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Abstract

Background: A hospital information system (HIS) that integrates screening data and interpretation of the data is routinely
requested by hospitals and parents. However, the accuracy of disease classification may be low because of the disease characteristics
and the analytes used for classification.

Objective: The objective of this study is to describe a system that enhanced the neonatal screening system of the Newborn
Screening Center at the National Taiwan University Hospital. The system was designed and deployed according to a service-oriented
architecture (SOA) framework under the Web services .NET environment. The system consists of sample collection, testing,
diagnosis, evaluation, treatment, and follow-up services among collaborating hospitals. To improve the accuracy of newborn
screening, machine learning and optimal feature selection mechanisms were investigated for screening newborns for inborn errors
of metabolism.

Methods: The framework of the Newborn Screening Hospital Information System (NSHIS) used the embedded Health Level
Seven (HL7) standards for data exchanges among heterogeneous platforms integrated by Web services in the C# language. In
this study, machine learning classification was used to predict phenylketonuria (PKU), hypermethioninemia, and
3-methylcrotonyl-CoA-carboxylase (3-MCC) deficiency. The classification methods used 347,312 newborn dried blood samples
collected at the Center between 2006 and 2011. Of these, 220 newborns had values over the diagnostic cutoffs (positive cases)
and 1557 had values that were over the screening cutoffs but did not meet the diagnostic cutoffs (suspected cases). The original
35 analytes and the manifested features were ranked based on F score, then combinations of the top 20 ranked features were
selected as input features to support vector machine (SVM) classifiers to obtain optimal feature sets. These feature sets were
tested using 5-fold cross-validation and optimal models were generated. The datasets collected in year 2011 were used as predicting
cases.

Results: The feature selection strategies were implemented and the optimal markers for PKU, hypermethioninemia, and 3-MCC
deficiency were obtained. The results of the machine learning approach were compared with the cutoff scheme. The number of
the false positive cases were reduced from 21 to 2 for PKU, from 30 to 10 for hypermethioninemia, and 209 to 46 for 3-MCC
deficiency.

Conclusions: This SOA Web service–based newborn screening system can accelerate screening procedures effectively and
efficiently. An SVM learning methodology for PKU, hypermethioninemia, and 3-MCC deficiency metabolic diseases classification,
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including optimal feature selection strategies, is presented. By adopting the results of this study, the number of suspected cases
could be reduced dramatically.

(J Med Internet Res 2013;15(5):e98) doi: 10.2196/jmir.2495
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Introduction

Newborn screening (NBS) using biochemical markers to detect
presymptomatic infants with certain congenital conditions has
been performed for almost 50 years. The aim of NBS is to
provide early treatment to prevent or ameliorate the long-term
consequences of the detected condition [1-3]. Since the
pioneering work by Guthrie [4], who discovered that
phenylketonuria (PKU) could be detected from dried blood
spots collected on filter paper and transported to a testing
laboratory, dozens of congenital diseases, including metabolic
and infectious diseases, can now be detected in NBS programs
[5]. The advent of tandem mass spectrometry (MS/MS) has
resulted in a substantial increase in the number of inborn errors
of metabolism (IEMs) included in the NBS panel [6], including
amino acid disorders, fatty acid oxidation disorders, and organic
acid disorders [7].

Although MS/MS can detect many metabolic species and many
IEMs, the diseases included in the NBS panels vary from
country to country. For example, the American College of
Clinical Genetics has proposed that 29 core and 25 secondary
conditions be screened [8], whereas only 12 metabolic disorders
are included in the German panel [9]. In Taiwan, the Newborn
Screening Center of the National Taiwan University Hospital
(NTUH) introduced MS/MS-based screening in 2001 [6].
Among the diseases that we can screen, PKU (screened by
phenylalanine [Phe] level) and homocystinuria (screened by
methionine [Met] level) have been included in the official
recommended list [10]. Nevertheless, 3-methylcrotonyl-CoA
carboxylase (3-MCC) deficiency, screened by
3-hydroxyisovalerylcarnitine (C5OH) level, has been the most
common condition detected in the MS/MS panel [6].

The sensitivity of MS/MS screening for the 20 to 30 diseases
included in the American College of Clinical Genetics screening
panel varies among the individual diseases [11]. For example,
PKU can be detected by the elevation of Phe levels and low or
normal tyrosine (Tyr) levels. A timely and highly discriminating
method, such as MS/MS, provides better performance than the
previously used bacterial inhibitory method [6]. In contrast,
Met is a less reliable marker for homocystinuria. Elevation of
Met (hypermethioninemia) can occur in various conditions,
such as methionine adenosyltransferase deficiency, glycine
N-methyltransferase deficiency, S-adenosylhomocysteine
hydrolase deficiency, and cystathionine beta-synthase deficiency
(classical homocystinuria) [12], and transient elevation
sometimes occurs with liver disease. Some conditions may be
benign, with no treatment currently recommended. However,
there is an estimated 20% false negative rate in homocystinuria
neonatal screening [13], and the contributing factors include
early discharge from hospital, low protein intake from

breast-feeding, and pyridoxine responsiveness. Elevation of
C5OH indicates 3-MCC deficiency and several related disorders;
in addition, some newborns born to a 3-MCC-deficient mother
can also test positive. The majority of patients with 3-MCC
deficiency will not develop any signs or symptoms of disease.
Therefore, a suitable interpretation and prediction method to
decrease false positives and avoid false negatives is crucial for
a newborn screening program.

To improve the specificity of screening, there are several
approaches. The cutoff scheme has been a popular screening
method [14-16]. Two-tier testing and the use of multiple markers
can improve sensitivity and specificity [17]. For example, more
specific markers, such as total homocysteine, methylmalonic
acid, and isovalerylglycine, can be detected in dried blood spots
(DBSs) and have reduced the false-positive rate and improved
the positive predictive value of NBS for different diseases
[18,19]. We also tested the possibility of applying molecular
second-tier testing for citrin deficiency and carnitine uptake
defects [20]. However, a different testing format is required that
is expensive and time consuming. The interpretive tool
developed by the Region 4 Genetics Collaborative may help us
to enhance the predictive value and minimize the false-positive
rate while retaining sensitivity [21]. Machine learning techniques
offer another obvious and promising approach for the
examination of high dimensional data. Thus, the goal of this
paper is to describe feature selection strategies and use support
vector machine (SVM) learning techniques to establish the
classification models for metabolic disorder screening and
diagnoses.

Methods

The NTUH initiated newborn screening research in 1981 and
has performed the nation’s newborn screening of metabolic
diseases since July 1985. The NTUH simultaneously holds the
responsibilities for national NBS, a phlebotomy hospital, and
a referral hospital. The entire screening process workflow and
the corresponding functions, relationships, and roles of
participants are illustrated in Multimedia Appendix 1. At
present, the NTUH Newborn Screening Center provides these
services for approximately one-third of the nation’s newborns.
Currently, the coverage rate for NBS has improved to 99.9%
in the past few years [22], and the NTUH Newborn Screening
Center tests more than 70,000 babies every year.

System Architecture
The overall architecture of the NTUH Newborn Screening
Hospital Information System (NSHIS) is depicted in Figure 1.
In this diagram, 3 major components, ie, the front-end module,
the middleware module, and the back-end services including
the database servers are shown. The front-end module handles
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user interfaces via Web browsers [23] and establishes the users’
sessions with the authentication server. The server validates
users’ authentications and authorizations. The middleware
module, ie, the Health Level Seven (HL7) middleware
framework [24] indicated in the diagram, connects the front-end
applications and the back-end facilities. It provides
communication and connectivity via a service-oriented
architecture (SOA; Web Services) mechanism in the .NET
environment. The HL7-embedded Extensible Markup Language
(XML)-formatted data are used in the framework for data
exchanges among the modules over the simple object access
protocol (SOAP) [25,26] and are described in Universal
Description, Discovery, and Integration (UDDI) specification
with the Web Service Description Language (WSDL). The
back-end facilities support services and database storage. The
portal server supports the login process with single sign-on
service (SSOS) features [27]. The Web user interface server in
the architecture generates Web-based pages for users’ interactive
activities, including the newborn screening system user
interfaces.

In addition, the HL7 middleware framework performs data
synchronization between the NSHIS and the NTUH hospital
information system (HIS). The NTUH HIS integrates (1) patient
demographic data, (2) patient radiology orders in the radiology

information system (RIS) database involving the picture
archiving and communication system (PACS), and (3) laboratory
orders in a laboratory information system (LIS) to ensure data
consistency and integrity across the NSHIS and HIS architecture
as indicated in the back-end facilities [28-30].

To increase the performance of the NTUH HIS, a cluster of
identical servers are deployed and dispatched dynamically by
introducing layer 4 (L4) and layer 2 (L2) switches. All the
servers are configured to run using load balancing, including
failover modes to secure the system’s availability and
concurrency. Firewalls are also installed to enhance the security
of the architecture.

The NSHIS system is accessible to all authorized screening
program professionals and hospitals by enabling the unique
identification of babies via screening samples and displaying
the results. Authorized users can be doctors, medical staff,
administrative personnel, and neonatal parents. The screening
hospitals include the Newborn Screening Center, referral
hospitals, and phlebotomy clinics as shown on the left in Figure
1. In other words, these members can access the subsystems of
NSHIS for services related to their duties, following the newborn
screening procedures and after authentication and authorization
by the authentication server.
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Figure 1. The system architecture of the Web-based newborn screening system.

Data Preparation
The data used in this paper were gathered from the Newborn
Screening Center of NTUH between 2006 and 2011
(N=347,312). Dried blood samples from 3-day-old newborns
were analyzed by MS/MS in a high-throughput process. The
measured metabolic properties (35 measured metabolites
including amino acids and acylcarnitines) were archived in the
NTUH database. In this study, 3 metabolic diseases (PKU,
hypermethioninemia, and 3-MCC deficiency) were reanalyzed.
Both screening cutoffs and diagnostic cutoffs were applied in

this study. Newborns with an initial screening value that
exceeded the diagnostic cutoffs were classified as positive cases
and were requested to participate in a confirmation test at our
hospital. Newborns with an initial screening value not exceeding
the diagnostic cutoff, but equal to or exceeding the screening
cutoff, were classified as suspected cases and were asked to
undergo another DBS screening. The cutoff values for each
disease, the numbers of suspected cases and positive cases
observed during this period are summarized in Table 1. During
this period, we did not have any reports of false negatives for
these 3 diseases.
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Table 1. Summary of the disease data collected from neonates between 2006 and 2011 (N=347,312).

Diagnostic cutoffScreening cutoffPositive casesSuspected casesScreen markersDisease

> 220 μM> 85.02 μM38203PhePKU

> 110 μM> 54.12 μM40261MetHypermethioninemia

> 2.2 μM> 0.56 μM1421093C5OH3-MCC deficiency

Feature Selection Strategies

Support Vector Machines
An SVM [31,32] performs classification by constructing an
N-dimensional hyperplane that optimally separates the data into
2 categories, as shown in Figure 2. In the parlance of the SVM
literature, an attribute is a predictor variable, and a feature is a
transformed attribute that is used to define the hyperplane. The
task of choosing the most suitable representation is known as
feature selection. A set of features that describes 1 case (ie, a

row of predictor values) is called a vector. Therefore, the goal
of SVM modeling is to find the optimal hyperplane that
separates clusters of vectors. Several different kernel functions
can be used, such as linear, polynomial, radial basis function
(RBF), and sigmoid. The detailed descriptions of the SVM
methodology are presented in Multimedia Appendix 2 [33]. In
this study, the machine learning approach only used the SVM
RBF kernel. There are 2 input parameters to an SVM: the slack
variable (C) is set as default value 100, and the gamma value
is set by default to the reciprocal of the number of input features.
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Figure 2. The concept of support vector machine (SVM) methodology is transferring the vectors (ie, cases) to a higher dimension. The optimal linear
hyperplane could be obtained from the largest distances between the 2 categories.

Data Training and Prediction
In this study, a properly supervised classification dataflow is
proposed to enhance the accuracy and sensitivity of the NBS
process, as depicted in Figure 3. In the diagram, the training
data are used to produce the SVM prediction model. Next, the
testing data uses the same methods to obtain the prediction result
according to the trained model. Before training or predicting,
the dataset is preprocessed by the MS/MS machine and
digitization procedures. Feature selection generates the most
relevant features.

For classifications, the data are divided into the training, testing,
and prediction datasets. In the diagram, the strategies are
illustrated step-by-step as follows:

Step 1

The MS/MS data from positive cases and from suspect cases
were used as training (step 3) and testing (step 4) datasets. For
each analyte, the difference of the median values between the
positive cases and the suspect cases is represented as D, as in
Figure 4. The primary weight for each analyte was calculated
according to the formula defined in Figure 5.
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Step 2

The highest 3 positive primary weights of the individual diseases
among the 35 analytes were (1) PKU: Phe, stearoylcarnitine
(C18), and octadecenoylcarnitine (C18:1); (2) 3-MCC
deficiency: C5OH, ornithine (Orn), and arginine (Arg); and (3)
hypermethioninemia: octenoylcarnitine (C8:1) and Met. In
hypermethioninemia, only 2 analytes showed positive primary
weights. The highest 3 negative primary weights of the
individual diseases among the 35 analytes were (1) PKU: Arg,
leucine (Leu), and Tyr; (2) 3-MCC deficiency: C16, C4, and
C16:1; and (3) hypermethioninemia: C16, C16:1, and C12.

The manifested features are generated by combinations of the
highest 3 positives and the highest 3 negatives as listed in Figure
6. The ratios of the highest 3 positives/negatives are also listed
in Figure 6. Figure 6 presents the feature selection strategies
used to construct the manifested features via the relevant features
of the 3 diseases.

Step 3

The original 35 analytes and the manifested features were ranked
according to the F score indicator. The values of the F score
represent the importance of the features. The top 20 ranked

features with the highest F scores were selected as the input
features. Different combinations of the features, ie, C(20, 1),
C(20, 2), C(20, 3),..., C(20, 20), were inputted into the SVM
RBF classifier and used to generate the classification model for
each combination. Each combination of the features was used
as input for the classification models to calculate the sensitivity
and specificity. The optimal feature set was defined as the
combination with the highest specificity and 100% sensitivity.

Step 4

The optimal feature set is then fed into the SVM RBF classifier
with 5-fold cross-validation and the optimal model is obtained
from the 5 different models of each disease with the highest
specificity and 100% sensitivity.

Step 5

Based on the optimal model with the optimal feature set, we
provided the NBS data collected in 2011 to be used for
prediction. The results were classified as either true positive,
true negative, false positive, or false negative. The definition
of cases was based on the current method and the confirmation
results; therefore, we assumed no false negatives were revealed
by the current method.

Figure 3. Training and prediction strategies.
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Figure 4. Boxplot of phenylalanine (Phe) showing the difference (D) between positive and suspected cases of the training data.

Figure 5. Primary weight formula.
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Figure 6. Feature selection strategies by relevant features.

Results

Newborn Screening Hospital Information System
A new generation of the NSHIS at the Newborn Screening
Center of the NTUH was designed and deployed under a SOA
Web services middleware framework. The framework applied
embedded HL7 standards in SOAP messages to share data
among heterogeneous platforms. The NSHIS successfully
provides secure, Web-based, real-time, newborn screening
applications in Taiwan.

Training Results

Optimal Feature Sets
According to the described feature selection strategies, the
optimal selected markers, ie, optimal feature sets, of the 3
diseases are summarized in Table 2. After following step 4 as
described previously, the optimal model for each disease is
generated.

Prediction Results
Of the 347,312 newborn samples collected through the Newborn
Screening Center of NTUH from 2006 to 2011, 220 were
positive cases and 1557 were suspected cases for the 3
conditions. Because it was a retrospective analysis study, we
can only compare the proposed method to the current method
to determine if the proposed method has better discriminatory
power. After obtaining the optimal model for individual disease
from 2006 to 2010, we attempted to predict the disease state
for the newborn samples collected in year 2011; the prediction
results are listed in Table 3.

In Table 3, the proposed method receives the same sensitivity
as that of the cutoff scheme, ie, 100%, for the 3 diseases.
Similarly, for specificity and the accuracy, the proposed
approach and the cutoff scheme achieve a sensitivity greater
than 99% for the 3 diseases in the current experiments.

The effectiveness of the classifier is shown in Table 4. No false
positive cases were generated using the proposed approach.
Using the proposed approach can significantly decrease the
false positive cases for PKU, hypermethioninemia, and
especially 3-MCC deficiency.
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Table 2. Selected markers of the three diseases.

Selected markersaDiseases

Ala; Met; Phe; C4; C16:1; Leu×TyrPKU

Arg; Met; Phe; Val; C4; C8; C10; C10:1; C14; C14:1Hypermethioninemia

C3; C5OH; C6; C8; C10:1; C14; C14:1; C16×C4; C4×C16:1; Orn/C163-MCC deficiency

aAla: alanine; Met: methionine; Phe: phenylalanine; Leu: leucine; Tyr: tyrosine; Val: valine; Orn: ornithine; Arg: Arginine;C3: propionylcarnitine; C4:
isobutyrylcarnitine; C5OH: 3-hydroxyisovalerylcarnitine; C6: hexanoylcarnitine; C8: octanoylcarnitine; C10: decanoylcarnitine; C10:1: decenoylcarnitine;
C14: tetradecanoylcarnitine; C14:1: tetradecenoylcarnitine; C16: palmitoylcarnitine; C16:1: palmitoleylcarnitine.

Table 3. Comparison of the current versus the proposed method. The sensitivity, specificity and accuracy are calculated from predicting the neonatal
samples of 2011.

Accuracy (%)Specificity (%)Sensitivity (%)MethodsDiseases

99.97199.971—CurrentPKU

99.99799.997100Proposed

99.95899.958—CurrentHypermethionemia

99.98699.986100Proposed

99.71199.711—Current3-MCC deficiency

99.93699.936100Proposed

Table 4. Comparison of the current method versus the proposed method. The numbers are obtained from predicting the neonatal samples.

False negatives (n)False positives (n)True negatives (n)True positives (n)MethodsDiseases

—21—3CurrentPKU

0272,1113Proposed

—30—3CurrentHypermethionemia

01072,1123Proposed

—209—6Current3-MCC deficiency

04672,2556Proposed

Discussion

The Newborn Screening Hospital Information System
The NSHIS is a newborn screening information management
system providing services and applications to Newborn
Screening Center referral hospitals, phlebotomy clinics, and
neonatal parents. The system was designed, developed, and
deployed based upon middleware, using SOA Web services
loosely coupled to technologies in a .NET environment in C#
programming language. The HL7 embedded XML formatted
data are used in the system for data exchange among the
modules over a SOAP request/response mechanism. This system
can integrate diverse platforms and databases (eg, NSHIS and
the NTUH HIS), and merge, extend, and enhance the accuracy
and the reliability of the proposed screening applications. The
functionalities include specimen receiving, specimen tracking,
uploading of the testing results, screening data management,
quality control analyses, classifications, and Web integration.
Undoubtedly, the system can provide timely delivery of
complete and accurate information for newborn screening.
Therefore, the system is able to comprehensively improve the
quality of care and well-being of newborns. A scenario for the
NSHIS functionalities is presented in Multimedia Appendix 3.

Proposed Approach
The purpose of this research is to separate apparently healthy
individuals who have a disease from those who most likely do
not. In addition to the original 35 analytes, we also used different
mathematical combinations of the analytes for the manifested
features. The use of SVM methods contributes to the credibility
of the examination and screening results. During the screening
process, the false positive cases will be requested to repeat DBS
screening or have a confirmation test. Therefore, these cases
will consume additional medical resources and increase parents’
anxiety. By adapting this approach, the number of suspected
cases can be reduced substantially; additionally, medical
resources will be used effectively and efficiently.

The Mayo Clinic College of Medicine cooperated and
collaborated globally to establish a database of unprecedented
size containing true positive cases [11]. Based on this database
and multivariate pattern-recognition software and through the
use of postanalytical and interpretive tools, multiple clinically
significant results were compiled into a single score [21]. We
also tested these tools and confirmed that they can significantly
reduce the false positive cases and eliminate at least half of the
cost resulting from unnecessary tests. Although we used only
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regional data to train our model, after combining our feature
selection strategies and the ranked manifested markers, we can
estimate the covariance among analytes and decrease the false
positive cases. Therefore, we provide another approach to
enhance NBS results, although further comparisons using the
approach and revisions will be necessary.

Limitations
The feature selection strategies are initially designed based on
mathematical expressions containing the highest 3 positive and
negative ranked features to generate the manifested features.
The manifested features and the original 35 analytes constitute
the total features, for example, PKU has 52 features, whereas
hypermethioninemia has 46 features and 3-MCC deficiency has
52 features. Among the total features, the top 20 F score–ranked
features are selected for the total combinations as input features
for training in order to create optimal feature sets for the 3
diseases. Apparently, the feature selection strategies did not
include the total features for establishing either the manifested
features or total combinations. To consider all of the features,
additional human and computational resources are required to
enhance the current automated programming methods.

Presently, PKU, hypermethioninemia, and 3-MCC deficiency
are the emphasized metabolic diseases. Other diseases were
considered; however, several diseases present problems: (1)
carnitine transporter defect and citrullinemia cannot be fully
detected using blood samples at birth [20], and (2) other
diseases, such as medium-chain acyl-CoA dehydrogenase
deficiency, cannot be evaluated using the proposed approach
because of the low number of training cases.

Future Work
The NSHIS plans to promote comprehensive care by
establishing additional applications for home follow-ups and

working with the children with the rare inherited disorders and
their families [34]. The exact applications are under evaluation
and investigation. Recently, the system has been improved and
enhanced to include online billing and charging facilities at
phlebotomy clinics and referral hospitals. In addition, the
newborn screening test for severe combined immunodeficiency
(SCID) has been added to the system. Therefore, the
development and deployment of the NTUH NSHIS is evolving
as needed.

To assist the research group in exploring further feature selection
strategies and machine learning algorithms and in improving
classification accuracy, the Computer Center of National Taiwan
University offers high-performance computing services. The
group members can apply for accounts and use the facilities for
both programming and computing resources.

Conclusion
A new generation of the NSHIS of the Newborn Screening
Center at NTUH has been designed and deployed using a SOA
middleware framework. The framework applies embedded HL7
standards in SOAP request/response for data exchanges among
heterogeneous platforms integrated by Web Services. We have
established SVM RBF classifiers using the experimental datasets
of 35 original MS/MS analytes and the manifested features. The
system supports a set of new methods to refine the screening
statistics. The methodology we demonstrated here can
effectively enhance screening accuracy and the quality controls
without changing the current screening method. The
methodology can be easily adapted for routine MS/MS newborn
screening. Although we will need other true positive cases to
train and define the features for other diseases, we demonstrate
the superiority of SVM in this study.
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Abbreviations
3-MCC deficiency: 3-methylcrotonyl-CoA-carboxylase deficiency
Ala: alanine
Arg: arginine
C5OH: 3-hydroxyisovalerylcarnitine
DBS: dried blood spot
HIS: hospital information system
HL7: Health Level Seven
IEM: inborn error of metabolism
Leu: leucine
LIS: laboratory information system
Met: methionine
MS/MS: tandem mass spectrometry
NBS: newborn screening
NSHIS: Newborn Screening Hospital Information System
NTUH: National Taiwan University Hospital
Orn: ornithine
PACS: picture archiving and communication system
Phe: phenylalanine
PKU: phenylketonuria
RBF: radial basis function
RIS: radiology information system
SCID: severe combined immunodeficiency
SOA: service-oriented architecture
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SOAP: simple object access protocol
SSOS: single sign-on service
SVM: support vector machine
Tyr: tyrosine
UDDI: Universal Description, Discovery, and Integration
Val: valine
WSDL: Web Service Description Language
XML: Extensible Markup Language
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