
Original Paper

A Survey of Quality Assurance Practices in Biomedical Open
Source Software Projects

Günes Koru1, PhD; Khaled El Emam2, PhD; Angelica Neisa3; Medha Umarji1

1Department of Information Systems, University of Maryland, Baltimore, MD, USA
2University of Ottawa and Children’s Hospital of Eastern Ontario (CHEO) Research Institute, Ottawa, ON, Canada
3Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada

Corresponding Author:
Khaled El Emam, PhD
CHEO Research Institute
401 Smyth Rd
Ottawa, ON K1H 8L1
Canada
Phone: +1 613 738 4181
Fax: +1 613 741 0397
Email: kelemam@uottawa.ca

Abstract

Background: Open source (OS) software is continuously gaining recognition and use in the biomedical domain, for example,
in health informatics and bioinformatics.

Objectives: Given the mission critical nature of applications in this domain and their potential impact on patient safety, it is
important to understand to what degree and how effectively biomedical OS developers perform standard quality assurance (QA)
activities such as peer reviews and testing. This would allow the users of biomedical OS software to better understand the quality
risks, if any, and the developers to identify process improvement opportunities to produce higher quality software.

Methods: A survey of developers working on biomedical OS projects was conducted to examine the QA activities that are
performed. We took a descriptive approach to summarize the implementation of QA activities and then examined some of the
factors that may be related to the implementation of such practices.

Results: Our descriptive results show that 63% (95% CI, 54-72) of projects did not include peer reviews in their development
process, while 82% (95% CI, 75-89) did include testing. Approximately 74% (95% CI, 67-81) of developers did not have a
background in computing, 80% (95% CI, 74-87) were paid for their contributions to the project, and 52% (95% CI, 43-60) had
PhDs. A multivariate logistic regression model to predict the implementation of peer reviews was not significant (likelihood ratio
test = 16.86, 9 df, P = .051) and neither was a model to predict the implementation of testing (likelihood ratio test = 3.34, 9 df,
P = .95).

Conclusions: Less attention is paid to peer review than testing. However, the former is a complementary, and necessary, QA
practice rather than an alternative. Therefore, one can argue that there are quality risks, at least at this point in time, in transitioning
biomedical OS software into any critical settings that may have operational, financial, or safety implications. Developers of
biomedical OS applications should invest more effort in implementing systemic peer review practices throughout the development
and maintenance processes.

(J Med Internet Res 2007;9(2):e8) doi: 10.2196/jmir.9.2.e8

KEYWORDS

Open source software; medical informatics; computational biology; information systems; software quality assurance;
software/program verification; code inspections and walkthroughs; software reliability

Introduction

The importance of Information and Communications
Technology (ICT) to the health care industry is rising as
organizations attempt to find ways of reducing the costs of care

and improving patient safety. However, in general, ICT adoption
in health care is underfunded. For example, in Canada, the
proportion of the 2003 national health care budget devoted to
ICT was approximately 1.8% [1]. Canadian hospitals spend
1.8% to 2.5% of their budgets on ICT, which is low compared

J Med Internet Res 2007 | vol. 9 | iss. 2 | e8 | p. 1http://www.jmir.org/2007/2/e8/
(page number not for citation purposes)

Koru et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:kelemam@uottawa.ca
http://dx.doi.org/10.2196/jmir.9.2.e8
http://www.w3.org/Style/XSL
http://www.renderx.com/

with other nations [2]. Recently ICT expenditures in Canadian
hospitals have even been decreasing [3]. Other
information-intensive sectors, such as banking and government,
have ICT expenditures ranging from 9% to 13% of their
operating budgets [1]. In the United States, the health care
industry invests only 2% of gross revenue in ICT [4].

Therefore, cost is an important barrier to the adoption of
information systems in health care [4,5]. This is motivating
increased interest in open source (OS) software [6,7]. Surveys
show that enterprises adopt OS primarily because they believe
it is cheaper to acquire than the alternative solutions and believe
it to have a lower total cost of ownership [21-24]. Many
information technology (IT) managers also believe that OS is
free [12]. It has been suggested that OS can address some of
the biggest barriers to the adoption of electronic medical records
(EMRs) by physicians [7,13]. Medicare in the United States
has made a modified version of the OS Vista system freely
available to all US medical practices [14]. In general, there is
an increasing uptake of OS EMRs [15]. There also exist OS
tools to support clinical trials [16] and imaging tools for
radiologists [17]. In the bioinformatics domain, OS software
has already gained popularity [21-24].

Software used in providing care is often safety and mission
critical. There is evidence that software failures in clinical
information systems and in medical devices have caused serious
injuries and fatalities in patient populations [21-24]. Research
and clinical applications are merging [25], highlighting the
quality risks for research applications as well.

Ensuring that software, including OS software, is of high quality
and that the processes used to develop that software follow best
software engineering practice is becoming a necessity. However,
it has been suggested that the OS development model used for
many bioinformatics products can have weaknesses in terms of
quality assurance (QA) compared to the development of non-OS
products that typically involve formal QA procedures [25].

In the commercial world, third-party process assessments (such
as ISO 9000:2000 or Capability Maturity Model Integration
[CMMI] [26]) are used to provide some assurance to end users
that effective software engineering practices are in place during
software development, in particular, QA practices. In an OS
project, it is not possible to perform such assessments.

To facilitate the adoption of OS in the biomedical domain, and
to understand the risks, if any, this paper reports on a Web
survey of the QA practices used by the global biomedical OS
developer community. The objectives of the survey were
twofold:

1. To determine the rate at which two key QA practices, peer
reviews and testing, are actually being used in biomedical
OS projects

2. To determine whether the following factors have an impact
on the implementation of these practices: experience of the
developers, educational background of developers, size of
the software product, and number of users

To our knowledge, this is the first study to focus on the QA
practices of OS developers in the biomedical domain.

Literature on QA Practices in OS Development
The current evidence on the QA practices implemented in
general (nonbiomedical) OS projects was summarized. The two
main QA activities we focused on were peer reviews and testing
because they are the most commonly practiced in software
development projects.

A literature search was conducted in the fall of 2005, primarily
on EI Compendex and Inspec databases. The search was
restricted to English articles published since 1995. To ensure
that we cast a wide net, we used the term “open source software”
for the search. The ACM digital library, IEEE Xplore, and
SpringerLink were also searched. The reference lists from
included studies were examined in an effort to identify additional
articles and relevant dissertations.

A total of 2731 articles were initially identified. A level one
screening based on the titles and abstracts removed articles that
did not discuss software quality practices directly or indirectly.
The second level of screening based on the full text included
only articles that had original data on QA practices.

The quality of the studies varied greatly. There were no
controlled experiments, and many of the original data came
from surveys or qualitative studies. Below we summarize the
evidence descriptively and then draw conclusions based on the
consistency of evidence from multiple sources and using
multiple methodologies.

Peer-Review Practices
One of the fundamental assumptions for the success of OS is
that there will be many developers looking over the source code.
The popularized statement “given enough eyeballs, all bugs are
shallow” captures that assumption [27]. The argument goes that
because so many developers and users look at the source code
of an OS application, this amounts to a large-scale peer-review
process. Some authors are talking about millions of programmers
performing peer review on OS code [28].

It is well established in software engineering that peer reviews
are one of the best methods for defect detection [29]. In addition,
in non-OS settings, the prospect of their code being scrutinized
by their peers motivates programmers to be more careful [30,31].

Peer reviews are a relatively common practice in OS projects.
For example, in the FreeBSD project, 57% of the respondents
working on the project had distributed code for review in the
month prior to being surveyed, and 86% of those who distribute
code for review do get feedback from their peers [31]. In another
survey, only 9% of OS developers indicated that all of their
code was peer reviewed, but almost 50% indicated that most of
their code was reviewed [32].

How does this compare to non-OS projects? One survey found
that 52% of companies perform code reviews [33]. Another
survey found that 71% of respondents in the United States use
code reviews, around 82% in Europe, and 74% in Japan [34].
Therefore, there is evidence that a majority of non-OS software
project developers also use some form of peer review.

In one study, the average number of reviewers per OS
application was 1.3, including the author, and for larger projects,

J Med Internet Res 2007 | vol. 9 | iss. 2 | e8 | p. 2http://www.jmir.org/2007/2/e8/
(page number not for citation purposes)

Koru et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

this number climbs to 7.5 reviewers [35]. The number of
reviewers on larger OS projects is consistent with the numbers
typically recommended in the software engineering literature
for commercial (non-OS) projects. Porter et al [36] reported
that peer reviews are usually carried out by a team of 4 to 6
inspectors. The recommended size for reviews defined by the
Institute of Electrical and Electronics Engineers (IEEE) standard
for software reviews and audits is 3 to 6 persons [37]. Ackerman
et al [38] reported that reviews are conducted by at least 3
people, one of whom is the moderator who is responsible for
the effectiveness of the examination. Lau et al [39] suggested
3-person reviews. Grady [40] stated an optimum size of 4 to 5
reviewers. Laitenberger and DeBaud [41] recommended 3 to 4
reviewers. They stated that there would be a ceiling effect after
which an additional reviewer would not necessarily pay off in
more defects being discovered. Fagan [42] recommended
keeping review teams small, that is, 4 people. Weller [43]
reported that 4-person teams were better at finding bugs than
3-person teams. Beyond 4 members, there is no performance
improvement. Madachy et al [44] suggested an optimal size of
4 to 5 people for reviews. Gilb and Graham [45] mentioned a
team size of 4 to 5 people to maximize the ability to find bugs.
Strauss and Ebeneau [46] suggested a minimum review team
size of 3 and a maximum of 7. In an experiment at the Jet
Propulsion Laboratory, Kelly et al [47] stated that reviews are
usually carried out by 6 people. Johnson [48] notes that there
is widespread consensus that the review team size should never
exceed 6 to 9 members. Industrial practice varies even within
a single enterprise, for example, review teams between 4 and
12 are used at AT&T [49].

Two relevant characterizations of peer reviews are “ad-hoc”
and “checklist” peer reviews. The former means that the
reviewers do their best to find defects without any guidance.
The latter means that a standardized checklist of common defects
is used to guide the reviewers and to ensure that they look for
all defect types. There is evidence that checklist-based
techniques tend to find more defects than ad-hoc techniques
[50]. There have been no studies on whether OS peer reviews
utilize ad-hoc or checklist approaches.

Testing Practices
Most OS projects do not perform extensive pre-release testing
internally. The most common testing performed is unit testing.
After that, a release candidate is made available, and the users
try the release candidate and report its defects.

Below is a summary of the results of studies on pre-release
testing activities and how well they are at finding bugs.

In general, pre-release testing is not a prevalent activity [51]
and formal testing is not common [52]. The prospect of having
their code peer reviewed makes OS developers more
comfortable releasing their software with little testing [32], and
more than 80% of OS developers in another survey responded
that their products do not have testing plans [35]. This is
consistent with other evidence showing that only 32% of projects
had design documents [53] and that OS projects typically do
not produce explicit requirements [54,55], making testing against
requirements and design more difficult.

A majority of OS developers believe that anyone who downloads
their code will check for and report bugs (implying that if there
are no bug reports then no one has found anything) [35]. This
indicates that testing effort by developers is minimal as they
tend to rely on other people to look for defects.

The evidence on automated tool usage is mixed. A common
testing tool is a debugger [35]. Only 48% of OS projects used
a baseline test suite to support regression testing, and the
percentage is only slightly higher as projects become large [53].
One early study reported that the Apache project had no
regression or system test performed [54]. A more recent analysis
did indicate that there was a regression test suite for Apache,
but its use was not mandatory [56]. The Linux kernel did not
go through pre-release testing by the developers, but rather users
report defects in release candidates [56]. With the recent
commercialization of Linux, considerable effort has been put
into producing regression test suites [57], although an analysis
of the test coverage of some of these test suites found that it
was rather poor, with many critical subsystems having low or
no coverage [58]. Subversion, another OS project, had an
automated regression test suite [56]. Mozilla had dedicated test
teams and test plans [54].

If we compare the above numbers with recent data on the
implementation of regression testing in commercial software
development, one can see that OS projects are somewhat lagging
[34].

More than 50% of surveyed OS projects did not take advantage
of code coverage metrics [35]. Only 5% of projects employed
tools to measure test coverage [53], and almost 30% of projects
had an (subjectively) estimated test coverage of less than 30%
[53].

The above evidence indicates that developer pre-release testing
in many OS projects is not a priority.

Peer Reviews vs Testing
The argument has been made that the lack of developer
pre-release testing is compensated for by the peer reviews that
are conducted [52]. The problem in this argument is that there
is substantial evidence that peer review will not find the same
types of bugs (probabilistically) that testing will find [59-63].
Therefore, peer reviews and testing are not alternatives but
rather are complementary. Consequently, doing only peer
reviews will likely result in a smaller proportion of bugs being
discovered than employing both peer reviews and testing.

One of the arguments made in support of OS quality is that OS
programs tend to have a large number of end users who
effectively beta test the software every time it is released by
going into the code to identify where the bugs are and
contributing the patches to correct these bugs. Such large-scale
and free beta testing and debugging ensures that any defects
that escape development will be discovered relatively quickly.
The argument has some merit: it is known that defect discovery
is affected by usage. Therefore, the more users a product has,
the more defects will be discovered. However, as indicated
below, few of the users actually contribute bug reports, and
fewer still contribute bug fixes. Therefore, the number of users

J Med Internet Res 2007 | vol. 9 | iss. 2 | e8 | p. 3http://www.jmir.org/2007/2/e8/
(page number not for citation purposes)

Koru et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

is not an appropriate reflection of the amount of debugging
activity that is going on.

A study of the Apache project by the Software Engineering
Institute [64] found that the majority (93%) of the changes
(implementations, patches, and enhancements) were made by
the core group of developers. The total number of people
reporting bugs was 5116, but only 200 individuals actually
contributed patches. The difficult and critical architectural
changes were made by an even smaller subset of the core
developer group [64].

Another investigation of Apache [65] found that more than 83%
of the modification requests came from the top 15 developers,
as did 88% of added lines of code and 91% of deleted lines of
code. About 66% of bug fixes were produced by the top 15
developers, but 182 individuals submitted bug fixes out of 3060
who submitted bug reports [54]. The top 15 problem reporters
submitted only 5% of the problem reports. These numbers
indicate that new functionality is developed by a small core
team, but there is wider participation in bug fixes. However,
most of the people who report bugs do not actually submit any
fixes. A small proportion of those who report problems are truly
debuggers.

An interesting informal survey that was performed among Unix
users (comprising researchers, staff, and students) at a computer
science department asked if users had encountered bugs and if
they reported them [66]. All of the respondents who had
encountered bugs, some serious, did not bother to report them.
To the extent that this behavior is common among technical
users (Unix users tend to be rather technically savvy), many
users will not bother reporting bugs even if they do discover
them. In the case of Apache, it was estimated that less than 1%
of all Apache users report problems [54].

In addition, most (80%) of the OS projects have less than 11
end users (where subscribers is used as a surrogate for users)
[67]. Only 1% have more than 100 users [67]. A Pareto analysis
of active projects on SourceForge found that half of the active
projects had between 0 and 70 downloads per month [68] and
that a very small number of projects are popular, with the vast
majority not experiencing many downloads. Following a Pareto
distribution means that the number of projects with more than
a given number of downloads tails off exponentially.

Therefore, we can conclude that for most OS projects the
number of users tends to be relatively small, the proportion of
these users who report bugs is smaller, and the proportion of
those who contribute patches are even smaller. It can be argued,
then, that the extent of community debugging and beta testing
is not that extensive in practice.

Literature Review Summary
The existing evidence paints a decidedly mixed picture of the
QA practices of OS projects. One can conclude that the better
projects have practices that are, at best, comparable with non-OS
projects. In general, peer reviews and testing, when practiced,
tend to be minimal. Such practices are consistent with the results
from studies directly measuring the postrelease quality of OS
applications. An evaluation of the postrelease defect levels in
Apache found that defect density was higher than a number of

commercial products in the telecommunications field [54,65].
A recent study of FreeBSD also collected postrelease defect
data [69], with mixed results when compared to non-OS
products.

None of the studies that we found focused on biomedical
applications—we do not know what the QA practices are for
biomedical OS projects or what the resulting quality is.
Therefore, it is unclear whether the conclusions from general
OS studies can be extended to the biomedical domain.

Methods

Questionnaire Development
Our Web questionnaire was based on two previous general
(nonbiomedical) OS developer surveys. The first survey was
conducted by Stark [32,70] to understand the peer-review
practices in OS projects. The second was performed by Zhao
and Elbaum [35,53] and was geared toward understanding the
QA activities in OS projects.

There were five sections in the questionnaire relevant to this
paper: (1) respondent demographics, (2) project characteristics,
(3) extent and nature of the implementation of peer reviews, (4)
extent and nature of the implementation of testing, and (5)
optional contact information (Multimedia Appendix 1).

A pilot study was conducted with software development staff
at Georgetown Medical Center and the National Cancer Institute.
A draft of the online questionnaire was sent to the two pilot
sites, and comments were solicited on ease of understanding
the questionnaire, the usability of the Web form, and the time
it takes to complete. The questionnaire was revised based on
this feedback.

Survey Setup
The target population for the survey consisted of developers of
biomedical OS projects. A project was considered an OS project
only if its source code was publicly available. We made a list
of biomedical OS projects by searching for OS projects in
bioinformatics, medical informatics, and health care informatics
domains. Biomedical OS projects were selected based on a Web
search and expert inputs. The initial list was constructed based
on the authors’ knowledge of OS applications. We then went
to the OS project-hosting websites SourceForge [71] and
FreshMeat [72] and identified additional projects. On
SourceForge, we identified the projects listed under
bioinformatics and medical science applications subcategories,
which are under the Scientific/Engineering main project
category. On FreshMeat, there was the exact same
categorization, so we identified projects in the same way. We
also used the BioMed Central website [73], where software
developed for various biomedical research projects was
available. Finally, we sent the project list to our colleagues and
asked whether they would add any OS projects to our list. While
creating the list of projects, we encountered some projects hosted
on multiple sites with the same or similar names. Such duplicate
project entries were eliminated. As a result of this in-depth
search, we identified 229 projects (Multimedia Appendix 2).

J Med Internet Res 2007 | vol. 9 | iss. 2 | e8 | p. 4http://www.jmir.org/2007/2/e8/
(page number not for citation purposes)

Koru et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

After obtaining the list of projects, we started to identify the
names and email addresses of the developers working on those
projects using the following information sources:

1. Project websites: The names and email addresses of some
developers were listed on project websites.

2. Source code repositories: OS projects often adopt a
configuration management system, for example, Concurrent
Versions Systems (CVS) or Subversion to allow developers
to manage different versions of their source code files.
Developers check in and check out source files to and from
this repository. Usually, a log is kept in the source code
repository for each checkin. The log includes the
developer’s log-in name and email address. From these
logs, we were able to identify some developers.

3. Defect databases: OS projects usually employ a
defect-handling tool, Bugzilla, or a variant of it [74]. The
defect records in these databases include rich information,
such as the log-in names and email addresses of the
developers assigned to solve the defects, which can be
extracted.

4. Mailing lists: Developers in OS projects usually
communicate using a designated mailing list. The emails
sent to these lists are archived on the project websites. The
header portions of the emails include the names and email
addresses of developers.

Using multiple information sources allowed us to cross-validate
the lists. Duplicate developer entries were eliminated. In our
developer list, we did not include those who made minor
contributions to the projects by occasionally fixing bugs, sending
emails, or committing source code. As a result, our sample
consisted of 750 developers heavily involved in the targeted
projects. A small number of developers were involved in more
than one project. We made it clear to those developers that they
should base their questionnaire answers on a single project that
we selected. Therefore, many developers from a project were
allowed, but one developer could only answer for one project.

During and after the survey period, we took extensive
precautions to maintain the confidentiality of the respondents’
records. Other than the one described above, no other
prescreening or identification procedure was used.

The identified OS developers were sent an invitation email and
a link to the final Web survey. After the first week, multiple
reminders were sent to nonrespondents over a period of 6 weeks.

Analysis Methods
The analysis was performed at two levels, the individual and
project level. This suggests a multi-level approach to analysis.
However, there were structural reasons why such a hierarchical
modeling approach was not deemed appropriate in this case:
most OS projects are small. In general, at least 5 respondents
per project are recommended in order to model multiple levels
and their interactions [75,76]. Of the 229 projects that were
surveyed, only 23 (10%) had more than 5 developers. Of the
106 projects that we received responses for, 20 (19%) had more
than one developer and only 2 (~2%) had more than 5
developers. Therefore, an alternative approach was necessary.

When reporting individual-level results, we will use all of the
respondents’ records. For project-level analysis, individual
responses in each project were aggregated. In the respondent
database there were 138 observations and 106 projects. For
aggregation, the most experienced developer’s (as determined
by responses to the demographic questions) response was
selected to represent the values for the project.

To address the first objective of the study (extent of use),
descriptive statistics on the extent of use of the two QA practices
were reported as proportions (percentages) with 95% confidence
intervals.

To address the second objective (factors affecting the extent of
use), multivariate logistic regression models [77] were
developed for each of the main outcomes being investigated:
implementation of peer reviews, measured by Q11 of the survey,
and implementation of testing, measured by Q21 of the survey
(see Multimedia Appendix 1). The unit of analysis was the
project. The predictors consisted of the developer demographics
and the project characteristics: years of programming experience
(Q1 and Q2), whether the developer had a computing
background (Q3), the number of users of the product (Q6), and
the size of the product (Q9). It is reasonable to expect that the
more experienced the developers, the more likely they will
implement better software engineering practices. Also, we
assumed that developers with a stronger computing background
would be more likely to be associated with the implementation
of key QA practices. The more users of the product, then the
more individuals who are available to peer review, and this has
been one of the core arguments made in support of OS software
[27]. Finally, larger projects require the development team to
impose more discipline and better practices to ensure the
sustainability of the development effort (so that the project does
not descend into a continuous cycle of bug fixes, each
introducing even more bugs).

Response Rate and Nonresponse Bias
There were no missing data since the Web survey tool made all
questions mandatory. Therefore, all submitted forms were
complete.

Since we performed our analysis separately at the individual
and project level, we report the response rates for both. We
received responses from 106 of the 229 projects contacted,
which gave us a project-level response rate of 46.3%. Out of
750 developers contacted, 138 of them replied, which
corresponded to a response rate of 18.4% at the individual level.
Other Web surveys have shown a comparable response rate at
the individual level [78]. The response rates in our survey were
also comparable to previous surveys of OS developers, which
ranged from 21% [79,80] to 34% [81].

Nonresponse bias was evaluated by comparing early respondents
with late respondents [82]. We took the respondents who replied
before the first reminder as early respondents. We compared
the demographics of the early/late respondents and the
characteristics of their projects using the Wilcoxon rank sum
test [83]. None of the differences were significant at the .05
alpha level, indicating that the early and late respondents were
identical in background characteristics.

J Med Internet Res 2007 | vol. 9 | iss. 2 | e8 | p. 5http://www.jmir.org/2007/2/e8/
(page number not for citation purposes)

Koru et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Summary
A summary of the survey setup and administration according
to the CHERRIES guidelines [84] is provided in Multimedia
Appendix 3.

Results

Background of Biomedical OS Developers
As can be seen from Table 1, 73% of the respondents (95% CI,
66,-81) had at least 5 years’ experience writing software. A
large percentage of that experience was in the biomedical area.
Therefore, one would expect these developers, in general, to
have a good understanding of the computational needs in that
domain.

In terms of project participation, 71% (95% CI, 63-79) of the
respondents were participating in their projects part-time.
Contrary to the assumption that OS developers do not receive

compensation for their efforts, about half of all respondents
were part-time and were paid by their employers for their
contributions, and 80% (95% CI, 74-87) of the respondents
received either part-time or full-time support for their
development effort.

We also looked at the highest attained degree of the respondents,
as summarized in Table 1. The biomedical OS developers were
qualified professionals in their domain with 52% (95% CI,
43-60) of them having PhDs. A differentiation is made between
those who had a computer science (or computer engineering)
degree and those who did not (eg, biology, genetics,
biochemistry, and physics). This distinction was based on the
assumption that the computer science and computer engineering
graduates would have a stronger grounding in software
engineering practices than graduates of other disciplines. Almost
three quarters of respondents (74%; 95% CI, 67-81) did not
have a computing background.

Table 1. Developer education and experience (n = 138)

No.%

Years of programming experience

32< 1 year

34251-5 years

10173> 5 years

Years of experience in developing biomedical software

54< 1 year

73531-5 years

6043> 5 years

Project participation level

7151Part-time, supported by employer

2720Part-time, personal time

4029Dedicated, full-time

Highest academic degree and subject area

107Bachelors in CS/CE

1712Masters in CS/CE

97PhD in CS/CE

1410Bachelors in non-CS/CE

2216Masters in non-CS/CE

6245PhD in non-CS/CE

43MD

CS/CE = computer science or computer engineering

Table 2 shows the experience level of the respondents in peer
reviewing others’ code and in testing. Around 28% (95% CI,

21-36] of the developers had never peer reviewed others’ code,
and approximately 19% (95% CI, 12-25) of them had received
formal education in testing.

J Med Internet Res 2007 | vol. 9 | iss. 2 | e8 | p. 6http://www.jmir.org/2007/2/e8/
(page number not for citation purposes)

Koru et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Table 2. Quality assurance experience of developers (n = 138)

No.%

Years of experience in peer reviewing others’ code

3928None

1712< 1 year

38281-5 years

4432> 5 years

Formal education in testing

11281No

2619Yes

Product and Project Characteristics
We found that 50% (95% CI, 40-60) of the products had at least
50 users. Therefore, it can be said that the quality of these
biomedical products affects a large group of users.
Approximately 63% (95% CI, 54-72) of the products are
released at 6-month intervals or less, which is quite a rapid
release cycle. Just under one third (30%; 95% CI, 21-39) of the
products had been available for more than 3 years. Around a
quarter (27%; 95% CI, 19-36) were larger than 50000 lines of
code in size.

Peer-Review Practices
Peer review is widely accepted to be one of the important
strengths of the OS development model. However, for 63%

(95% CI, 54-72) of the projects, peer review was not made an
integral part of the development process, and peer review was
never performed for 40% (95% CI, 30-49) of the projects.

Table 3 shows results for projects that did perform peer reviews
(n = 64). We found that, in 81% (95% CI, 74-89) of those
projects, peer reviews were never or only occasionally
performed before the code is committed, and in 64% (95% CI,
55-73) of those projects, peer reviews were never or only
occasionally performed before the product is released. A
majority of projects (84%; 95% CI, 77-91) did not use checklists
during their peer-review activities.

Table 3. Peer review practices at the project level, for projects that did perform some peer review (n = 64)

No.%

Source code is ______ peer reviewed before commit.

812Never

4469Occasionally

23Half the time

58Frequently

58Almost always

Source code is ______ peer reviewed before product release.

46Never

3758Occasionally

46Half the time

610Frequently

1320Almost always

Do you use a checklist for peer review?

5484No

1016Yes

Almost two fifths of all respondents (40%; 95% CI, 32-48) said
that they never reviewed someone else’s code, 36% (95% CI,
28-44) never asked someone else to review their code, and 41%
(95% CI, 32-49) said that no one reviewed their code. Of the
survey respondents who asked others to review their code, 93%
stated that three or fewer individuals do the review.

For those projects that did not perform peer-reviews (n = 42)
we also asked for the reasons why. A high proportion (40%;
95% CI, 31-50) did not perform peer-reviews because there
were other things to do (“work is too busy”), and 12% (95%
CI, 6-18) were not because the developers believed that the code
was already of sufficiently high quality that peer reviews were

J Med Internet Res 2007 | vol. 9 | iss. 2 | e8 | p. 7http://www.jmir.org/2007/2/e8/
(page number not for citation purposes)

Koru et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

not needed. 17% were unsure how to review, and 7% said
reviewing brings no beneft. For some projects, under the “Other”
option, it was stated that the code was so large that it was not
possible to apply peer reviews. In some projects, developers
stated that they were the only developer, and they did not
consider asking others to do peer reviews because they thought
no one else would understand their code.

Testing Practices
Testing was an integral part of the development process for 82%
(95% CI, 75-89) of projects, and a regression test suite was run
before every release for 58% (95% CI, 48-67) of the projects.
The percentage of the projects for which a baseline test suite
was used was 56% (95% CI, 46-65). Automated tools were used
during development for only 25% (95% CI, 16-33] of the

projects. One would conclude that automated testing is done
after the development work is complete. Only 4% (95% CI,
0-7) of projects had automated test coverage tools. For the 21%
(95% CI, 13-28) of the projects, the developer selected the
“don’t know” option when asked about estimated code coverage.
Only around 25% of the projects exceeded 80% code coverage.

As shown in Table 4, different types of testing are used in the
projects. Unit testing is performed in 78% (95% CI, 70-86) of
the projects. Approximately 70% of the projects (95% CI, 61-79)
had unit testing performed half the time or more. Integration
and system testing are also quite common. Testing is conducted
continuously in 60% (95% CI, 51-70) of projects. In 32% (95%
CI, 23-41) of projects, testing continues after releasing the
software to specific users. Most defects that are fixed are found
through testing rather than being discovered through usage.

J Med Internet Res 2007 | vol. 9 | iss. 2 | e8 | p. 8http://www.jmir.org/2007/2/e8/
(page number not for citation purposes)

Koru et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Table 4. Testing practices and test results (n = 106)

No.%

Do you perform ______?

8378Unit testing

6864Integration testing

8075System testing

4845System load and performance testing

44Other

How often do you unit test?

98Never

2322Occasionally

88Half the time

1817Frequently

4845Almost always

What percentage of fixed defects is discovered by testing?

1716< 20%

222120-40%

242340-60%

272560-80%

1615> 80%

What percentage of fixed defects is discovered by users?

5047< 20%

222020-40%

161540-60%

9960-80%

99> 80%

Testing is performed ______.

6460Continuously

6057Before release

3432After releasing to specific users

3129Randomly

44Other

In Table 5, it can be seen that 80% (95% CI, 74-87) of the
respondents spent less than 40% of their time on testing. The
most common practices to generate test cases were the imitation

of valid user behavior, generating failure inducing inputs, and
using personal experience. Random testing and extreme load
testing were not common.

J Med Internet Res 2007 | vol. 9 | iss. 2 | e8 | p. 9http://www.jmir.org/2007/2/e8/
(page number not for citation purposes)

Koru et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Table 5. Testing practices at the individual level (n = 138)

No.%

What percentage of the development time is spent on testing?

6144< 20%

503620-40%

191440-60%

5460-80%

32> 80%

What strategies are adopted in choosing the test cases?

11382Provide inputs to imitate valid user behavior

9267Choose inputs most likely to cause failures

10072Choose inputs according to your experience

2820Use scripts to provide random inputs

6346Provide extreme values as inputs

5943Provide boundary conditions as inputs

3828Try extreme loads

Multivariate Models
The objective of the multivariate models was to understand the
factors that have an impact on the implementation of peer
reviews and testing in biomedical OS projects. An initial
analysis indicated that the two measures of years of
programming experience (see Q1 and Q2 in Multimedia
Appendix 1) were strongly correlated. We therefore constructed
our models using Q1 only. The logistic regression model for
the implementation of peer reviews was:

logit(Q10) ~ Q1 + Q3 + Q6 + Q9

And the logistic regression model for the implementation of
testing was:

logit(Q21) ~ Q1 + Q3 + Q6 + Q9

The model variables are the answers to the following questions:

• Q1: The number of years of programming experience the
respondent has.

• Q3: Whether the highest academic degree obtained by the
respondent was in a computer science or a related area.

• Q6: The estimated current number of users of the OS
product.

• Q9: The approximate size of the OS product.
• Q10: Whether peer review is an integral part of the project’s

software development process.
• Q21: Whether testing was an integral part of the project’s

software development process.

All independent variables except Q9 were ordinal. Therefore,
repeated contrasts coding [85,86] was used to capture this
ordering. For an independent variable withk ordered categories,
k – 1 independent coding variables are used. The parameters
for these coding variables represent the change in logit when
the independent variable changes from one category to the next
category.

The overall results for the main effect models are shown in
Table 6, and the detailed parameter estimates in Table 7. An
alpha level of .05 was used for all tests. These results indicate
that none of main effect models are an improvement over the
null model (with the intercept only).

An analysis of deviance comparing models with interaction
effects versus main effects indicated that there were no
interaction effects.

Table 6. The main effect models for the two outcome variables

Nagelkerke R2Likelihood Ratio TestModel

0.20116.84 (9 df); P = .051Peer review

0.0513.34 (9 df); P = .95Testing

J Med Internet Res 2007 | vol. 9 | iss. 2 | e8 | p. 10http://www.jmir.org/2007/2/e8/
(page number not for citation purposes)

Koru et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Table 7. Detailed model parameter estimates for the two logistic regression models

P value†95% CI*Odds Ratio*Beta Coefficient*Variable

Peer Review Model

.74––8.76Intercept

Q1: Programming experience (years)

.80−0.13 to 1.850.86−0.15> 1-5 vs < 1

.77−0.02 to 0.020.00−7.80 5+ vs 1-5

Q6: Number of users

.08−0.5 to 6.112.811.03 5-10 vs < 5

.98−0.51 to 2.541.010.014 10-50 vs 5-10

.09−0.17 to 0.570.20−1.62 50+ vs 10-50

Q9: Size (lines of code)

.44−0.15 to 1.380.61−0.49 5000-20000 vs < 5000

.07−1.11 to 7.853.371.21 20000-50000 vs 5000-20000

.03−0.07 to 0.560.24−1.41 > 50000 vs 20000-50000

.500.05 to 2.731.390.33Q3: CS degree

Testing Model

.79––0.51Intercept

Q1: Programming experience (years)

.36−0.3 to 1.230.46−0.77 1-5 vs < 1

.19−8.35 to 19.135.392.19 5+ vs 1-5

Q6: Number of users

.81−0.32 to 2.000.84−0.17 5-10 vs < 5

.99−0.67 to 2.701.010.011 10-50 vs 5-1-10

.79−1.06 to 2.510.72−0.33 50+ vs 10-50

Q9: Size (lines of code)

.79−0.47 to 2.090.81−0.21 5000-20000 vs < 5000

.801.09 to 3.362.230.20 20000-50000 vs 5000-20000

.96−0.44 to 2.370.96−0.03 > 50000 vs 20000-50000

.50−0.08 to 1.440.68−0.39Q3: CS degree

*Values are estimates.
†P value is for the coefficient using the Wald Z statistic.

Discussion

In summary, our descriptive results show that peer reviews have
not been integrated into the development process for 63% (95%
CI, 54-72) of the projects, while testing has been integrated into
the development of 82% (95% CI, 75-89) of the projects.
Approximately 74% (95% CI, 67-81) of developers did not have
a background in computing, 80% (95% CI, 74-87) were paid
for their contributions to the project, and 52% (95% CI, 43-60)
had PhDs. A multivariate logistic regression model to predict
the implementation of peer reviews was not significant
(likelihood ratio test = 16.86, 9 df, P = .051) and neither was a
model to predict the implementation of testing (likelihood ratio
test = 3.34, 9 df, P = .95).

Developer Background
The level of experience of the biomedical OS developers is
consistent with the experience of developers of general
(nonbiomedical) OS projects. Previous surveys found that
developers have, on average, 11.86 years of programming
experience [81]. However, compared to nonbiomedical OS
projects, the biomedical developers tended to have less software
engineering experience, but more advanced degrees. Previous
surveys of general OS developers found that software engineers
and programmers made up 43% of OS developers [87], 45.4%
of OS developers were programmers [88], almost 80% of them
worked in the IT sector [87], 58% were directly involved in the
IT industry [81], 45% worked as professional programmers
[81], and 51% had formal university level training in computer
science and IT [81]. In addition, surveys of general OS

J Med Internet Res 2007 | vol. 9 | iss. 2 | e8 | p. 11http://www.jmir.org/2007/2/e8/
(page number not for citation purposes)

Koru et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

developers found that a quarter of respondents had only high
school or grammar school education [79,80], only 5% had PhDs,
and 12% had masters degrees [87].

The lack of formal training and education in software
development practices by the biomedical OS developers raises
questions about the quality of the software being developed.
However, our logistic regression models control for project
characteristics and they did not find a relationship between
programmer background/experience and the extent of
implementation of peer reviews and testing. Therefore, it does
not seem that the lack of formal training and education in
software engineering has affected the implementation of good
QA practices in these biomedical OS projects.

The percentage of developers financially supported to develop
the biomedical OS applications is much larger than that seen in
nonbiomedical OS projects. For example, other surveys of
general OS developers found that 16% [79,80], 20% [87,89],
30% [88], and 40% [81] of developers are paid for their OS
contributions. In our survey, we found around 80% of developers
were being paid for their contributions. It is not clear from our
results whether there were any commercial interests financing
such development work.

Implementation of Peer Reviews
Even though extensive peer reviews are often claimed to be one
of the main advantages of the OS development paradigm, our
results indicate that this practice is not prevalent, with the
majority of projects not undergoing peer review on a consistent
basis, and two fifths never doing so. This finding is somewhat
consistent with peer review of general (nonbiomedical) OS
projects, which was summarized earlier in the paper.

For projects that perform peer reviews, how well is the peer
review implemented? A key performance measure for a peer

review is the proportion of defects that it finds in the code (this
is known as the effectiveness of the peer review). There are a
number of factors that will have an influence on that: the number
of reviewers, the capability of the reviewers (often measured
by the proportion of defects that an individual reviewer can
find), and the reading technique that is used.

We found in our survey that a maximum of three reviewers
review a piece of code when it is peer reviewed. If we assume
that reviewers are independent, which is a reasonable assumption
in a distributed development project with little to no face-to-face
interaction, a basic model of the probability of finding a defect

is given by 1 – (1 – p)i where p is the probability that an
individual reviewer will find a defect (assuming that all
reviewers are equally capable) and i is the number of reviewers.
A previous review of the literature [90] determined that the
average probability of finding a defect through code peer review
was 0.57 and the maximum (or best-in-class) was 0.7. These
numbers came from industrial, non-OS projects.

Figure 1 shows the theoretical relationship based on the above
model between the number of reviewers (x-axis) and individual
reviewer effectiveness (y-axis) if we fix the overall peer review
effectiveness at 0.57 and at 0.7. We can see that if a team of at
most three programmers reviews a code snippet, then they would
each have to have a p of at least 0.24 to achieve average
performance, and a p of 0.33 to achieve maximum (best-in-class)
performance. These would be the minimal reviewer capabilities
for a team of three to achieve the average and maximum peer
review effectiveness reported for non-OS projects, respectively.
Are these minimal capabilities plausible, that is, is it plausible
that the biomedical OS reviewers achieve defect detection
effectiveness levels that high?

J Med Internet Res 2007 | vol. 9 | iss. 2 | e8 | p. 12http://www.jmir.org/2007/2/e8/
(page number not for citation purposes)

Koru et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 1. Relationship between the number of reviewers and individual effectiveness when the team effectiveness is fixed at 0.57 (average performance)
and 0.7 (best performance)

The literature on individuals’ effectiveness in code reviews can
be examined to answer this question. Wohlin et al [91] created
virtual review teams using the data sets collected from the
literature, and they found that the effectiveness of individual
reviewers had a median value close to 0.25. In another study,
Runeson and Wohlin [92] reported that the defect detection
rates observed during their experiments involving students and
professionals had a median value of 0.31. Land et al [93]
reported that, in their experiment, an individual detected an
average of 5.51 out of 33 defects (effectiveness of approximately
0.17). Porter et al [94] reported the true positive ratios as a
measure of effectiveness instead of the detection rates. On
average, 13% of the reported issues turned out to be true defects.
Dunsmore et al [50] conducted a code inspection experiment
for Java programs in which they reported both detection ratio
and false positives. The detection ratio for checklist-based
reading was 52.14%, and the false positive rate was 24.50%. In
this experiment, the subjects reviewed 200 lines of Java code
with which they had familiarity from previous exercises, and
they were provided with class diagrams and natural language
specifications of all systems. In Land et al’s experiment, the
subjects were provided with flowcharts, pseudo-code, and other
code overview documents. In realistic OS development
environments, such aids are less likely to be available.
Therefore, it will be more difficult for the OS developers to
reach the effectiveness levels mentioned in these studies.

Even if it is assumed that it is plausible for a biomedical OS
peer reviewer to achieve average effectiveness rates as high as
those achieved by non-OS peer reviewers, it would be less likely
that OS projects would achieve the maximum or best-in-class
effectiveness rates seen in non-OS projects. In addition, if the
number of reviewers dips below three, then it is not likely that
the effectiveness of the peer review would match the average
performance of the non-OS projects.

That very few of the projects use checklists during the code
reading also indicates that the effectiveness of these peer reviews
will be relatively low.

Implementation of Testing
How do testing activities in biomedical OS projects compare
to testing in general OS projects? Zhao and Elbaum [53] noted
that 58% of the generic OS projects spent more than 20% of
their development time in testing. We found that 51% of the
biomedical OS projects spent more than 20% of their time in
testing. In generic OS projects, almost 30% had below 30%
code coverage [53]. For 35.85% of the biomedical OS projects,
the coverage was either not known or it was estimated as below
20%. The use of a regression test suite in biomedical OS projects
was almost 58% compared to 3% in very large generic OS
projects. In summary, testing activities in biomedical OS
projects showed similarity to those in the generic OS projects.

J Med Internet Res 2007 | vol. 9 | iss. 2 | e8 | p. 13http://www.jmir.org/2007/2/e8/
(page number not for citation purposes)

Koru et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

However, compared to the closed-source projects [34], there is
still room for improvement.

Summary
The major QA risk item in biomedical OS software projects is
that code peer reviews are not systematically performed. Peer
reviews are an important mechanism to find bugs in software,
and they are complementary to testing.

Applications that collect and manage patient data can lead to
negative financial and patient safety outcomes if they have
subtle defects in them. OS developers therefore need to focus
more attention on integrating peer review into their development
practices to ensure that good software engineering practices are
systematically employed. Acquirers of biomedical OS
applications need to ensure that some form of peer review is
being consistently practiced in the software projects producing
and maintaining the applications that they deploy.

Limitations
We highlight two limitations in this study. The first is the low
response rate, although the response rate that we obtained is
consistent with other studies in the same domain. In addition,
we found no evidence of nonresponse bias. Second, there are
many OS projects that were not included in our sample, and it
is plausible that the ones we focused on tended to be the smaller
ones.

Conclusions
The OS software development paradigm has been suggested as
a new and more effective way to develop high-quality software.
In many health-related settings, ranging from care to research,
it is important to ensure that software failures are minimized.

In this paper we performed a survey of biomedical OS software
developers to understand their QA practices. Our results indicate
that the major risk item in biomedical OS projects, from a
software quality perspective, is the (lack of) implementation of
peer reviews. Furthermore, when they are implemented, their
performance is below what would be considered best practice.
We also found that most of the developers did not have computer
science or computer engineering training or education that could
provide them with software engineering background. On the
other hand, we found no evidence linking the lack of computer
science or engineering background with the extent of
implementation of peer reviews and testing, indicating that such
background variables do not have an impact.

These results highlight some risk from transitioning biomedical
OS applications into environments where they may have an
impact on patient safety. For this transition to occur, it is
important that better peer review practices be put in place. To
the extent possible, developers of biomedical OS software
should rely on Food and Drug Administration regulations and
guidelines, such as 21 CFR Part 11, as well as professional
society publications [95] documenting what are considered to
be best software engineering practices.

Acknowledgments
This work was partially funded by a grant from the Natural Sciences and Engineering Research Council of Canada and by a
research grant from Microsoft Corporation. We would like to thank our colleagues in the Georgetown Medical Center and the
National Cancer Institute for participating in the pilot survey and providing feedback, and Bryan Kirschner for feedback on an
earlier version of this paper.

Conflicts of Interest
Khaled El Emam has developed and distributed OS software under the GNU GPL v2 license. He is also a co-founder and has
financial interests in TrialStat Corporation, which is a commercial software company in the biomedical domain.

Multimedia Appendix 1
Survey form [PDF File, 81 KB-]

Multimedia Appendix 2
List of OS projects contacted for survey [PDF File, 212 KB-]

Multimedia Appendix 3
CHERRIES [84] summary for the Web survey [PDF File, 105 KB-]

References

1. Prada G, Roberts G, Vail S, Anderson M, Down E, Fooks G, et al. Understanding Health Care Cost Drivers and Escalators.
Ottawa, ON: The Conference Board of Canada; 2004. URL: http://www.health.gov.ab.ca/resources/publications/
conference_board.pdf [accessed 2007 Apr 16] [WebCite Cache ID 5NyNE0fv9]

2. Prada G, Grimes K, McCleery A, Nguyen D, Pomey MP, Reed V, et al. Challenging Health Care System Sustainability:
Understanding Health System Performance of Leading Countries. Ottawa, ON: The Conference Board of Canada; 2004.

J Med Internet Res 2007 | vol. 9 | iss. 2 | e8 | p. 14http://www.jmir.org/2007/2/e8/
(page number not for citation purposes)

Koru et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v9i2e8_app1.pdf&filename=d0512f1b4a5ebd6349c77260b43d12e8.pdf
https://jmir.org/api/download?alt_name=jmir_v9i2e8_app1.pdf&filename=d0512f1b4a5ebd6349c77260b43d12e8.pdf
https://jmir.org/api/download?alt_name=jmir_v9i2e8_app2.pdf&filename=57d1e4c064245907df637a9dd5599aad.pdf
https://jmir.org/api/download?alt_name=jmir_v9i2e8_app2.pdf&filename=57d1e4c064245907df637a9dd5599aad.pdf
https://jmir.org/api/download?alt_name=jmir_v9i2e8_app3.pdf&filename=b5dc89e552db3650af870ea10b460c64.pdf
https://jmir.org/api/download?alt_name=jmir_v9i2e8_app3.pdf&filename=b5dc89e552db3650af870ea10b460c64.pdf
http://www.health.gov.ab.ca/resources/publications/conference_board.pdf
http://www.health.gov.ab.ca/resources/publications/conference_board.pdf
http://www.webcitation.org/

 5NyNE0fv9
http://www.w3.org/Style/XSL
http://www.renderx.com/

URL: http://www.health.gov.ab.ca/resources/publications/Conference_Board2.pdf [accessed 2007 Apr 16] [WebCite Cache
ID 5Nt0athGf]

3. Irving R. Report on IT in Canadian Hospitals. Canadian Healthcare Technology 2003.
4. Raymond B, Dold C. Clinical Information Systems: Achieving the Vision. Oakland, CA: Kaiser Permanente Institute for

Health Policy; 2002. URL: http://www.kpihp.org/publications/docs/clinical_information.pdf [accessed 2007 Apr 16]
[WebCite Cache ID 5Nt0d8r77]

5. Bates D, Ebell M, Gotlieb E, Zapp J, Mullins H. A proposal for electronic medical records in US primary care. J Am Med
Inform Assoc 2003;10(1):1-10. [doi: 10.1197/jamia.M1097]

6. Goulde M, Brown E. Open Source Software: A Primer for Health Care Leaders. Oakland, CA: California HealthCare
Foundation; 2006. URL: http://www.chcf.org/documents/ihealth/OpenSourcePrimer.pdf [accessed 2007 Apr 16] [WebCite
Cache ID 5Nt0g8WP4]

7. Kantor GS, Wilson WD, Midgley A. Open-source software and the primary care EMR. J Am Med Inform Assoc
2003;10(6):616 [FREE Full text] [Medline: 12925540] [doi: 10.1197/jamia.M1403]

8. Giera J. The Costs and Risks of Open Source. Cambridge, MA: Forrester Research Inc; 2004.
9. Hunt F, Probert D, Barratt S. Adopting new technology: the case of open source software at Marconi. The 12th International

Conference on Management of Technology (IAMOT May 12-15 2003) Nancy, France 2003.
10. Dal MJ. Open Source Software in Canada. A Collaborative Fact Finding Study. e-cology Corporation. 2003. URL: http:/

/www.e-cology.ca/canfloss/report/CANfloss_Report.pdf [accessed 2007 Apr 16] [WebCite Cache ID 5Nv7MQJQa]
11. Dedrick J, West J. An exploratory study into open source platform adoption. Proceedings of the 37th Hawaii International

Conference on System Sciences 2004:10.
12. DiDio L. Linux, Unix and Windows TCO Comparison, Part 1. Boston, MA: The Yankee Group; 2004.
13. Valdes I, Kibbe DC, Tolleson G, Kunik ME, Petersen LA. Barriers to proliferation of electronic medical records. Inform

Prim Care 2004;12(1):3-9. [Medline: 15140347]
14. Kolata G. In unexpected Medicare benefit, US will offer doctors free electronic records system. New York Times Jul 21

2005:14.
15. Goldstein D, Ponkshe S, Maduro R. Analysis of Open Source Software (OSS) and EHRs: Profile of Increasing Use of OSS

in the Federal Government and Healthcare. Atlantis, FL: Medical Alliances Inc; 2004. URL: http://www.medicalalliances.com/
downloads/files/Open_Source_Software-Government_and_Healthcare_White_Paper-Medical_Alliances_2.doc [accessed
2007 Apr 16] [WebCite Cache ID 5Nt0If4XE]

16. Elsner C, Egbring M, Kottkamp H, Berger T, Zoller S, Hinricks G. Open source or commercial products for electronic data
capture in clinical trials? A scorecard comparison. Comput Cardiol 2003;30:371-373. [doi: 10.1109/CIC.2003.1291169]

17. Erickson BJ, Langer S, Nagy P. The role of open-source software in innovation and standardization in radiology. J Am
Coll Radiol 2005 Nov;2(11):927-931. [Medline: 17411967] [doi: 10.1016/j.jacr.2005.05.004]

18. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al; Yang JYH. Bioconductor: open software
development for computational biology and bioinformatics. Genome Biol 2004;5(10):R80.

19. Stajich J. The Bioperl Project: A Look Ahead. Talk presented at: Bioinformatics Open Source Conference; August 1-2,
Edmonton, Canada. 2002. URL: http://www.open-bio.org/bosc2002/slides/2002-08-01-Stajich-Bioperl.pdf [accessed 2007
Apr 16] [WebCite Cache ID 5Nv7MQJQa]

20. Pocock M. BioJava Toolkit Progress. Talk presented at: Bioinformatics Open Source Conference; August 1-2,. 2002. URL:
http://www.open-bio.org/bosc2002/talks.html#biojava [accessed 2007 Apr 16] [WebCite Cache ID 5Nsk5oct4]

21. McCormick J, Gage D. Cincinnati Children's Hospital: Shots in the Dark. Baseline. 2004 Aug 1. URL: http://www.
baselinemag.com/article2/0,1540,1655082,00.asp [accessed 2007 Apr 16]

22. Gage D, McCormick J. Why Software Quality Matters: 'We Did Nothing Wrong'. Baseline. 2004 Mar 4. URL: http://www.
baselinemag.com/article2/0,1397,1544403,00.asp [accessed 2007 Apr 16]

23. Basili V, Belady L, Boehm B, Brooks F, Browne J, DeMillo R, et al. Final report: NSF workshop on a software research
program for the 21st century. Software Eng Notes 1999;24(3):37-45.

24. ; Report of the Inquiry into the London Ambulance Service. UK: South West Thames Regional Health Authority; 1993.
URL: http://www.cs.ucl.ac.uk/staff/A.Finkelstein/las/lascase0.9.pdf [accessed 2007 Apr 16] [WebCite Cache ID 5NskKydHy]

25. van Heusden P. Applying Software Validation Techniques to Bioperl. Talk presented at: Bioinformatics Open Source
Conference; July 29-30, 2004;Glasgow, UK. URL [FREE Full text]

26. Konrad M, Shrum S; Chrissis M-B. CMMI: Guidelines for Process Integration and Product Improvement. Addison-Wesley;
2003.

27. Raymond ES. The Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary. O'Reilly;
1999.

28. Greiner S, Boskovic B, Brest J, Zumer V. Security issues in information systems based on open source technologies.
EUROCON 2003:12-15.

29. El EK. Software Inspection Best Practices. In: Agile Project Management Advisory Service, Executive Report. Volume 2.
Number 9. Arlington, MA: Cutter Consortium; 2001.

J Med Internet Res 2007 | vol. 9 | iss. 2 | e8 | p. 15http://www.jmir.org/2007/2/e8/
(page number not for citation purposes)

Koru et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.health.gov.ab.ca/resources/publications/Conference_Board2.pdf
http://www.webcitation.org/

 5Nt0athGf
http://www.webcitation.org/

 5Nt0athGf
http://www.kpihp.org/publications/docs/clinical_information.pdf
http://www.webcitation.org/

 5Nt0d8r77
http://dx.doi.org/10.1197/jamia.M1097
http://www.chcf.org/documents/ihealth/OpenSourcePrimer.pdf
http://www.webcitation.org/

 5Nt0g8WP4
http://www.webcitation.org/

 5Nt0g8WP4
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=12925540
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12925540&dopt=Abstract
http://dx.doi.org/10.1197/jamia.M1403
http://www.e-cology.ca/canfloss/report/CANfloss_Report.pdf
http://www.e-cology.ca/canfloss/report/CANfloss_Report.pdf
http://www.webcitation.org/

 5Nv7MQJQa
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15140347&dopt=Abstract
http://www.medicalalliances.com/downloads/files/Open_Source_Software-Government_and_Healthcare_White_Paper-Medical_Alliances_2.doc
http://www.medicalalliances.com/downloads/files/Open_Source_Software-Government_and_Healthcare_White_Paper-Medical_Alliances_2.doc
http://www.webcitation.org/

 5Nt0If4XE
http://dx.doi.org/10.1109/CIC.2003.1291169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17411967&dopt=Abstract
http://dx.doi.org/10.1016/j.jacr.2005.05.004
http://www.open-bio.org/bosc2002/slides/2002-08-01-Stajich-Bioperl.pdf
http://www.webcitation.org/

 5Nv7MQJQa
http://www.open-bio.org/bosc2002/talks.html#biojava
http://www.webcitation.org/

 5Nsk5oct4
http://www.baselinemag.com/article2/0,1540,1655082,00.asp
http://www.baselinemag.com/article2/0,1540,1655082,00.asp
http://www.baselinemag.com/article2/0,1397,1544403,00.asp
http://www.baselinemag.com/article2/0,1397,1544403,00.asp
http://www.cs.ucl.ac.uk/staff/A.Finkelstein/las/lascase0.9.pdf
http://www.webcitation.org/

 5NskKydHy
http://www.open-bio.org/bosc2004/presentations/Heusden_SW_validation_BOSC_2004.pdf
http://www.w3.org/Style/XSL
http://www.renderx.com/

30. Bagchi S, Madeira H. Open source software - a recipe for vulnerable software, or the only way to keep the bugs and the
bad guys out? Panel position statement presented at: 14th International Symposium on Software Reliability Engineering
(ISSRE) 2003; 1234. 567:347-352.

31. Jorgensen N. Putting it all in the trunk: incremental software development in the FreeBSD open source project. Inform Syst
J 2001;11(4):321-336. [doi: 10.1046/j.1365-2575.2001.00113.x]

32. Stark J. Peer reviews as a quality management technique in open-source software development projects. European Conference
on Software Quality 2002:340-350.

33. Maccormack A, Kemerer C, Cusumano M, Crandall B. Trade-offs between productivity and quality in selecting software
development practices. IEEE Software 2003;(5):78-84. [doi: 10.1109/MS.2003.1231158]

34. Cusumano M, MacCormack A, Kemerer C, Randall B. Software development worldwide: the state of the practice. IEEE
Software 2003; 1234. 567:28-34.

35. Zhao L, Elbaum S. A survey on quality related activities in open source. Software Eng Notes 2000;25(3):54-57. [doi:
10.1145/505863.505878]

36. Porter A, Siy H, Toman C, Votta L. An experiment to assess the cost-benefits of code inspections in large scale software
development. IEEE T Software Eng 1997;23(6):329-346. [doi: 10.1109/32.601071]

37. STD I. IEEE Standard for Software Reviews and Audits. ANSI/IEEE STD 1028-1988 1989:.
38. Ackerman AF, Buchwald LS, Lewski FH. Software inspections: an effective verification process. IEEE Software

1989;6(3):31-36. [doi: 10.1109/52.28121]
39. Lau L, Jeffery R, Sauer C. Some Empirical Support for Software Development Technical Reviews. Sydney, Australia:

University of New South Wales; 1996.
40. Grady RB. Practical Software Metrics for Project Management and Process Improvement. Englewood Cliffs, NJ:

Prentice-Hall; 1992.
41. Laitenberger O, Debaud JM. An encompassing life-cycle centric survey of software inspection. J Syst Software

2000;50(1):5-31. [doi: 10.1016/S0164-1212(99)00073-4]
42. Fagan ME. Design and code inspections to reduce errors in program development. IBM Syst J 1976;15(3):182-211.
43. Weller EF. Lessons from three years of inspection data. IEEE Software 1993;10(5):38-45. [doi: 10.1109/52.232397]
44. Madachy R, Little L, Fan S. Analysis of a successful inspection program. Proceedings of the 18th Annual NASA Software

Engineering Laboratory Workshop 1993:176-188.
45. Gilb T, Graham D. Software Inspection. New York: Addison-Wesley; 1993.
46. Strauss S, Ebenau R. Software Inspection Process. New York: McGraw Hill; 1994.
47. Kelly J, Sheriff J, Hops J. An analysis of defect densities found during software inspections. J Syst Software

1992;17(2):111-117. [doi: 10.1016/0164-1212(92)90089-3]
48. Johnson P. Reengineering inspection. Comm ACM 1998;41(2):49-52. [doi: 10.1145/269012.269020]
49. Eick S, Loader C, Long M, Votta L, Weil SV. Estimating software fault content before coding. Proceedings of the 14th

International Conference on Software Engineering 1992:59-65.
50. Dunsmore A, Roper M, Wood M. The development and evaluation of three diverse techniques for object-oriented code

inspection. IEEE T Software Eng 2003;29(8):677-686. [doi: 10.1109/TSE.2003.1223643]
51. Halloran T, Scherlis WL. High quality and open source software practices. Position paper presented at: The Second Workshop

on Open Source Software Engineering, International Conference on Software Engineering; May 19-25,. 2002. URL: http:/
/opensource.ucc.ie/icse2002/HalloranScherlis.pdf [accessed 2007 Apr 16] [WebCite Cache ID 5NskgWv6b]

52. Gacek C, Arief B. The many meanings of open source. IEEE Software 2004;21(1):34-40. [doi: 10.1109/MS.2004.1259206]
53. Zhao L, Elbaum S. Quality assurance under the open source development model. J Syst Software 2003;66(1):65-75.
54. Mockus A, Fielding R, Herbsleb J. Two case studies of open source software development: Apache and Mozilla. ACM T

Softw Eng Meth 2002;11(3):309-346. [doi: 10.1145/567793.567795]
55. Sharma S, Sugumaran V, Rajagoplan B. A framework for creating hybrid open source software communities. Inform Syst

J 2002;12(1):7-25. [doi: 10.1046/j.1365-2575.2002.00116.x]
56. Erenkrantz J. Release management within open source projects. Proceedings of the Third Workshop on Open Source

Software Engineering, Portland, OR 2003.
57. Thomas C. Improving verification, validation, and test of the Linux kernel: the Linux stabilization project. In: Proceedings

of the Third Workshop on Open Source Software Engineering. Portland, OR; 2003.
58. Iyer M. Analysis of Linux test project's kernel code coverage. Austin, TX: IBM Corporation; 2002. URL: http://ltp.

sourceforge.net/documentation/technical_papers/kernel_coverage.pdf [accessed 2007 Apr 16] [WebCite Cache ID
5NvKVXOxu]

59. Myers G. A controlled experiment in program testing and code walkthroughs/inspections. Comm ACM 1978;21(9):760-768.
[doi: 10.1145/359588.359602]

60. Basili V, Selby R. Comparing the effectiveness of software testing strategies. IEEE T Software Eng 1987;13(12):1278-1296.
61. Kamsties E, Lott C. An empirical evaluation of three defect-detection techniques. Proceedings of the 5th European Software

Engineering Conference, Sitges, Spain, September 25-28, 1995.

J Med Internet Res 2007 | vol. 9 | iss. 2 | e8 | p. 16http://www.jmir.org/2007/2/e8/
(page number not for citation purposes)

Koru et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1046/j.1365-2575.2001.00113.x
http://dx.doi.org/10.1109/MS.2003.1231158
http://dx.doi.org/10.1145/505863.505878
http://dx.doi.org/10.1109/32.601071
http://dx.doi.org/10.1109/52.28121
http://dx.doi.org/10.1016/S0164-1212(99)00073-4
http://dx.doi.org/10.1109/52.232397
http://dx.doi.org/10.1016/0164-1212(92)90089-3
http://dx.doi.org/10.1145/269012.269020
http://dx.doi.org/10.1109/TSE.2003.1223643
http://opensource.ucc.ie/icse2002/HalloranScherlis.pdf
http://opensource.ucc.ie/icse2002/HalloranScherlis.pdf
http://www.webcitation.org/

 5NskgWv6b
http://dx.doi.org/10.1109/MS.2004.1259206
http://dx.doi.org/10.1145/567793.567795
http://dx.doi.org/10.1046/j.1365-2575.2002.00116.x
http://ltp.sourceforge.net/documentation/technical_papers/kernel_coverage.pdf
http://ltp.sourceforge.net/documentation/technical_papers/kernel_coverage.pdf
http://www.webcitation.org/

 5NvKVXOxu
http://www.webcitation.org/

 5NvKVXOxu
http://dx.doi.org/10.1145/359588.359602
http://www.w3.org/Style/XSL
http://www.renderx.com/

62. Wood M, Roper M, Brooks A, Miller J. Comparing and combining software defect-detection techniques. Proceedings of
the 6th European Conference on Software Engineering 1997:262-277.

63. Jalote P, Haragopal M. Overcoming the NAH Syndrome for Inspection Deployment. Proceedings of the International
Conference on Software Engineering 1998:371-378. [doi: 10.1109/ICSE.1998.671390]

64. Hissam S, Weinstock C, Plakosh D, Asundi J. Perspectives on Open Source Software. CMU/SEI-2001-TR-019. Pittsburg,
PA: Carnegie Mellon Software Engineering Institute; 2001. URL: http://www.sei.cmu.edu/pub/documents/01.reports/pdf/
01tr019.pdf [accessed 2007 Apr 16] [WebCite Cache ID 5NslnRroS]

65. Mockus A, Fielding RT, Herbsleb J. The Apache server.. Proceedings of the 22nd International Conference on Software
Engineering A case study of open source software development; 2000:263-272.

66. Miller B, Fredriksen L, So B. An Empirical Study of the Reliability of Unix Utilities. Comm ACM 1990;33(12):32-44.
[doi: 10.1145/96267.96279]

67. Capiluppi A, Lago P, Morisio M. Characteristics of open source projects. Proceedings of the Seventh European Conference
on Software Maintenance and Engineering; 2003;:317. [doi: 10.1109/CSMR.2003.1192440]

68. Hunt F, Johnson P. On the Pareto Distribution of Sourceforge Projects. Cambridge, UK: Cambridge University; 2003.
URL: http://www.ifm.eng.cam.ac.uk/people/fhh10/Sourceforge/Sourceforge%20paper.pdf [accessed 2007 Apr 16] [WebCite
Cache ID 5NslBEpHN]

69. Dinh-Trong T, Bieman J. The FreeBSD project: a replication case study of open source development. IEEE T Software
Eng 2005;31(6):481-494. [doi: 10.1109/TSE.2005.73]

70. Stark JE. Peer Reviews in Open-Source Software Development. Australia: Griffith University; 2001. URL: http://ecommerce.
cit.gu.edu.au/ict/docs/theses/JStark_Dissertation_OSS.pdf [accessed 2007 Apr 16] [WebCite Cache ID 5NslHVMTe]

71. SourceForge Home page. sourceforge.net. URL: http://sourceforge.net/ [accessed 2007 Apr 16] [WebCite Cache ID
5HrhxjQYC]

72. FreshMeat Home page. freshmeat.net. URL: http://freshmeat.net/ [accessed 2007 Apr 16] [WebCite Cache ID 5HrjAMLJ4]
73. BioMed Central Home page. biomedcentral.com. URL: http://www.biomedcentral.com/ [accessed 2007 Apr 16] [WebCite

Cache ID 5Hri4z1L8]
74. Koru AG, Tian J. Defect Handling in Medium and Large Open Source Projects. IEEE Software 2004;21(4):54-61. [doi:

10.1109/MS.2004.12]
75. Kreft I, Yoon B. Are multilevel techniques necessary? An attempt at demystification. Annual Meeting of the American

Educational Research Association; April 4-8,. New Orleans, LA; 1994. URL: http://eric.ed.gov/ERICDocs/data/ericdocs2/
content_storage_01/0000000b/80/26/c1/54.pdf [accessed 2007 Apr 16] [WebCite Cache ID 5NslPObfA]

76. Maas C, Hox J. Sufficient Sample Sizes for Multilevel Modeling. Methodology 2005;1(3):86-92. [doi:
10.1027/1614-2241.1.3.85]

77. Hosmer D, Lemeshow S. Applied Logistic Regression. New York: John Wiley & Sons; 1989.
78. Schonlau M, Fricker RD, Elliott MN. Conducting Research Surveys via E-mail and the Web. Santa Monica, CA: RAND

Corporation; 2002.
79. Hars A, Ou S. Working for free? Motivations for participating in open source projects. Int J Electron Comm 2002;6(3):25-39.
80. Hars A, Ou S. Working for free? Motivations of participating in open source projects. Proceedings of the 34th Hawaii

International Conference on System Sciences 2001;7:7014.
81. Lakhani K, Wolf R. Why hackers do what they do: understanding motivation and effort in free/open source software

projects. In: Feller J, Fitzgerald B, Hissam S, Lakhani K, editors. Perspectives on Free and Open Source Software. Cambridge,
MA; The MIT Press; 2005.

82. Lindner JR, Murphy TH, Briers GE. Handling nonresponse in social science research. J Agr Educ 2001;42(4):43-53.
83. Siegel S, Castellan J. Nonparametric Statistics for the Behavioral Sciences. New York: McGraw Hill; 1988.
84. Eysenbach G. Improving the quality of Web surveys: the Checklist for Reporting Results of Internet E-Surveys (CHERRIES).

J Med Internet Res 2004 Sep 29;6(3):e34 [FREE Full text] [Medline: 15471760] [doi: 10.2196/jmir.6.3.e34]
85. Serlin R, Levin J. Teaching how to derive directly interpretable coding schemes for multiple regression analysis. J Educ

Stat 1985;10(3):223-238. [doi: 10.2307/1164794]
86. Wendorf C. Primer on multiple regression coding: Common forms and the additional case of repeated contrasts. Understand

Stat 2004;3(1):47-57. [doi: 10.1207/s15328031us0301_3]
87. Robles G, Scheider H, Tretkowski I, Weber N. Who is doing it? A research on Libre Software developers. Berlin, Germany:

Technical University of Berlin; 2001. URL: http://widi.berlios.de/paper/study.pdf [accessed 2007 Apr 16] [WebCite Cache
ID 5NsmG1QA7]

88. Lakhani K, Wolf B, Bates J, DiBona C. The Boston Consulting Group hacker survey. O'Reilly Open Source Conference;
July 22-26,. 2002. URL: http://www.ostg.com/bcg/BCGHACKERSURVEY.pdf [accessed 2007 Apr 16] [WebCite Cache
ID 5NslYu4Ht]

89. Hertel G, Niedner S, Herrmann S. Motivation of software developers in open source projects: an Internet-based survey of
contributors to the Linux kernel. Res Pol 2003;32(7):1159-1177. [doi: 10.1016/S0048-7333(03)00047-7]

J Med Internet Res 2007 | vol. 9 | iss. 2 | e8 | p. 17http://www.jmir.org/2007/2/e8/
(page number not for citation purposes)

Koru et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1109/ICSE.1998.671390
http://www.sei.cmu.edu/pub/documents/01.reports/pdf/01tr019.pdf
http://www.sei.cmu.edu/pub/documents/01.reports/pdf/01tr019.pdf
http://www.webcitation.org/

 5NslnRroS
http://dx.doi.org/10.1145/96267.96279
http://dx.doi.org/10.1109/CSMR.2003.1192440
http://www.ifm.eng.cam.ac.uk/people/fhh10/Sourceforge/Sourceforge%20paper.pdf
http://www.webcitation.org/

 5NslBEpHN
http://www.webcitation.org/

 5NslBEpHN
http://dx.doi.org/10.1109/TSE.2005.73
http://ecommerce.cit.gu.edu.au/ict/docs/theses/JStark_Dissertation_OSS.pdf
http://ecommerce.cit.gu.edu.au/ict/docs/theses/JStark_Dissertation_OSS.pdf
http://www.webcitation.org/

 5NslHVMTe
http://sourceforge.net/
http://www.webcitation.org/

 5HrhxjQYC
http://www.webcitation.org/

 5HrhxjQYC
http://freshmeat.net/
http://www.webcitation.org/

 5HrjAMLJ4
http://www.biomedcentral.com/
http://www.webcitation.org/

 5Hri4z1L8
http://www.webcitation.org/

 5Hri4z1L8
http://dx.doi.org/10.1109/MS.2004.12
http://eric.ed.gov/ERICDocs/data/ericdocs2/content_storage_01/0000000b/80/26/c1/54.pdf
http://eric.ed.gov/ERICDocs/data/ericdocs2/content_storage_01/0000000b/80/26/c1/54.pdf
http://www.webcitation.org/

 5NslPObfA
http://dx.doi.org/10.1027/1614-2241.1.3.85
http://www.jmir.org/2004/3/e34/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15471760&dopt=Abstract
http://dx.doi.org/10.2196/jmir.6.3.e34
http://dx.doi.org/10.2307/1164794
http://dx.doi.org/10.1207/s15328031us0301_3
http://widi.berlios.de/paper/study.pdf
http://www.webcitation.org/

 5NsmG1QA7
http://www.webcitation.org/

 5NsmG1QA7
http://www.ostg.com/bcg/BCGHACKERSURVEY.pdf
http://www.webcitation.org/

 5NslYu4Ht
http://www.webcitation.org/

 5NslYu4Ht
http://dx.doi.org/10.1016/S0048-7333(03)00047-7
http://www.w3.org/Style/XSL
http://www.renderx.com/

90. Briand L, El Emam K, Laitenberger O, Fussbroich T. Using simulation to build inspection efficiency benchmarks for
development projects. Proceedings of the 20th International Conference on Software Engineering 1998:340-349. [doi:
10.1109/ICSE.1998.671387]

91. Wohlin C, Aurum A, Petersson H, Shull F, Ciolkowski M. Software inspection benchmarking - a qualitative and quantitative
comparative opportunity. METRICS '02 Proceedings of the 8th International Symposium on Software Metrics 2002:118-127.
[doi: 10.1109/METRIC.2002.1011331]

92. Runeson P, Wohlin C. An experimental evaluation of an experience-based capture-recapture method in software code
inspections. Empir Softw Eng 1998;3(4):381-406. [doi: 10.1023/A:1009728205264]

93. Sauer C, Jeffery R; Land LPW. Validating the defect detection performance advantage of group designs for software
reviews: report of a laboratory experiment using program code. In: ESEC '97/FSE-5: Proceedings of the 6th European
conference held jointly with the 5th ACM SIGSOFT international symposium on Foundations of software engineering
1997:294-309-294-309.

94. Porter A, Siy H, Toman C, Votta L. An experiment to assess the cost-benefits of code inspections in large scale software
development. Proceedings of the 3rd ACM SIGSOFT Symposium on Foundations of Software Engineering 1995;:92-103.

95. ; The Good Automated Manufacturing Practice (GAMP) Guide for Validation of Automated Systems in Pharmaceutical
Manufacture. Tampa, FL: International Society for Pharmaceutical Engineering; 2002.

submitted 22.08.06; peer-reviewed by P Murray, R Pietrobon, C McDonald; comments to author 05.09.06; revised version received
09.04.07; accepted 11.04.07; published 07.05.07

Please cite as:
Koru G, El Emam K, Neisa A, Umarji M
A Survey of Quality Assurance Practices in Biomedical Open Source Software Projects
J Med Internet Res 2007;9(2):e8
URL: http://www.jmir.org/2007/2/e8/
doi: 10.2196/jmir.9.2.e8
PMID: 17513286

© Günes Koru, Khaled El Emam, Angelica Neisa, Medha Umarji. Originally published in the Journal of Medical Internet Research
(http://www.jmir.org, 07.05.2007). Except where otherwise noted, articles published in the Journal of Medical Internet Research
are distributed under the terms of the Creative Commons Attribution License (http://www.creativecommons.org/licenses/by/2.0/),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited,
including full bibliographic details and the URL (see "please cite as" above), and this statement is included.

J Med Internet Res 2007 | vol. 9 | iss. 2 | e8 | p. 18http://www.jmir.org/2007/2/e8/
(page number not for citation purposes)

Koru et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1109/ICSE.1998.671387
http://dx.doi.org/10.1109/METRIC.2002.1011331
http://dx.doi.org/10.1023/A:1009728205264
http://www.jmir.org/2007/2/e8/
http://dx.doi.org/10.2196/jmir.9.2.e8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17513286&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

