Case Data
During the 2009 A pH1N1 pandemic, the correlation with the
largest effect size between log data from the county council
website and influenza case data (r=.75, 95% CI .45-.90; P=.004)
was noted for the website section “Influenza self-care and
treatment” with no time lag, while the correlation with one week
preceding lag (website visit followed by health care visit) for
data from the section “Influenza facts” was only slightly smaller
(r=.74, 95% CI .42-.90; P=.006). For the seasonal A H3N2

outbreak in 2012, the correlation with the largest effect sizes
were noted for log data from the website section “Influenza
self-care and treatment” with no time lag to influenza cases
(r=.94, 95% CI .84-.98; P<.001) and “Influenza facts” with one
week preceding lag (r=.94, 95% CI .84-.98; P<.001).

Correlations Between GFT Data, Telenursing Data,
and Log Data From County Council Website
The correlations between GFT data and telenursing data showed
large effect sizes for all outbreaks (Table 4). During the seasonal
outbreaks in 2007-2008 and 2008-2009, the telenursing data
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preceded the GFT data by one week, while during the A pH1N1
in 2009 and the following seasonal outbreaks the GFT data
either preceded the telenursing data by one week or
corresponded in time. The correlations between GFT data and
log data from the county council website showed large effect
sizes for the two outbreaks for which data were available. For
both the A pH1N1 outbreak in 2009 (r=.87, 95% CI .69-.95;
P<.001) and the seasonal A H3N2 outbreak in 2011-2012 (r=.96,
95% CI .90-.99; P<.001), the data sources showed optimal
correlation when no time lag was introduced. Also, the

correlations between telenursing data and log data from county
council website showed large effect sizes for the outbreaks for
which data were available. For the 2009 A pH1N1 outbreak,
the data sources showed optimal correlation (r=.88, 95% CI
.71-.95; P<.001) when no time lag was introduced, while for
the seasonal A H3N2 outbreak in 2011-2012 the optimal
correlation (r=.95, 95% CI .84-.99; P<.001) was observed when
telenursing data was relocated to precede the log data from
county council website with one week lag.

Table 4. Associations on a weekly basis between GFT data and telenursing call data displayed by the correlation coefficient r (95% CI), for the five
influenza outbreaks observed in Östergötland county, Sweden, during the study period 2007-2012.

2011-20122010-201120092008-20092007-2008Outbreak time lag

A H3N2B and A pH1N1A pH1N1A H3N2B and A H1

(14 weeks)(18 weeks)(19 weeks)(15 weeks)(15 weeks)(weeks)

r (95% CI)r (95% CI)r (95% CI)r (95% CI)r (95% CI)

.90 (0.69-0.97)

P=.011

nsns.92 (0.77-0.98)

P=.001

.88 (0.65-0.96)

P=.012
−1a

.94 (0.83-0.98)

P=.001

.85 (0.63-0.94)

P=.005

.77 (0.49-0.91)

P=.034

.88 (0.68-0.96)

P=.008
nsd0

.87 (0.60-0.96)

P=.032

.94 (0.83-0.98)

P<.001

.87 (0.68-0.95)

P=.001

nsns1b

.86 (0.56-0.96)

P=.040

.81 (0.53-0.93)

P=.016

nsnsns2c

aTime −1 week=Healthcare Direct/1177 1-week time shift, ie, people first call Healthcare Direct/1177 and then use GFT one week later.
bTime lag 1 week=telenursing data 1-week time shift, ie, people first use GFT and then call Healthcare Direct/1177 one week later.
cTime lag 2 weeks=telenursing data 2-week time shift, ie, people first use GFT and then call Healthcare Direct/1177 two weeks later.
dns=not statistically significant

Discussion

Principal Findings
The primary objective of this study was to examine the
performance of data from GFT, telenursing call centers, and
health service provider websites in influenza surveillance, while
a secondary objective was to investigate associations between
eHealth data, media coverage, and the interaction between
circulating influenza strain(s) and age-related population
immunity. We found correlations with large effect sizes between
data from these eHealth sources and influenza case rates for
both seasonal and pandemic outbreaks, with the exception of
telenursing data during the seasonal B and A H1 outbreak in
2007-2008. A utilization study of the Swedish telenursing
service reported that young adults living independently
constituted a large group of callers [17]. A contributing
explanation for the inferior performance of the telenursing data
in 2007-2008 can therefore be that this winter influenza season
comprised only a small proportion of young adults (Figure 1),
which may have led to comparatively fewer individuals with
influenza symptoms contacting the telenursing service.
Regarding GFT, the findings are consistent with previous studies
conducted at the national and state levels that have reported
correlations with large effect sizes between GFT and ILI case
data [18-20] and a recent study that reported large effect size

correlations with ILI case rates at the local level [21]. Similar
to the telenursing data, GFT showed in this study lower
correlations with influenza case rates for the 2007-2008 and
2008-2009 winter seasons when comparatively fewer young
adults were diagnosed with influenza. Interestingly, we also
found that website usage data specified at page level (as
compared to search query data) from the local health service
provider showed a performance similar to GFT for the two
influenza seasons for which these data were collected.
Importantly, the webpages showing the best performance
contained information about self-care and influenza facts, rather
than general outbreak updates or materials concerning
vaccination.

Although the correlations between the eHealth data and
influenza case rates showed large effect sizes throughout the
study period, the time lag between signals in eHealth data and
increases in case rates changed. Our results thereby indicate
important distinctions in the performance of eHealth systems
for influenza surveillance. While the eHealth data tended to
precede influenza rates by two weeks during the first two
seasonal outbreaks, the time lag was reduced to one week or
none from the pandemic outbreak in 2009 onwards. These
findings correspond with previous studies [6,7], which
concluded that eHealth data associated with infections emerge
not only from personal need, but also from an associated general
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interest. In other words, a layperson’s interest in influenza
epidemiology may be triggered by media publicity. Such
differentiation is not only relevant for pandemic outbreaks. We
found in this study that the local media coverage data preceded
influenza case data by one week during the pandemic outbreak
in 2009 and the severe winter influenza season in 2011-2012.
One interpretation of these observations is that the media
coverage reflected a speculative “early warning” viewpoint on
the outbreak rather than reports of case rates. Nonetheless, when
an early warning is ambiguous or poorly validated, the public
may form misperceptions of risks that, consequently, misdirect
their behavior [22]. Among the studied eHealth systems, bias
from media coverage seemed to influence GFT in particular, as
this was the only source that showed large effect size
correlations with media coverage data. This interpretation is
further supported by the fact that the local media coverage data
and the GFT data displayed peaks without corresponding
increases in influenza case rates in April-May 2009, a period
when the “swine flu” outbreak was highlighted in international
media. Additionally, during the seasonal outbreaks in 2007-2008
and 2008-2009, the telenursing data preceded the GFT data by
one week, while during the A pH1N1 outbreak in 2009 and the
following winter influenza seasons the GFT data either preceded
the telenursing data by one week or corresponded in time.
Deviances in GFT activity during seasonal outbreaks associated
with shifts in media coverage have also been reported from the
United States in 2012-2013 influenza season [23], when the
GFT estimate for the national peak was almost double that of
the CDC. This deviance was attributed to widespread media
coverage. Evidently, eHealth data originating from self-care or
family care needs have the highest validity when used in
infectious disease surveillance. According to agenda-setting
theory, mass media have an important influence on what issues
the public consider to be important [24]. If a differentiation
cannot be made between eHealth data driven by a widespread
“lay” epidemiological interest and personal need or care of
related individuals, the corresponding data sources risk losing
their value in supplementing traditional infectious disease
surveillance. Thus, ensuring that Internet data reflect true
influenza incidence requires cross-validation with
infection-specific data. One strategy is to use telenursing data
for real-time validation of Internet data sources, since data on
complaints such as fever and cough from telenursing services
are less likely to be affected by media publicity than data
reflecting Internet activity. However, telenursing data may still
not be sufficient for cross-validation if the circulating virus
strains mainly affect the older age groups, since the telenursing
service utilization in these groups is lower. An alternative is to
use data on over-the-counter (OTC) drug sales [25], but the
availability of these data in real time may be limited in many
countries. Additionally, eHealth data sources can be analyzed
in novel ways, such as using multivariate time series methods
[26], to obtain improved situational awareness and predictive
performance. Nonetheless, these observations suggest that
regular validation of the syndromic data sources against clinical
and laboratory data is necessary when using eHealth data in
influenza surveillance.

Strengths and Limitations
The strength of this study is that it compares three eHealth data
streams over a five-year period, including both winter influenza
seasons and a pandemic influenza outbreak, and identifies
cross-correlations and time lags for the different outbreaks. The
Östergötland population is fairly representative for Sweden as
a whole, making it possible, although with care, to generalize
the results to communities in settings with similar
North-European population and geographical characteristics.
Although 15% of the Swedish population is foreign-born, the
immigrants have arrived mainly from European countries and
are well integrated in the Swedish community. There are no
reasons to assume that these immigrants’ utilization of health
care or eHealth resources differ from the remaining population
to an extent that would affect the use of eHealth data for
influenza surveillance. Moreover, there are small differences
in health care utilization between urban and rural areas in
Sweden [10] and the eHealth resources evaluated in this study
are evenly accessible in all Swedish counties. However, the
study also has important limitations that should be considered
when interpreting the results. First, influenza cases were defined
by clinical diagnosis, and microbiological validation was
restricted to a limited period of the study. However, the effect
size of the correlation between the microbiological and clinical
diagnosis rates observed in this study was large during the
validation period, and similar findings have also been reported
from other settings [18]. Second, the telenursing data were based
on chief complaint codes defined for Sweden. Some complaints,
such as fever and cough, were coded as age-specific syndromes,
while other complaints had an age-neutral coding.
Internationally standardized telenursing complaint codes would
facilitate valid and reliable recording and comparisons between
telenursing systems. Third, while data from telenursing centers
and website usage data from health service providers were
prospectively collected, the GFT data were downloaded in 2012.
It is not known if the GFT data for 2007-2011 had been
retrospectively adjusted to better correlate to recorded ILI rates.
Although it has been reported that GFT algorithms are
recalibrated every year [6,23], it is not evident whether or not
these recalibrations influence the transformed Web query data
available for download. Fourth, this study analyzed the
correlations between trends in a set of eHealth data sources and
influenza case data. For use in surveillance practice, algorithms
need to be developed to translate the time series data into
actionable alerts [27]. Finally, it should not be forgotten that
different strains of the influenza virus affect different age groups
and that eHealth surveillance may be less reliable during winter
influenza seasons when the circulating influenza strains mainly
affects the elderly in the population.

Conclusions
We found correlations with large effect sizes between eHealth
data and influenza case rates in a representative Swedish county
over a five-year period including both winter influenza seasons
and a pandemic influenza outbreak. Both telenursing center and
page-specific website usage data performed at the level of GFT.
Although the study design does not allow us to draw conclusions
about causal associations with media coverage, we observed
that a two-week time lag between eHealth data sources and
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influenza rates was reduced to one week or none from the 2009
pandemic outbreak when there was parallel intense media
coverage. Similarly, we found a tendency for eHealth
surveillance to perform worse during winter influenza seasons
when the influenza activity involved adolescents and young
adults to a lesser degree. The main theoretical implications of
the study are that analytic methods need to be developed that

adjust eHealth surveillance system to shifts in media coverage
and variations in age-group related immunity to specific virus
strains. The practical inference is that further longitudinal
research incorporating prospective evaluations of actionable
alerts [28] is required before eHealth surveillance systems can
be used in routine public health practice.
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