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Abstract

Background: Mobile phone sensors can be used to develop context-aware systems that automatically detect when patients
require assistance. Mobile phones can also provide ecological momentary interventions that deliver tailored assistance during
problematic situations. However, such approaches have not yet been used to treat major depressive disorder.

Objective: The purpose of this study was to investigate the technical feasibility, functional reliability, and patient satisfaction
with Mobilyze!, a mobile phone- and Internet-based intervention including ecological momentary intervention and context
sensing.

Methods: We developed a mobile phone application and supporting architecture, in which machine learning models (ie, learners)
predicted patients’ mood, emotions, cognitive/motivational states, activities, environmental context, and social context based on
at least 38 concurrent phone sensor values (eg, global positioning system, ambient light, recent calls). The website included
feedback graphs illustrating correlations between patients’ self-reported states, as well as didactics and tools teaching patients
behavioral activation concepts. Brief telephone calls and emails with a clinician were used to promote adherence. We enrolled 8
adults with major depressive disorder in a single-arm pilot study to receive Mobilyze! and complete clinical assessments for 8
weeks.

Results: Promising accuracy rates (60% to 91%) were achieved by learners predicting categorical contextual states (eg, location).
For states rated on scales (eg, mood), predictive capability was poor. Participants were satisfied with the phone application and
improved significantly on self-reported depressive symptoms (betaweek = –.82, P < .001, per-protocol Cohen d = 3.43) and interview
measures of depressive symptoms (betaweek = –.81, P < .001, per-protocol Cohen d = 3.55). Participants also became less likely
to meet criteria for major depressive disorder diagnosis (bweek = –.65, P = .03, per-protocol remission rate = 85.71%). Comorbid
anxiety symptoms also decreased (betaweek = –.71, P < .001, per-protocol Cohen d = 2.58).

Conclusions: Mobilyze! is a scalable, feasible intervention with preliminary evidence of efficacy. To our knowledge, it is the
first ecological momentary intervention for unipolar depression, as well as one of the first attempts to use context sensing to
identify mental health-related states. Several lessons learned regarding technical functionality, data mining, and software
development process are discussed.

Trial Registration: Clinicaltrials.gov NCT01107041; http://clinicaltrials.gov/ct2/show/NCT01107041 (Archived by WebCite
at http://www.webcitation.org/60CVjPH0n)
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Introduction

Major depressive disorder affects nearly 7% of the population
annually [1] and is the leading cause of disease burden in
middle- and high-income countries worldwide [2]. Individuals
with major depressive disorder have higher medical costs [3],
exacerbated medical conditions [4], and mortality almost twice
that of nondepressed people [5]. Thus, major depressive disorder
poses an extraordinary public health problem in terms of
prevalence, cost, morbidity, and mortality.

While psychological treatments for depression can be effective
[6], they are often plagued by access barriers and high rates of
attrition [7,8]. Internet interventions have been touted as an
antidote to access barriers, but they appear to produce more
modest outcomes [9], in part also due to high attrition [10].
Mobile phones, however, have penetrated nearly all strata of
society [11,12] and hold promise as a ubiquitous treatment
platform through which the connection between patient and
intervention is continuous and reciprocal.

At least two broad classes of treatment components can be
delivered via mobile phone. First, these platforms offer the
opportunity to deliver interactive tools to patients in their
environment. These tools, sometimes referred to as ecological
momentary intervention [13], can prompt patients to input
information about their situation or internal states, and provide
in-the-moment responses personalized to a patient’s immediate
needs. While such interventions have been explored with regard
to health behaviors and severe mental illness (eg, bipolar
disorder [14]), recent reviews reveal no such work in unipolar
depression [15,16].

Second, mobile systems also have the potential to apply machine
learning techniques that can monitor and learn to recognize a
patient’s circumstances and state. Smartphones contain
numerous sensors (eg, global positioning system [GPS],
Bluetooth) that could provide clues to patient states and contexts.
Smartphones also have the ability to conduct ecological
momentary assessment and allow patients to report, or “label,”
their current states. Machine learning, or data mining techniques,
can be used to automatically learn the relationship between
these two sources of data. This relationship is captured in what
is known as a “learner” that can then be used to develop
individualized predictions of patient states solely from low-level
sensor data. Once trained using ecological momentary
assessment data, the learner could potentially identify patient
states continuously and passively, with little effort from the
patient. Sensor-based awareness of patient states would enable
context-appropriate clinical responses [18,19] (eg, delivering
timely feedback, providing guidance during distress or
problematic situations, or intervening on nonadherence to
homework) without relying on the patient to initiate such
therapeutic interactions.

A few such context-aware systems have been developed and
tested in mHealth interventions. The Intel Mobile Heart Health
prototype uses data from sources such as mobile phone-based
ecological momentary assessment and a small
electrocardiograph sensor with accelerometer to detect changes
in heart rate variability, activity, and mood. If individualized
threshold values are reached, the mobile phone delivers
cognitive behavioral and mindfulness techniques designed to
reduce stress [20]. Although used for social networking rather
than health care purposes, the CenceMe mobile phone
application has achieved promising accuracy rates within a small
sample in predicting socially relevant states such as whether
the user was conversing [21]. CenceMe also used such data to
generate higher-level descriptions of users’ recent behavioral
or lifestyle patterns (eg, “party animal,” which was determined
through presence at parties and number of social interactions).
Learners detected users’ basic activity level (eg, sitting,
running). In the e-SENSE [22] project, body sensors allowed
collection of a rich set of physiological data used to infer mood.
Predicted mood was then integrated into users’ instant
messaging chats. However, the required electrodes and belt did
not approach the convenience of a context-sensing platform that
relies solely on mobile phone sensors. These projects are in
very early stages of development, and we are aware of no trials
that formally evaluated clinical outcomes.

The current study aimed to maximize the potential of mobile
interventions to target depression. We developed a mobile phone
intervention, called Mobilyze!, that includes the capacity to
deliver ecological momentary intervention. We also developed
and piloted a context-aware system to identify participants’
location, activity, social context, mood, emotions, and
cognitive/motivational states. The mobile intervention was
supported by a website, which allowed access to lessons, tools,
and graphical feedback on participants’ states. The intervention
was supported by a manualized telephone coaching protocol
[23,24] to enhance adherence.

The aims of this field trial were to evaluate the technical
feasibility and reliability, functional reliability, and acceptability
of this system. Secondarily, we measured depression outcomes,
as well as changes in anxiety symptoms due to their frequent
co-occurrence with depression.

Methods

Study Design
This was a single-arm field trial of Mobilyze!, an 8-week
multimodal intervention for depression, that included 1) mobile
phone sensing and ecological momentary intervention, 2) an
interactive website for behavioral skills training, and 3) email
and telephone support from a coach assigned to each participant.
The trial was approved by the institutional review board at
Northwestern University (Chicago, IL, USA).
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Participants
Participants were recruited through online advertising venues
such as Google AdWords and Craigslist. The advertisements
directed individuals to the lab webpage, where interested
individuals completed an online screener and provided their
contact information. Those who met initial criteria were
scheduled for a telephone eligibility interview and emailed a
link to a digital consent form. At the beginning of this interview,
staff discussed with participants each section of the consent
form, which included sections informing users as to how their
mobile phone sensor data would be collected, de-identified,
used, and stored. Participants’verbal consent was then obtained.
Receipt of the electronically signed digital consent form was
also required prior to enrollment in the trial.

Inclusion criteria were a diagnosis of major depressive disorder
using the telephone-administered Mini-International
Neuropsychiatric Interview [25,26], a score of 11 or more (Table
3 in [27]) on the 16-item Quick Inventory of Depression
Symptoms–Clinician Rated (QIDS-C) [28], and a score of 10
or more [29] on the 8-item Patient Health Questionnaire
(PHQ-8) [30]. All participants spoke and read English, were at
least 19 years of age, lived in the United States, reported being
within a cellular network range most of the day, and reported
having an email account, computer, broadband Internet access,
and comfort using the Internet and mobile phones. Exclusion
criteria were sensory impairments that would prevent
participation, dementia (defined as scoring <25 on the Telephone
Interview for Cognitive Status [31]), current participation in
psychotherapy, initiation of an antidepressant medication in the
past 10 days, or a severe psychiatric condition, as measured by
the Mini-International Neuropsychiatric Interview, that rendered
the intervention inappropriate (eg, psychotic disorders, bipolar
disorders, severe agoraphobia, severe suicidality, and current
harmful levels of substance or alcohol use).

Treatment
The treatment model was based on a behavioral activation
approach [32,33] involving engagement in positive activities,

experimentation with behavioral coping strategies, and use of
such coping skills to reduce depressogenic avoidance behaviors.
The mobile phone was used to translate this therapy into real
time and to pilot a context-aware system that aimed to passively
(ie, without requiring patient initiation) identify and respond to
patient states.

Participants completed 8 weeks of the Mobilyze! intervention.
Enrolled participants received at no charge 1) temporary use of
a Nokia 5800 XpressMusic mobile phone with accessories,
which cost the study US $547.88 per unit, 2) a cellular service
plan, including voicemail and unlimited data usage, voice
minutes, and text messaging, through T-Mobile at US $50 per
month, per participant, and 3) login credentials to the website.
Mobile phones were mailed to participants or made available
for in-person pick up, according to participant preference. After
the intervention concluded, phones were returned by participants
via prepaid envelopes.

Context-Aware System
Our context-aware system used an architecture comprising 3
phases [34] (see Figure 1). In phase 1, sensors housed on the
mobile phone gathered observations about the participant and
their environment. These observations were transmitted to a
secure server hosting a learner. In phase 2, the learner used an
algorithm to inductively “learn” the relationship between sensor
data and the participant’s reported social context, activity,
location, and internal states [35]. The learner could then predict
participant states based on sensor data, and these predictions
were passed to the action components in phase 3. The action
components provided mechanisms for relaying predictions to
other external outreach applications. In the current study, the
action component consisted of the phone application itself,
which displayed predicted states to the participant. The
architecture, however, can be extended in the future to trigger
outreach events based on the predictions (eg, sending a short
message service [SMS, ie, text] notification, updating a feedback
graph on a website, or notifying the coach via email).
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Figure 1. A mobile phone-driven context-aware system (OS = operating system, SMS = short message service)

In this project, we used the mobile phone as the primary sensing
platform. We also made use of a service-oriented architecture
[36] for context-aware computing [37]. While the mobile phone
provided the primary sensing platform, it transmitted sensor
data securely via encrypted, password-protected tunnels to a
variety of server-based components that provided logging,
learning, and prediction services. Since these components
communicated using extensible messaging and presence protocol
(XMPP) [38], a common network protocol, this design allowed
us to distribute the individual components among various
hardware servers (providing scalability) while providing a
common protocol for adding additional services (providing
extensibility). We will now discuss the specific implementation
of the context-aware system used in the current study.

Phase 1: Data Collection

Contextual data were acquired from a collection of 38 sensors
(see Multimedia Appendix 1) or more depending on the number
of proximal Bluetooth devices or open applications on the
mobile phone. Some of these data were collected directly from
phone sensors, including GPS, Wi-Fi, Bluetooth detection of
other wireless devices (eg, personal computers, some video
game consoles), accelerometer, and ambient light. Other
contextual data were inferred by the phone application from
information available on the phone. This included time/day and
activities of the phone’s operating system (eg, recent calls, active
phone applications).

The phone application transmitted encrypted sensor data to the
secure backend server, via the XMPP interface protocol. The

backend server logged the information by inserting it into a
database. The backend also sent the sensor data to the server
housing the learners, again using XMPP to lend the backend
greater extensibility.

Phase 2: Learners

Participants were periodically prompted to self-report their
states using ecological momentary assessment on the phone.
Sensor data acquired at these times were paired with
simultaneously labeled state data. Using the labeled data,
individualized prediction models were generated to identify
specific user states from sensor values, including location,
activity, social environment, and internal states (eg, mood,
concentration). For every state, a machine learning algorithm
generated a participant-specific model to predict that state from
sensed data in the future. The machine learning algorithms
discarded irrelevant information that did not improve the
predictive value of the model, using data partitioning and
averaging for continuous states, and information theory
measures of information gain and entropy [39] for categorical
states. States operationalized by scales (eg, sadness) were
predicted using regression trees (ie, pruned Weka [17,40]
REPTrees, version 3.6; Machine Learning Group, University
of Waikato, Hamilton, New Zealand). Categorical states (eg,
location) were predicted using J48 classifiers, which are Weka’s
adaptation of C4.5 decision trees [41] (see Figure 2). Pruning
was also enabled for the location models. For the remaining
categorical models, pruning was disabled due to their binary
nature (eg, whether the user is having a “task-related
conversation” or not).
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Figure 2. Decision tree model predicting location from sensor values, generated from a research staff member’s state ratings and sensor data (potentially
identifying information has been altered)

Phase 3: Action Components

Every 5 minutes, the mobile phone application sent current,
unlabeled sensor values to the backend. The learner used these
sensor readings to make predictions and infer the participant’s
state without input from the participant. Because we rely on a
service-oriented architecture, predicted states could be used to
implement context-aware functionality through multiple devices.
As the accuracy of predictions could not be determined prior
to the trial, predictions were only used to display the currently
predicted states to users on the mobile phone, as opposed to
triggering any outreach or intervention.

When participants viewed the state entry ecological momentary
assessment forms on the mobile phone, predictions as to their
current states prepopulated the responses. A message at the
bottom of the screen, in orange text, notified users of the date
and time at which the predicted values were generated. If the
phone lacked connectivity at that time, the user’s last
self-reported states were used to prepopulate the responses, and
a green message indicated the date and time at which the user
labeled these previous states.

Training the Context-Aware System
Development of accurate predictions requires training.
Participants were periodically requested to label their states by
selecting values for each context category from a drop-down
menu on the mobile phone [42]. For example, if a participant
is gardening outside while their family is inside the house, she

or he might rate physical activity level as “light,” location as
“my yard/porch,” conversation type as “none,” and social
context as “alone” in their immediate vicinity but “with family
member(s)” in the wider environment. The learner would then
match the sensed data to these state labels. Every time
participants entered their states (this was described to
participants as “training the phone”), new models were generated
to accommodate the new data.

Specifically, the mobile phone application prompted users to
report their current states 5 times per day or more according to
participant preference. Participants could also label their states
at any time on their own initiative. Using a 7-point Likert scale,
participants rated their overall mood, intensity of discrete
emotions (ie, happiness, sadness, anger, and anxiety), fatigue,
pleasure, sense of accomplishment, concentration and
engagement, and perceived control over current activities.
Physical exertion was rated on a 4-point scale. Participants
selected their location from options including a variety of public
and private spaces (eg, their home, a friend’s home, their
office/desk at work, or a bus/train; see Figure 3). Participants’
interactions with others were rated according to the type of
conversation in which they were engaged, if any (eg, casual,
task-related, disagreement, or none), as well as their relationship
to others (eg, friends, family, strangers, or pets) in their
immediate vicinity and larger environment. Such prompts
occurred at random times between 7 AM and 10 PM, and
participants could modify these hours via the website.
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Figure 3. Screenshot, ecological momentary assessment of location on the mobile phone

When participants were prompted to enter their states, the
application saved the current values of their phone sensors.
Once participants had finished reporting their states, their
responses were paired with the sensor data and sent to the
backend server for processing by the learner.

Ecological Momentary Interventions
Additionally, the mobile phone application used local storage
to combine mood ratings entered on the phone with those
entered on the website and, consequently, derive a range,
average, and standard deviation of mood. Participants received
tailored feedback using these values. For example, when a user’s
self-reported mood was outside her or his typical range, a
message would appear on the phone designed to reinforce
improvement or suggest using a tool (see Website, below) in
the case of deterioration. Other local data were used to provide

feedback in such conditions as a substantial change in the
participant’s mood since their previous rating.

To support adherence to therapeutic activities scheduled via
tools on the website, participants could choose to receive
reminders on their mobile phones prior to the scheduled start
times. Each reminder was followed by a check-in prompt after
the activity was scheduled to end. If users indicated they had
not completed a scheduled task, they received follow-up
questions via a troubleshooting feature. Obstacles to completing
the task (eg, lack of motivation) were identified per responses
to these follow-up questions, and users were then provided with
guidance on overcoming their specific difficulties.

Website
The website served several functions. It provided a medium
with which both participants and coaches could visualize state
data entered into the mobile phone application. It also contained
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an interface allowing coaches to view the activity of their
patients, including logins, lessons completed, and states labeled
on the phone.

On the website, 9 didactic lessons that taught principles of
behavioral activation were available. The lessons could be
accessed through a computer or the mobile phone. These lessons
were released weekly and required approximately 15 minutes
to read. The initial lesson included psychoeducation on
depression and detailed instructions on training the mobile
phone. Subsequent lessons taught participants how to monitor
the effect of daily behaviors on mood, schedule positive
activities, experiment with new responses to distressing
situations, recognize and change avoidance patterns (eg,
rumination and procrastination), and maintain gains after
treatment. Each lesson was paired with an interactive tool to
provide participants with opportunities to apply the treatment
concepts discussed in the lesson. Examples include an activity
calendar with which participants could monitor and schedule
their activities, as well as tools leading participants through
each step involved in designing behavioral experiments or

formulating tailored plans to replace avoidance behaviors with
active coping behaviors. These tools were designed to be
completed in just a few minutes, and participants were instructed
to use the current week’s tool on a daily basis.

Interactive graphical feedback tools displayed data from the
backend server, which replicated and reformatted
participant-labeled data and concurrent sensor values. These
were transmitted to the Web server, which hosted the
intervention website as well as its own database. Thus,
participants could graph their ratings of emotions and other
subjective experiences, and explore how these ratings were
related to their reported locations (see Figure 4). The aim was
to help participants better understand how they spend their time,
and identify behaviors they would like to increase or decrease.
Participants could also access a graph of their mood over a
selected time period (ranging from the last 7 days to the duration
of the study) to view their progress. Furthermore, coaches could
create graphs associating any 2 states (eg, mood against level
of physical exertion, mood against fatigue) to help participants
identify patterns.

Figure 4. Graphical feedback available to users on the website (blue bars denote locations that a participant reported on the mobile phone, and the
frequency with which each location was reported; the green line denotes the participant’s average reported mood in each location)

Human Support
A manualized telephone coaching protocol [23] was used to
enhance adherence via principles of supportive accountability
[24]. Supportive accountability is a model of support that
involves collaborative goal setting for adherence, as well as
monitoring and encouragement in the context of a supportive
relationship. This support model has been previously piloted in
an Internet intervention [43]. Coaches also elicited usability
feedback on Mobilyze! and provided a point of contact for
difficulties. The first coaching call lasted approximately 45
minutes with the aim to establish rapport, address participant
concerns or questions, and elicit and reinforce the participant’s
motivations for learning to manage depression. Participants
then received a 5- to 10-minute coaching call and at least 1
email weekly. Emails were tailored to participants’ mobile
phone and website usage patterns, which coaches could monitor
online. Participants also received a 30- to 45-minute technical
demonstration of the mobile phone (in person or over the

telephone) by the lab software engineer or study coordinator.
While supportive accountability is designed to be applied by
non-mental health providers, the coaches in this trial were
PhD-level clinicians given the novelty of the intervention. The
author of the coaching manual led weekly group supervision
meetings.

Outcome Measures
Outcomes were assessed at baseline, week 4 (midtreatment),
and week 8 (posttreatment). Participants were compensated $20
for each of the first 2 assessments and $50 for the final
assessment and return of the mobile phone. Interview measures
were administered over the telephone, while self-report measures
were administered via a secure online questionnaire hosting
service.

The telephone-administered Mini-International Neuropsychiatric
Interview [25,26] was used to evaluate changes in major
depressive disorder diagnosis and to characterize the sample in
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terms of comorbid anxiety disorders at baseline. The QIDS-C
[28] was used to assess evaluator-rated depression symptom
severity. The PHQ-9 [44] was used to evaluate self-reported
depressive symptom severity. Finally, the Generalized Anxiety
Disorder 7-item scale (GAD-7) [45,46] was used as a secondary
outcome evaluating general anxiety symptom severity.

A semistructured interview designed by this research team was
used to gather participant feedback regarding the intervention
components. Feedback was also solicited via online self-reports
at each assessment, and coaches recorded feedback received
during the coaching sessions. Usage data were transmitted from
the mobile phone to the lab’s secure server via encrypted,
password-protected tunnels, and from the website using secure
sockets layer (SSL). The number of times participants logged
into the website was calculated by considering all site activity
occurring within the same hour as corresponding to a single
login.

Analysis
Accuracy of the individual patient learner models was evaluated
after the trial using Weka’s cross-validation [47] procedure.
This procedure estimated the classification accuracy that would
result from using models built from the complete labeled sensor
datasets. In 10-fold cross-validation, the superset of all
self-reported values for a particular state are paired with their
concurrent sensor values and divided into 10 subsamples. One
of the subsamples is the validation set, and the other 9 are
combined to form the training set. A new model is generated
using the training set. Next, the new model predicts states from
sensor readings in the validation set, and these predictions are
compared against the actual self-reported states to calculate the
rate of accurate classifications (ie, the number of correctly
predicted states divided by the total number of cases in the
validation set). For regression trees, a correlation was calculated
between predicted and actual values in the validation set.

This process is repeated 9 times, such that each of the other 9
subsamples is used once as the validation set. The estimator for
the models is the average of these 10 accuracy rates. Next, bias
corrected and accelerated 95% confidence intervals were
constructed around the average accuracy rates for each state
across participants, using 1000 bootstrap samples in SPSS 19
(IBM Corporation, Somers, NY, USA). For states predicted
using regression trees, accuracy was calculated by averaging
the correlations between predicted and actual values across
participants.

Continuous outcome measures (ie, the PHQ-9, QIDS-C, and
GAD-7) were modeled against time on an intent-to-treat basis,
using mixed models for repeated measures. These models were
chosen because they can handle a certain amount of nonrandom
missing data [48]. Adding the slope of time as a random effect
did not significantly improve log likelihood values over using
only a random intercept; thus, only a random intercept was
included to allow for individual variation between participants.
Generalized estimating equations logistic regression was used
to model the binary repeated outcome measure of presence
versus absence of major depressive disorder diagnosis. These
analyses were run using SAS 9.2 (SAS Institute, Cary, NC,
USA) with restricted maximum likelihood methods.

Results

Participant Characteristics
We enrolled 8 participants (7 females and 1 male) in the trial
(see Figure 5). Ages of participants ranged from 19 to 51 years,
mean 37.4 (SD 12.2). All participants reported at least a high
school education, completing on average 14.3 years of education
(SD 2.3). One participant (13%) identified as Hispanic and
Caucasian, while the other 7 (88%) identified as non-Hispanic
Caucasians; 7 (88%) were married and 1 (13%) was single.
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Figure 5. Flow of participants through the trial (QIDS = Quick Inventory of Depression Symptoms-Clinician Rated)

Three of the participants (38%) were diagnosed with comorbid
generalized anxiety disorder, but no other anxiety disorders, at
baseline. Another participant (13%) was diagnosed with both
generalized anxiety disorder and social phobia, and 2 other
participants (25%) were diagnosed with generalized anxiety
disorder, social phobia, and agoraphobia in the absence of panic
disorder.

Adherence
Seven participants completed all 8 weeks of participation, while
1 dropped out in week 3 due to technical problems using the
phone and website.

Mobile Phone Training
On average, the 8 participants trained their phone 15.3 times
(SD 8.3) during the first week of the intervention, dropping to
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9.0 ratings (SD 6.5) during the fourth week, and 4.8 ratings (SD
4.6) during week 8. The participants reported that they would
have trained the phone more often, had they received more
prompts to label their states. Problems with network connectivity
were encountered that reduced the number of prompts from the
Web server that reached the phone, and at least 1 of the 7
treatment completers never received ecological momentary
intervention. During the trial, we corrected this issue by storing
ecological momentary intervention logic and the dates/times
for phone prompts locally, on the phone itself. This way,
participants did not require connectivity to receive prompts to
train the phone or ecological momentary intervention.

Website Use
The 8 participants logged on to the website an average of 7.9
times and completed 4.8 out of 9 lessons over the trial. Website

use may have been reduced due to technical problems with some
of the tools and in rolling out new lessons to participants in the
first half of the trial.

Accuracy of Predictions
Across the 7 treatment completers, the mean rate of accurate
classification for location was 60.3%, bootstrap 95% CI
43.2–77.2. The other categorical variables were difficult to
compare across participants, as separate binary models were
created for each available category. This was due to users’
ability to endorse more than 1 option (eg, “friends” and “family”
can simultaneously occupy one’s immediate environment). As
not all users reported ever being in certain categories, the
existing models differed between users. The categorical states
that were endorsed at least once by all treatment completers are
listed in Table 1.

Table 1. Mean accuracy indicators for machine learning models of categorical states common to all treatment completers (N = 7)

95% CIaMean accuracy (%)Model

43.2–77.260.3Location

76.2–84.580.1Alone in the immediate vicinity (Y/Nb)

84.3–95.790.8Friends in the immediate vicinity (Y/N)

61.0–82.872.6Alone in the larger environment (Y/N)

83.8–97.390.9Miscellaneous people in the larger environment (Y/N)

54.0–77.666.1Having a casual conversation (Y/N)

58.4–70.364.5Not conversing (Y/N)

a Bias corrected and accelerated 95% confidence intervals (CIs) using 1000 bootstrap samples.
b yes/no.

The models for the scale-based states were not as encouraging.
The cross-validation correlation coefficients were negative for
all these states. Many participants’ regression trees predicted 1
particular value regardless of sensor data. Thus, at first glance
one would expect the correlation coefficients to be near zero
across all the participants. However, overall mood ratings were
negatively skewed (skewness –0.49, SE 0.10), and this caused
the average value gleaned from the training folds to produce
outlying, negative deviations between the predicted and labeled
values when high-labeled values were present in the validation
dataset. The correlation coefficients are therefore not reported,
as they are somewhat misleading; rather, the accuracy of the
scale-based state models should be conceptualized as no better
than chance.

Clinical Outcomes
Per-protocol clinical outcomes are displayed in Table 2. The
participant who dropped out failed to complete self-report
measures at weeks 4 and 8, as well as interview measures at
week 8. Another participant remained in treatment, but failed
to complete interview assessments at week 4. However, all
participants were included in the following analyses.
Intent-to-treat analyses revealed that depressive symptoms
self-reported on the PHQ-9 decreased significantly over time,
t13 = 7.02, betaweek = –.82, P < .001. Evaluator-rated depressive
symptoms on the QIDS-C also improved, t13 = 8.22, betaweek =
–.81, P < .001. Over the course of treatment, participants also
became less likely to meet diagnostic criteria for Major
Depressive Disorder, Z = 2.15, bweek = –.65, P = .03. Scores on
the GAD-7 indicated anxiety symptoms also decreased, t13 =
4.59, betaweek = –.71, P < .001.
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Table 2. Per-protocol clinical outcomes

Pre–post Cohen daWeek 8Week 4BaselineVariable

–14.29% (1/7)28.57% (2/7)100% (8/8)% with MDDb

3.433.57 (4.12)9.00 (4.47)17.13 (3.80)Mean (SD) PHQ-9c score

3.553.43 (3.10)7.14 (3.89)13.75 (2.71)Mean (SD) QIDS-Cd score

2.586.43 (2.30)9.43 (4.04)15.50 (4.72)Mean (SD) GAD-7e score

a Standardized mean difference divided by the average of the baseline and week 8 SD.
b Major depressive disorder diagnosis on the Mini-International Neuropsychiatric Interview [25,26].
c Patient Health Questionnaire-9 [44].
d Quick Inventory of Depression Symptoms–Clinician Rated [28].
e Generalized Anxiety Disorder 7-item scale [45].

Participant Feedback
Posttreatment, the 7 treatment completers rated their satisfaction
with the mobile phone in general by agreeing or disagreeing
with the statement “I am satisfied with it.” Their average rating
was 5.71 (SD 1.38) on a scale of 1 (representing strong
disagreement) through 7 (representing strong agreement). The
most common problems for which participants sought technical
support were loss of connectivity, shortness of battery life, and
phone freezing during use. Connectivity difficulties were further
evidenced on the feedback measures; several participants
indicated they were never prompted to train the phone. Similarly,
we received reports of failure to receive mood predictions and
scheduled activity reminders.

Despite these difficulties, during coaching calls 6 of the 7
treatment completers (86%) indicated the intervention was
helpful in understanding triggers for negative moods and
increasing their ability to recognize and modify distressing
behaviors and cognitions. Two participants attributed these
improvements to ecological momentary assessment on the
mobile phone, while 4 of these participants cited ecological
momentary assessment as well as the website. On the interview
feedback measure, 1 of the participants stated that receiving the
mood predictions was the most helpful component of the
intervention. Another participant indicated that, because the
predictions were helpful, she would have liked to continue using
the mobile phone application after the study was over.
Participants’ suggestions included lengthening the intervention
and adding additional features such as a blog, messaging with
coaches, or a recording tool to allow verbal elaboration on states
when training the phone.

Discussion

To our knowledge, we have created the first ecological
momentary intervention and the first context-sensing system
for depression. While we encountered some technological
difficulties, patients who used the Mobilyze! intervention
showed significant clinical improvement and reported a high
level of satisfaction with the intervention. This system holds
great promise in offering an entirely new depression treatment
option with the ability to maintain continuous contact with the
patient in his or her environment, recognize the patient’s

behavior and states, and intervene accordingly. While we
encountered numerous challenges, there were also many lessons
learned, which we will discuss in detail below.

We will discuss the following problems, lessons, and future
directions. We encountered problems with connectivity and
battery drainage, which can be addressed through more effective
management of the mobile application. Context sensing requires
adequate user-labeled data, accurate and meaningful sensor
data, and appropriate data mining algorithms; we identified
potential improvements in each of these areas. Finally, our
experience suggests several options for maximizing the clinical
utility of model predictions.

Management of Mobile Phone Applications
We encountered numerous technical problems related to battery
drainage and connectivity. We followed the XMPP specification
requiring a continuous connection between interfacing devices.
Thus, the mobile phone continually searched for a connection
to the backend server. This exacerbated battery drain by the
phone application, particularly when the network connection
was weak. A potential fix is to use a different underlying
network protocol. For example, we may have been able to
implement the same functionality using binary SMS messages
instead of XMPP. However, this would be a less extensible
solution, as not all platforms support this feature. Rather, we
will minimize this problem in the future by equipping the
application with a battery management system. This
functionality would reduce phone communication with the
backend server when low battery power or weak network
connectivity is detected. Developing onboard data processing
applications that use compression and feature extraction to
reduce the quantity of data shipped to backend servers may also
improve power efficiency, as can delaying transmission of
sensor data that are not immediately needed to times when the
phone is charging.

In the future, we will explore additional methods of maximizing
battery life. Continuous sensing imposes an “energy tax.”
Applications that manage the frequency of data acquisition from
energy-expensive sensors such as GPS can improve battery life.
Adopting duty cycling techniques, which manage the sleep
cycle of sensors to balance the sensing frequency and battery
consumption, will promote technical efficiency [49]. In other
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words, system management must be smart enough to adapt to
the local environment within the phone.

Disruption in connectivity sometimes prevented delivery of
ecological momentary assessment prompts from the backend
server to the user, thereby reducing the frequency with which
users trained the phone. On discovery of this issue during the
trial, dates and times for prompts to occur were generated and
saved locally on the phone; however, participants may have
already become accustomed to more infrequent labeling. For
functions that do not require complex processing (which can
drain the battery if performed on the phone), future applications
should strive for as much connectivity independence as possible
to ensure more reliable functionality and to reduce battery drain.

Context Sensing
The ultimate aim of the machine learning system is to provide
actionable evidence for outreach and other tailored patient
interactions. To this end, our subsequent development process
will focus on these semisequential stages: 1) increasing the
amount of user-labeled data, across a greater variety of contexts,
2) improving accuracy and utility of sensor data, 3) improving
accuracy of machine learning algorithms, and 4) maximizing
the clinical utility of model predictions. The following section
discussed each of these stages in more detail.

Increasing the Quantity and Variability of User-Labeled
Data
One of our “known unknowns” is how well machine learning
can extract the desired models from the types of sensor data we
collected. This is an unknown because there was an insufficient
amount of user-labeled data, and this contributed to the negative
correlation coefficients on the scale-based states. Reinforcement
techniques, such as those used successfully in the video game
industry, could increase the frequency with which users label
their states and reduce influence of outliers. Chris Bateman, a
well-known game designer, described different types of rewards
that motivate continued use of games [50]. Many of these would
easily translate to Mobilyze!. For example, “currency rewards”
could be used to reinforce training the phone by providing
patients with points that can be used for shopping (eg, for new
music files to play on their phone). “New toys” could also be
used to promote adherence to ecological momentary assessment,
by offering users new capabilities (eg, more sophisticated graphs
of their states, and the ability to create a new, individualized
state to label and visualize) in exchange for training the phone.
“Rank rewards” can be as simple as informing users they have
increased in rank (eg, “novice,” “expert,” or “master”) after
they train the phone a set number of times.

Due to the preliminary nature of this study, model accuracy was
evaluated retrospectively and through manual requests to the
Weka software. This limited our ability to conduct ecological
momentary assessment in an adaptive manner that would
improve each user’s particular models. Our software will be
adapted to interface with Weka, such that accuracy is
automatically monitored throughout the trial. Accuracy
measurements will be used to guide the ecological momentary
assessment, as users can be queried more often on states for
which their models are less accurate. Adherence to ecological

momentary assessment procedures may be reinforced by
communicating accuracy measurements or improvements to
the user, such that users can track their progress in training the
phone. This kind of reinforcement can be conceptualized as
“completeness,” as some users are motivated to strive for perfect
scores [50].

In addition to an inadequate quantity of labeled data, these data
did not exhibit variability across the entire range of measured
states. This may have occurred for several reasons. Users
probably did not train the models across their entire set of
contexts due to differential levels of convenience or social norms
regarding use of mobile phones. Another possibility for low
variability is that there actually was little variability in certain
states, at least as detectable via the Mobilyze! ecological
momentary assessment.

In an informed approach, variability of the user-labeled states
used to construct each model can be harnessed to evaluate
whether the user experience can be improved. The rate,
sensitivity, and quality of user prompts can be modified
accordingly. For example, users could be prompted to complete
a “scavenger hunt” and train the phone when previously
invariant states change (eg, a user who has always reported a
sedentary state could be specifically prompted to train the model
the next time they are more physically active). State labeling
queries could also be recalibrated for greater sensitivity. Such
adaptations can be automated to occur in response to individual
differences in variability. For example, if an individual almost
always reports being at home, the location query could be
changed to allow specification of the particular room of the
home. In a similar vein, it is likely that there are more variable
states unique to a given user (eg, a user may report relatively
static overall mood, but experience somatic symptoms of
depression that vary quite a bit). In the future, the Mobilyze!
system will allow users to create individually tailored states.
Indeed, some participants in this trial indicated the Mobilyze!
ecological momentary assessment did not query all the states
they believed to be important. Finally, automated checks on
label skewness can be used to encourage users to label their
states more often when they are experiencing underreported
values.

Improving Accuracy and Utility of Sensor Data
Accurate context sensing is fundamentally dependent on the
quality of the sensor data and the quality of the features derived
from the sensor data. Our experience has taught us that sensor
data are often inaccurate, or technically accurate but misleading.
For example, the ambient light sensor reported values brighter
than the maximum meaningful value, and the accelerometer
produced seemingly contradictory data when the phone was
dropped or swinging as it was carried in a bag. To be
functionally predictive, the raw sensor data should first be
accurate from a technological perspective and then, if possible,
be manipulated to extract features that describe more actionable,
meaningful data [35]. An example of removing technological
errors would be to discard implausible GPS coordinates. For
the accelerometer, a feature could be extracted by using a time
series of readings to determine trajectory of the phone and
classify it as likely to be “swinging,” “dropping,” or neither.

J Med Internet Res 2011 | vol. 13 | iss. 3 | e55 | p. 12http://www.jmir.org/2011/3/e55/
(page number not for citation purposes)

Burns et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Our more detailed plans for improving the quality of sensed
data can best be illustrated by specific examples, which we will
describe here in terms of the GPS data. GPS was anticipated to
predict location, and yet the data proved so unreliable that the
learning algorithm included GPS coordinates in only 1 of the
treatment completers’ location models.

Mobilyze! generates 2 sets of GPS data. One set comprises GPS
readings sampled every 5 minutes, provided users had adequate
telecommunications connectivity to enable GPS detection. This
set does not include instances during which users trained the
models. The second, much smaller set of GPS data consists of
GPS readings at all physical locations where users labeled their
location.

Accurate data in both datasets are critical for different reasons.
Labeled GPS data are used to generate the models, which are
designed to compare accurate data with accurate labeled states.
If these data are compromised, the models themselves become
unreliable. The second, unlabeled GPS dataset will ultimately
be used to launch intervention. If these data are inaccurate,
intervention may be triggered at inappropriate times. Given its
completeness, the unlabeled dataset can also provide a
higher-resolution perspective on the accuracy of the GPS
transponder and users’ daily GPS trajectories.

The following sections describe techniques we used to clean
and understand GPS data post hoc. With appropriate
engineering, however, these techniques could be used in
real-time scenarios. As no single technique of cleaning and
reformatting data is likely to effectively resolve all issues, a
strategy combining multiple approaches should be used to
improve accuracy. For the purposes of this description, we will
use the location data provided by a project staff member due to
her ability to confirm her location and travel patterns. Her GPS
data were exported into Keyhole Markup Language (a standard
method of defining geographic path information) and visualized
on Google Earth.

Technological Error Exclusion

On several occasions data reflected visibly impossible scenarios,
depicting GPS values that were up to 15 miles away from actual
user-reported positions. Values that are impossible based on
user-reported geographic position can be excluded. For example,
we removed any values that depicted the staff member in a body
of water, once she confirmed she had never been on the water.
In the future, real-world geographic information system and
commercial databases could be used to automate this process.
For example, GPS readings could be compared against
topographical features, and users could be queried to confirm
less probable scenarios (eg, GPS indicates the user is in a remote
area with extremely low population density, on a mountain, or
in a body of water).

Other future techniques could exclude GPS points that suggest
a user has traversed a greater than probable distance within a
particular amount of time (eg, >70 miles/hour). Here, unlabeled
data may be used to clean labeled data. Unlabeled GPS
coordinates obtained before or after labeled coordinates can be
used to calculate the implied velocities. Long term, this would
be a way to leverage chronological GPS data to assist the

learners. This technique could also prevent intervention based
on improbable GPS data, regardless of whether users have
recently labeled their states.

Feature Extraction

Some data inaccuracy is likely caused by the limited resolution
of the GPS transponder, which may result in GPS coordinates
that are inaccurate but relatively close to the user’s actual
location. Based on observations of data reported by the phone
platform, GPS data were accurate in some cases to the 8- to

15-m2 approximate resolution (if edge cases are removed). This
range may not always be effectively actionable, and yet
uniformly excluding unlikely values may not be the best
solution. Feature extraction may help to salvage some of these
GPS readings.

For example, users could be asked to predefine geographical
places of significance or high frequency (“hot spots”) at the
beginning of the intervention using freely available geographic
information system databases. A set of coordinates would thus
be predefined and, in addition to raw GPS data, a
“distance-from-hot-spot” feature could be added to enhance the
quality of the GPS data. For example, a user may be at home,
but the GPS data are fluctuating within a 50-m radius from the
“home” hot spot. The feature would consist of the calculated
distance from the home hot spot. Further, if this distance is
within the phone’s estimated resolution range, a binary feature
could be defined to indicate that the user is likely to be at home.

Sensors could also define a user’s physical trajectory. By storing
a set of recently logged GPS positions in an external dataset, a
spatial model could describe a best-fit line that estimates users’
trajectory. This best-fit line could be used to generate a feature
for the “estimated GPS” coordinates. This may be particularly
helpful to handle missing data points occurring when the phone
cannot obtain GPS readings due to connectivity problems.

Many other features could be envisioned. New features could
be constructed based on interactions between sensors or between
predictions generated by other models. For an example of the
latter, being at home and alone may be depressogenic, while
being at home and with friends may predict positive mood.
Thus, the interaction between predictions for location and
relationship to others in the environment could be inserted into
the model predicting mood. There are also algorithms that use
combinations of mathematical functions to automatically extract
features from raw sensor datasets, and select or prune features
based on their impact on learner accuracy [51,52].

Improving Accuracy of Learners
Although accuracy of the categorical states was promising, the
accuracy of scale-based state models was poor and merits further
discussion. On further examination of the scale-based state
models, there appear to be at least 3 ways in which their
accuracy might be directly improved. First, transformations can
be used to normalize the distribution of user-labeled ratings
prior to model generation and accuracy testing. Second,
regression tree pruning can be selectively disabled. Regarding
this option, we found post hoc that when regression trees were
generated without pruning, models may be more likely to
include sensor values rather than predicting a constant value
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and ignoring sensor data. Third, the system should be improved
more generally to use ensemble methods. For example,
bootstrapping or selective weighting can be applied to the
labeled sensor data, generating multiple new training datasets
[53,54]. Next, a model is created from each of these datasets
using 1 of the learning algorithms (eg, decision trees). For each
incoming set of sensor data, a prediction would be calculated
by each of these models. The final prediction would be an
aggregate of these individual predictions. Aggregation is likely
to result in greater accuracy than use of individual models [55].

Improving Clinical Utility of Predictions
As we were unable to anticipate the accuracy with which users’
states would be predicted in this field trial, predictions were not
used to trigger intervention; rather, they were simply displayed
to the user. Once models meet particular accuracy benchmarks,
future studies will integrate them more fully into clinical
applications. To leverage the potential benefits of a mobile
platform, we will iteratively examine the methods by which
feedback and outreach are delivered. For example, if outreach
is delivered suggesting use of a particular tool, pre- and post-
mood ratings could be used to evaluate its success for the user
in that context. Experimental designs could also be employed
to evaluate the impact of more sophisticated forms of feedback.
We have further developed the Mobilyze! website such that it
can display the GPS sensor readings on Google Earth. We aim
to create a “mood map,” where all GPS coordinates at which
users labeled their mood will be displayed as colored dots. These
dots will be color coded to convey the mood rating at each point,
such that users can better visualize the impact of physical
location on their mood.

Process Lessons
When we began designing this project in late 2008, Nokia’s
Symbian operating system and the Android operating system
were our only options in terms of multitasking mobile phone
platforms. It appeared more prudent to choose Symbian due to
its longer history and platform maturity, whereas Android had
just been deployed in October 2008. However, by 2010 Android
became the most frequently purchased system in the United
States [56], and Nokia has announced plans to retire the Symbian
operating system in favor of Windows Phone 7 [57]. This speaks
to the rapidity of development and change of technology used
in mobile applications. In the future, we will use a
cross-platform development framework (eg, Nitobi’s PhoneGap)
capable of deploying applications to several major mobile phone
platforms, which should allow greater adaptability to this
changing market. This would also allow individuals who already
possess compatible smartphones to download the Mobilyze!
phone application to their own phones, thus mitigating the costs
of providing smartphones to users, as well as the inconvenience

for users who would otherwise need to either carry 2 phones or
transfer their existing phone settings to a new phone.

While we have learned much from this initial development
enterprise, we have also found the numbers of challenges
impossible to manage within the scope of a single project. These
challenges included the cross-disciplinary expertise needed to
process the collected data and the time invested to ensure basic
functionality of ecological momentary intervention and website
components. Investment of effort into the other intervention
components resulted in limited resources to investigate the
myriad techniques that could be used to clean and reformat the
sensor data or improve the machine learning methods. Current
plans are to continue research and development in a staged
sequence, beginning with improvement of state predictions in
the absence of any clinical intervention or website. Clinical
intervention components will be added after the machine
learning components function adequately.

Other Limitations
The current trial did not include a control condition. Once
Mobilyze! is refined as previously described, a randomized
controlled trial will be used to determine whether clinical
improvements can be attributed to Mobilyze! as opposed to
regression to the mean or other confounding factors. Further,
Mobilyze! is a multilevel intervention comprising more
traditional Internet approaches to behavioral intervention (ie,
didactic lessons, exercises), coaching, ecological momentary
assessment, and ecological momentary intervention. Factorial
designs will be required to isolate the specific contributions of
each of the components of Mobilyze! [58,59].

Conclusion
This trial demonstrated the feasibility, appeal, and potential
efficacy of a new paradigm for mobile intervention targeting
depression. The website delivered behavioral skills training,
while the mobile phone provided self-monitoring with tailored,
real-time feedback and intervention. Our initial experience
suggested the feasibility and utility of a context-aware system
using mobile phone sensing capabilities. We have described
the numerous lessons learned and areas for continued
development.

Mark Weiser, the father of ubiquitous computing, wrote that
“The most profound technologies are those that disappear. They
weave themselves into the fabric of everyday life until they are
indistinguishable from it” [60, p. 94]. A context-aware system
that can sense a person’s behavior and state, coupled with a
treatment platform that can positively reinforce adaptive
behaviors and provide support for changing those that contribute
to depression, has the potential to provide a fundamentally new
model for mental health intervention.
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