
Review

Generic Design of Web-Based Clinical Databases

Jacob Anhøj, MD, DIT

Corresponding Author:
Jacob Anhøj, MD, DIT
AstraZeneca A/S
Business Communication
Roskildevej 22
DK-2620 Albertslund
Denmark
Phone: +45 43666275
Fax: +45 43666100
Email: jacob@anhoej.net

Abstract

Background: The complexity and the rapid evolution and expansion of the domain of clinical information make development
and maintenance of clinical databases difficult. Whenever new data types are introduced or existing types are modified in a
conventional relational database system, the physical design of the database must be changed accordingly. For this reason, it is
desirable that a clinical database be flexible and allow for modifications and for addition of new types of data without having to
change the physical database schema. The ideal clinical database would therefore implement a highly-detailed logical database
schema in a completely-generic physical schema that stores the wide variety of clinical data in a small and constant number of
tables.

Objective: The objective was to review the medical literature regarding generic design of clinical databases.

Methods: A search strategy was devised for PubMed and Google to get the best match of peer-reviewed articles and free Web
resources on the subject.

Results: Eight peer reviewed articles and a Web tutorial were found. All the resources described the so-called
Entity-Attribute-Value (EAV) design as a means of simplifying the physical layout of data tables in a clinical database. In
Entity-Attribute-Value design all data can be stored in a single generic table with conceptually 3 columns: 1 for entity (eg, patient
identification), 1 for attribute (eg, name), and 1 for value (eg, "Jens Hansen"). To add more descriptive fields to the entity class,
all that is necessary is to add attribute values to be stored in the attribute field. The main advantages of the Entity-Attribute-Value
design are flexibility and effective entity-centered data retrieval. The main disadvantages are complicated front-end programming
needed to display data in a conventional layout that the user understands and less-efficient attribute-centered queries. The Internet
offers unique opportunities for database deployment, eliminating problems of user-interface deployment. Furthermore, Web
forms may be generated in a completely-generic fashion during run time from metadata describing the semantic structure of
clinical information stored in the database.

Conclusions: The Entity-Attribute-Value model is useful for generic design of clinical databases. Depending on the specific
requirements of the application, more or less complex metadata models may be applied.

(J Med Internet Res 2003;5(4):e27) doi: 10.2196/jmir.5.4.e27

KEYWORDS

Databases; medical informatics applications; software design; Internet

Introduction

Clinical databases may contain a large variety of data from
different domains, eg, patient visits, test results, laboratory
reports, diagnoses, therapy, medication, and procedures. Clinical
databases may have different purposes, eg, patient management,
electronic patient records, clinical research, and quality control.
Clinical databases usually have a large number of users with

different requirements for views of the database. The
administrator does not want to view data per patient, while the
nurse must be able to lookup current medication for a specific
patient. The researcher may want to do data mining on clinical
information for thousands or millions of patients, and the
clinician should be able to see his or her ambulatory schedule.
Most clinical databases comprise only a part of these
functionalities, but these examples illustrate the challenge that
designers of clinical databases face. Furthermore, in contrast to

J Med Internet Res 2003 | vol. 5 | iss. 4 | e27 | p. 1http://www.jmir.org/2003/4/e27/
(page number not for citation purposes)

AnhøjJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:jacob@anhoej.net
http://dx.doi.org/10.2196/jmir.5.4.e27
http://www.w3.org/Style/XSL
http://www.renderx.com/

schemas from many other domains (eg, finance and public
administration) the logical data schemas of clinical data are
always incomplete and developing.

In databases, an entity is a single person, place, or thing (eg,
patient or diagnostic test) about which data can be stored. In
conventional relational database design, each entity is mapped
to one or more tables using values of one or more rows to
uniquely identify each record. That means that for each entity
there exists at least one table. This strategy works well for most
databases even if the number of concepts involved in a domain
may be high. As long as the domain of interest remains relatively
unchanged, the table layout (ie, the physical schema) should
work well for many years. The domain of clinical science in
particular (and biology in general) is, however, under constant
development as new concepts appear and old concepts are
modified or deferred.

In a conventional database (that is, in a conventional relational
database), new tables must be created to record new concepts.
To give users access to the new tables, new forms must be
designed and links to these forms must be provided in the user
interface. If a table that is already in the database needs to be
modified care must be taken not to destroy existing data and
not to break any constraints. Accordingly, user-interface forms
must be redesigned to reflect changes (eg, fields that have been
added or removed) in existing tables.

The complexity and the rapid evolution and expansion of the
domain of clinical information thus require a large maintenance
overhead if data are laid out using a conventional design. For
this reason, it is desirable that a clinical database be flexible
and allow for modifications and for addition of new types of
data without having to change the physical database schema.
The ideal clinical database would therefore implement a
highly-detailed logical database schema in a completely-generic
physical schema that stores the wide variety of clinical data in
a small (and constant) number of tables.

The aim of this project was to provide an overview of techniques
and problems in generic design of Web-based clinical databases.

Methods

Medline was searched through PubMed [1]. Searching was done
by trial-and-error using combinations of keywords to get the
best match of articles covering the problem. Furthermore a
search strategy was devised for Google [2] using a similar
trial-and-error strategy.

Results

The final PubMed search was done on July 11, 2003 using the
search term:

(generic database design clinical) OR (entity
attribute value).

This term was translated by PubMed into:

(((entity[All Fields] AND attribute[All Fields])
AND value[All Fields]) OR (((generic[All Fields]
AND
("databases"[MeSH Terms] OR database[Text Word]))
 AND design[All Fields]) AND clinical[All
Fields])).

Thirty-three papers were found and 13 were selected based on
their title. Of these, 7 were selected based on their abstract and
the full-text papers [3- 9] were either downloaded or ordered
from the Danish National Library of Science and Medicine.

Google was searched on the same day using the search term:

clinical database generic design.

The search was restricted to the first 30 hits. One additional
paper [10] and 1 Web resource [11] of interest were found.

The 9 resources were all from either of 2 research groups:
Department of Medical Informatics, Columbia University, New
York, NY and Center for Medical Informatics, Yale University,
New Haven, Conn. Three production databases were the basis
of the 2 group's research: The Clinical Data Repository at
Columbia-Presbyterian Medical Center (CPMC), the Adaptable
Clinical Trials DataBase (ACT/DB), and SENSELAB.

CPMC [8- 10] is a large clinical repository for millions of
patients dating back to the beginning of the nineteen nineties.
Several front-end applications offer access to the database giving
different views for health care professionals, administrators and
researchers.

ACT/DB [3,4,6,7,11] is a clinical-trials database built upon the
same design principles as CPMC. Nadkarni et al introduce the
term "entity-attribute-value (EAV) design" for generic
structuring of data in a relational database [7]. The database is
accessible through a generic Web-based interface (WebEAV)
[4]. Web forms for displaying and editing data are generated
automatically during run time from metadata stored in the
database.

SENSELAB [5] is a database for heterogeneous neuronal data.
As such it is not a clinical database. However, the SENSELAB
architecture uses an object-oriented approach to the EAV model
by defining classes and relations (EAV/CR). The EAV/CR
architecture is useful for scientific data in general, but it is of
special interest for clinical databases.

The principles and design issues involved in these databases
are the focus of the remainder of this paper. I will not go into
details about the specific implementations of these systems,
rather I will present techniques involved in the design of generic
database systems. For design details about the 3 database
systems the reader is encouraged to consult the references.

Entity-Attribute-Value Design
In conventional database design, each parameter of interest is
represented in a separate column in a table. As new kinds of
data need to be managed, the number of columns and/or tables
needs to grow.

To add a new attribute for patient description (eg, phone
number) to a conventional relational database design (Table 1),
another column has to be added to the table.

J Med Internet Res 2003 | vol. 5 | iss. 4 | e27 | p. 2http://www.jmir.org/2003/4/e27/
(page number not for citation purposes)

AnhøjJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Table 1. Conventional relational database design (example)

Date of BirthNamePatientID

1956-Aug-01Jens Hansen1

1974-Sept-04Hans Jensen2

In EAV design, however, data may be stored in a single table
with (conceptually) 3 columns: 1 column for entity

identification, 1 for attribute, and 1 for the value of the attribute
(Table 2).

Table 2. EAV (Entity-Attribute-Value) database design

ValueAttributePatientID

Jens HansenName1

1956-Aug-01DateOfBirth1

Hans JensenName2

1974-Sept-04DateOfBirth2

To add a phone number attribute in the EAV table (Table 2),
all that is required is to define a new code for phone number to
be stored in the attribute column. No change to the table schema
is needed. Theoretically, most of the facts that are stored in a
database can be stored in a single EAV table.

The EAV design has several advantages:

• Flexibility: There are no limits to the number of attributes
per entity. The logical database schema can grow without
affecting the physical schema.

• Storage: In a clinical database thousands of parameters are
available while only a few may be recorded for each patient.
In a conventional design this may lead to empty (NULL)
fields. The EAV design does not need to reserve space for
attributes with NULL values.

• Efficient entity-centered queries: If, for example, all
information for a single patient is needed, it is necessary to
query all data tables looking for information about this
patient. In a conventional database this may be a
time-consuming task that requires looking through hundreds
of tables each of which may or may not have information
for this patient. As the number of tables and columns grow,
the query must be reprogrammed. In an EAV database only
1 table needs to be queried, no joins are necessary, and no
change of code is required as the domain evolves. (A join
combines data from 2 or more tables based upon a common
attribute.)

The EAV design has, however, some drawbacks:

• Data display: As discussed later, the user naturally regards
data as being organized conventionally in tables and
columns regardless of the physical layout of data.
Consequently it may be necessary to transform ("pivot")
EAV data into a conventional layout when displaying data.
This and other tasks that a conventional database would do
automatically (eg, referential integrity checking or
form-to-subform linkage) require considerable front-end
programming in EAV designs. (Referential integrity
checking is checking that values in one table that are
intended to be used as keys to another table are indeed found
in the second table.)

• Less-efficient attribute-centered queries: In contrast to
entity-centered queries, complex attribute-centered queries,
which are based on attribute values, are significantly less
efficient and technically more difficult in an EAV database
than in a conventional database. The query "show me all
patients whose name starts with J and whose date of birth
is earlier than 1970" is straightforward in a conventional
database. To achieve the same result in an EAV database,
set operations (for example, INTERSECT) or joins on
multiple versions of the EAV table would have to be
performed. (INTERSECT is an operation that compares 2
queries to identify records that are found in both.) Set
operations and joins are considerably slower than simple
select operations. As the number of attributes increase the
execution time increases exponentially. Querying EAV data
will be discussed in greater detail later.

• Constraint checking: In a well-designed conventional
database, constraint checking is either unnecessary or trivial.
For example, in a conventional table non-null constraints
may be placed on columns to prevent incomplete records
from being saved. An incomplete record would appear if,
for example, the user forgets to fill in a field on a form. In
an EAV table a missing attribute-value pair would normally
result in a missing record. For example, if no record for one
patient's last name is saved in the EAV table this will—from
a logical point of view—lead to data that is inconsistent, in
the sense that the data for this patient will not be similar to
the data for other patients. To prevent this from happening
in an EAV database, checking of such constraints should
be programmed into the user interface.

Metadata
EAV design is a way of simplifying the physical schema of the
database, making it domain-independent. Regardless of the
physical schema, the user naturally perceives the data as
conventionally structured in tables and columns. The logical
schema of the database reflects the user's perception of the data.
In an EAV database the logical schema differs greatly from the
physical schema. In a conventional database the two are similar.
Therefore, an EAV system must have some means of translating
the physical schema into a logical schema that reflects the user's
understanding of data. This is achieved through metadata (or

J Med Internet Res 2003 | vol. 5 | iss. 4 | e27 | p. 3http://www.jmir.org/2003/4/e27/
(page number not for citation purposes)

AnhøjJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

dictionary) tables whose content defines the semantics of the
domain being modeled. An example of a metadata table could
be a table listing the attributes available to the data in Table 2.
In this example the metadata table would have 2 records, Name
and DateOfBirth. If it is necessary to record further information
about patients, eg, sex and phone number, that information
should simply be added to the metadata table. Thus, in this case,
metadata represent what would be the column names of a
conventional data table. The metadata model may be enhanced
considerably by, eg, adding more descriptive attributes to the
metadata table. These attributes may have several purposes—eg,
definition of an attribute's data type, constraints, or display
layout (text field, select box, etc). These issues will be discussed
in greater detail in the next section.

Evolution of the EAV Model
In the following sections, I give examples of different EAV
schemas going from the most-simple, least-flexible to the
most-advanced, most-flexible schema. The term "simple" is not
to be interpreted as inadequate. The simple solution may be the
right solution for a specific task.

The examples reflect the systems described in the literature but
are simplified for pedagogical reasons.

A Simple EAV Model
A simple EAV schema for a clinical database is outlined in
Figure 1.

J Med Internet Res 2003 | vol. 5 | iss. 4 | e27 | p. 4http://www.jmir.org/2003/4/e27/
(page number not for citation purposes)

AnhøjJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 1. Simple EAV schema for a clinical database. (The crows-foot symbol—3 small lines at the end of a relationship line—illustrates a one-to-many
relationship between patient and data, and between attribute and data. Text in each ellipse identifies table type.)

Table 3 shows the database tables depicted in the schema of
Figure 1. Data have been arranged in a conventional table for
patient demographics, an EAV table for clinical events, and a
metadata table defining the attributes available to the EAV table.
Table 3 represents the patient from Table 1 after a course of
influenza that started July 1, 2003 and ended July 11, 2003:

The entity part of the Data table is defined by the combination
of patientID and date. The attributeID column holds a reference
to the Attribute table, which defines the name and type of
available attributes. In a real-world production database there
would probably be another table to hold the definition of data
types.

Values may of course be of any type, for example, text, number,
or Boolean (true/false). In the example in Table 3, the Value
field of the Data table is text type. Such a design achieves
simplicity by storing all simple types as text values. This
approach has, however, some drawbacks. First, not all data types
will fit into a text field. Binary objects, eg, x-ray pictures or
ECG (electrocardiogram) curves, are too large as are long texts
(memo-fields). Second, queries based on values will be less
efficient for nontextual values. The text "12" is less than the
text "2" even though it is numerically greater, because text is
sorted character by character, from left to right.

J Med Internet Res 2003 | vol. 5 | iss. 4 | e27 | p. 5http://www.jmir.org/2003/4/e27/
(page number not for citation purposes)

AnhøjJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Table 3. Database tables for the simple EAV schema in Figure 1

Patient table*

genderDate of BirthnamepatientID

Male1956-08-01Jens Hansen1

Data table †

ValueattributeIDdatepatientID

Influenza12003-07-011

2003-07-1122003-07-011

Attribute table ‡

dataTypeattributeNameattributeID

TextDiagnosis1

DateEndDate2

* Conventional table for patient demographics.
† EAV table for clinical events (data).
‡ Metadata table defining attributes available to the EAV table.

Different strategies have been used to store binary data and to
increase the efficiency of value-based queries. The simple
solution is to ignore the problem and accept that all values be
stored as text. This approach may be fully acceptable if it is not

necessary to store binary data and if fast value-based queries of
large data sets are not required. Another approach is to add a
column to the Data table for each data type necessary. For each
record, only 1 value-field will be filled in (Table 4).

Table 4. Data table with a column for each data type, as a strategy for storing binary objects

dateValuelongValuenumericValuetextValueattributeIDdatepatientID

Influenza12003-07-011

2003-07-1122003-07-011

This approach, of course, does not comply with rules for good
database design as empty fields are recorded for each record.
It may, however, be acceptable in small "quick-and-dirty"
applications [12].

The most solid and, from a database designer's perspective,
correct solution is to segregate the data table into a number of
tables based on the data type of the attribute (Table 5).

Table 5. Data table segregated into multiple tables based on the data type of the attribute, as a strategy for storing binary objects

Data table

dataIDdatepatientID

12003-07-011

22003-07-011

DataDate table

valueattributeIDdataID

2003-07-1121

DataText table

valueattributeIDdataID

Influenza12

This approach is used in CPMC, ACT/DB, and SENSELAB.
For simplicity I chose to show only 1 data table in the
illustrations.

The modeling of patient demographic data in a separate
conventional table rather than in the EAV table is deliberate

(although not necessary). For a schema that is not expected to
change often, as is the case with patient demographics, the
advantages of an EAV layout do not exceed its disadvantages;
and conventional tables and EAV tables can coexist happily
together. Furthermore, this design makes it easy to model the
one-to-many relation between patient and clinical events.

J Med Internet Res 2003 | vol. 5 | iss. 4 | e27 | p. 6http://www.jmir.org/2003/4/e27/
(page number not for citation purposes)

AnhøjJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Relations between entities in an EAV table are complicated to
model in the simple EAV design. In an electronic patient-record
system, for example, it should be possible to record relationships
between clinical events (eg, infection leads to a course of
penicillin or myocardial infarction leads to death). The
enhancement of the EAV design to handle complex relationships
between classes will be described later with the EAV/CR
schema.

For a simple application intended mainly for data entry, the
simple EAV schema may suffice. With the need for a
more-advanced user interface for data-display and input
purposes, however, some means of grouping attributes becomes

necessary. With the simple EAV schema, grouping attributes
together on display forms may be done only by entity (patientID
and date) or attribute. The application has no way of telling how
EAV data records are related and should be displayed
together—eg, multiple values from the same blood chemistry
panel.

Enhancing the EAV Model
Grouping related attributes for display purposes may be
accomplished in several ways. One or more descriptive columns
may be added to the "entity part" of the Data table, or the
metadata schema may be enhanced. An example of a
combination of both methods is shown in Figure 2.

Figure 2. Enhanced EAV schema with grouping of attributes for form display. (Text in each ellipse identifies table type.)

A group table and a form table have been added to the metadata
schema. Attributes may now be grouped and attribute groups
may be part of forms. To the entity part of the Data table a new
field, formID, has been added telling the application to which
form a data record belongs. Now any medical event recorded
in the Data table belongs to a form and then may be displayed
together with all the other attributes on that form. Furthermore,
this design facilitates reuse of attribute groups on different
forms.

Depending on the domain being modeled and the requirements
of the users, other metadata schemas may be suitable.

The simple and the enhanced EAV schemas discussed above
are examples of the use of generic EAV tables in clinical
database applications. Although to some degree generic, the
proposed schemas will need adjustment to the actual domain
in question. To achieve total domain-independence more refined
models must be created.

An Object-oriented Approach to EAV Modeling
The EAV/CR model adds an object-oriented framework to the
EAV model by definition of classes and relations. The EAV/CR
model was developed for scientific data in general but is useful
for clinical data [5].

J Med Internet Res 2003 | vol. 5 | iss. 4 | e27 | p. 7http://www.jmir.org/2003/4/e27/
(page number not for citation purposes)

AnhøjJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 3 shows a simplified example of the EAV/CR table
layout used in the SENSELAB database. The class and the
attribute tables hold the definitions of classes and their fields.
The ClassHierachy table records relations between classes. In
this example a subclass can have any number of superclasses,
and a superclass can have any number of subclasses. The

attribute table records the class to which the attribute belongs
and the type of attribute. An attribute can be of any simple type
and may even be of class type. Class instances (objects) are
recorded in the Object table and instance fields are recorded in
the Data table, which is similar to the data table in the simple
EAV models.

Figure 3. EAV schema with classes and relations (EAV/CR). Simplified from Nadkarni et al [5]. (Text in each ellipse identifies table type.)

The example in Table 6 depicts 2 classes, patient and doctor,
which are subtypes of a common person class. The patient class
has an attribute of object type referring to the patient's
responsible doctor. For readability IDs are presented as names
instead of numbers.

This example illustrates the use of inheritance and composition
in database design. Inheritance and composition are two
important concepts in object-oriented programming. Inheritance
can be regarded as an "is-a" relationship between objects—a
patient is a person, and a doctor is a person. Composition is
often referred to as a "has-a" relationship—a patient has a
doctor.

Thus, with this simple layout with (conceptually) just 5 tables,
any real-world object can be recorded. Furthermore, objects

may be part of other objects; and objects may be related through
inheritance. Ad hoc relations between objects (eg, penicillin
leads to rash) may be recorded as objects themselves. For this
purpose, a class, ObjectRelation, could be defined with 2
attributes, objectID and relatedObjectID. More descriptive
attributes may be added to this class if required—eg, causality.

Obviously, considerable up-front programming is required to
drive an ergonomic user interface for the EAV/CR model in a
real-life production environment. On the other hand, this is a
one-time-only job. Another drawback of the EAV/CR design
is that the system administrator must have a solid understanding
of the object-oriented framework in order to design useful
classes. An EAV/CR database is therefore hardly an end-user
tool for the average clinician or researcher. As always, flexibility
comes with a price.

J Med Internet Res 2003 | vol. 5 | iss. 4 | e27 | p. 8http://www.jmir.org/2003/4/e27/
(page number not for citation purposes)

AnhøjJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Table 6. Database tables as an example of the EAV schema with classes and relations (EAV/CR) in Figure 3

Class table

className

Person

Patient

Doctor

ClassHierachy table

subClassIDsuperClassID

PatientPerson

DoctorPerson

Attribute table

dataTypeattributeNameclassID

TextNamePerson

DateDate-of-birthPerson

Class: DoctorDoctorPatient

TextGenderPatient

TextPositionDoctor

Object table

classIDobjectName

PatientPatient01

DoctorDoctor01

Data table

valueattributeIDobjectID

Jens HansenNamePatient01

1956-08-01Date-of-birthPatient01

Doctor01DoctorPatient01

MaleGenderPatient01

DocNameDoctor01

1960-03-12Date-of-birthDoctor01

HeadPositionDoctor01

Querying EAV Data
From a database perspective, querying EAV data is not different
from querying conventional data. As mentioned earlier,
however, in an EAV database, the physical layout differs greatly
from the logical layout, and the user generally wants to see data
displayed in a conventional format.

As an example, querying Table 1 for facts about patients whose
names start with Jens and who were born before 1970 is
straightforward:

SELECT *
FROM table1
WHERE name LIKE 'Jens%'
 AND dob < '1970';

To achieve the same result from querying Table 2 requires
executing a rather-complex SQL (Structured Query Language)
statement:

SELECT d1.patientID AS patientID,
 d1.value AS name,
 d2.value AS dob
FROM table2 AS d1 INNER JOIN table2 AS d2
 USING (patientID)
WHERE d1.attribute='name'
 AND d1.value LIKE 'Jens%'
 AND d2.attribute = 'dob'
 AND d2.value < '1970';

The same result may be obtained in several ways, but in any
case the query must include set operations (INTERSECT) or
as in this example a self join for each attribute. (A self join is
a join of a table with itself.) Aside from being complex and out
of reach for most end users, these operations are far slower than
simple select statements.

I did an experiment using data for one million patients described
by 3 attributes: name, date of birth, and gender. These facts
were duplicated in a conventional table and in an EAV table in
a MySQL database. Three queries were performed on each table

J Med Internet Res 2003 | vol. 5 | iss. 4 | e27 | p. 9http://www.jmir.org/2003/4/e27/
(page number not for citation purposes)

AnhøjJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

with 1, 2, and 3 attributes respectively. Execution time was
approximately 2 seconds for the conventional table irrespective
of the number of attributes. For the EAV table execution time
was 7, 14, and 24 seconds respectively. Thus execution time
increases linearly with the number of rows (1 million in the
conventional table and 3 million in the EAV table) and—in the
EAV table—with the number of joins involved in a query. In
the conventional table, however, the number of joins did not
affect query time.

Some strategies have been suggested to deal with this problem:

• There may not be a problem. Attribute-centered queries are
important for research questions; their performance is not
critical for the care of individual patients. If the need for
cross-patient data is infrequent the advantages of EAV
design probably exceeds the disadvantages.

• Any need for regular cross-patient data access could be met
by making backups of the production database and restoring
them onto separate hardware. Resource-intensive queries
run on the backup data will not affect the production server.
Additionally, the EAV data schema could be transformed
into numerous conventional tables after backup thus easing
query design by end users with modest SQL skills [6].

• If complex, attribute-centered, user-defined, ad hoc queries
are important to an application, steps should be taken to
facilitate this. First, a user interface, whether graphical or
not, should be built to help users retrieve data. The user
should be able to freely select any combination of attributes
and criteria. The interface should then translate user requests
into semantically-valid and syntactically-valid SQL
statements; and from the user's point of view, it should not
matter whether data are stored in conventional tables or
EAV tables. This approach was taken by Nadkarni and
Brandt in the development of the ACT/DB Query Kernel
[6].

• Optimization of queries may increase the efficiency
considerably. Breakdown of complex SQL statements into
smaller parts run sequentially may increase query speed.
Each part accesses 1 or 2 tables to create a temporary table
(or view). These (smaller) temporary tables are then joined
[3]. Depending on the ability of the database engine to
devise an efficient search strategy, the overall query speed
may benefit from creating and joining smaller temporary
tables compared to self-joining the full EAV table. An
efficient database engine should, however, itself be able to
optimize the original query, so that little is gained from this
approach. In the MySQL database described above, the
creation of a single temporary table took longer (more than
30 seconds) than the execution of the full 3-attribute search
(24 seconds).

• Johnson et al [10] suggest an extension to the SQL-query
language to facilitate "pivoting" of attribute-centered data
into a conventional layout—the Extended Multi-Feature
(EMF) SQL. Extended Multi-Feature SQL processing time
is linearly proportional to number of attributes.

In summary, querying EAV data is a more complex task than
querying data in a conventional layout; and attribute-centered
queries are less efficient with EAV data compared to
conventional data.

Graphical User Interface
The challenge for the user-interface designer of an EAV
database is to display data and to let the user manipulate data
simulating a conventional layout irrespective of the physical
layout—in other words: to bridge the physical and the logical
schemas.

The World Wide Web offers an opportunity to simplify database
deployment and maintenance. In a typical Web database
application, the user's browser requests data from a remote Web
server, which sends the request to a database server. After
receiving data back from the database server, the Web server
formats it into a Web page and sends it to the client browser.

There are several advantages of Web deployment:

• Problems of form deployment are eliminated since all forms
reside on the Web server.

• Deployment costs are reduced because Web browsers are
available free. Also, hardware costs are reduced since
browsers usually have smaller hardware requirements than
desktop database-management systems do.

• The form-rendering model of Web pages is simpler and
smarter than that of traditional software platforms. Objects
on a Web page can be automatically reformatted when the
browser window is resized or the user changes the font size.
Traditional software developers must put much effort into
physical screen size issues. This is not necessary with Web
forms.

• Web browsers use clever caching algorithms. That means
that when the browser visits a particular page, its contents
are cached on the client. On revisit, only components that
have changed are downloaded again. This reduces download
time and network load.

For these reasons, Web deployment is becoming more and more
popular for multi-user applications. However, Web database
applications are significantly more complex to develop than
traditional database applications for several reasons:

• Web-development tools are less mature than tools for
traditional software development; and development of Web
database applications still requires much "coding-by-hand."
As an example, simple errors such as misspelled variable
names, which would be trapped at edit or compile time in
a traditional environment, will not be detected until runtime
in a Web application.

• Browser-server communication is inherently stateless; when
the server has sent a Web page to the client, it "forgets"
about the client. Tracking information (eg, user
authentication) through several Web pages therefore
involves extra programming. To maintain information, the
developer must store data either in (hidden) form fields on
Web pages or in session variables, which can be accessed
as long as the session lasts. Both approaches complicate
development and may compromise security because other
users (or processes) may gain access to these data
intentionally or accidentally.

• Designing Web forms requires much more programming
than does designing forms in traditional client-server
environments. Web form fields are typeless and input masks

J Med Internet Res 2003 | vol. 5 | iss. 4 | e27 | p. 10http://www.jmir.org/2003/4/e27/
(page number not for citation purposes)

AnhøjJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

for formatting user inputs are not inherent parts of Web
forms. (In typeless fields the user may accidentally enter
numbers in text-only fields or accidentally enter text in
numbers-only fields.) This puts pressure on the programmer
to put much effort into both client-side and server-side data
validation. In a traditional environment, form fields may
be typed; thus, eg, the programmer does not need to worry
about users entering letters in number fields or invalid dates
in date fields. In a Web form, all validation procedures must
be hand coded. Finally, population of select boxes
(drop-down menus) and radio buttons (option buttons) with
dynamic data is usually much easier in a traditional
environment than on a Web form.

Programming Web forms is tedious and error prone, and
automation is highly recommended. Nadkarni et al have studied
a generic framework for automatic generation of Web forms
for display and manipulation of EAV data (WebEAV) [4]. The
main objective was to automate the generation of Web forms
based on metadata in an EAV database. When details about an
event are requested, a form is generated from the metadata of
the attributes involved. Each form field has a unique name,
which is constructed such that the field name contains its own
metadata. When data is sent back to the server, the server creates
the correct SQL statements by parsing field names, and data are
updated accordingly.

WebEAV makes extensive use of client-side validation of data.
Standard validation code in the form of JavaScript is built into
the Web page. Validation relies on the use of form field events
(eg, OnChange, OnFocus, and OnBlur) and metadata for the
attributes in the form (eg, data type, maximum and minimum
bounds, and non-null requirements).

Discussion

Based on searching the literature, it appeared that the
Entity-Attribute-Value model is useful for generic design of
clinical databases. The most advanced model uses an
object-oriented approach and gives tremendous flexibility,
allowing the designer to model any type of concept and any
relation between concepts in the domain of interest without ever
having to worry about changing the table layout or maintaining
the user interface. With the ever changing and evolving domain
of clinical information, generic design is of special interest for
clinical databases, because changes to the logical schema will
not affect the physical schema. However, database designers
from other areas (eg, biology or literature) may also find the
EAV approach useful.

Historically, EAV was introduced into clinical databases in
TMR (The Medical Record), built at Duke in the 1970s [13,14].
In addition to the ones mentioned in this paper, production
databases using EAV components include TrialDB [14], the
HELP system [15], the Cerner and 3M repositories, ClinTrial,
and Oracle Clinical.

Pros and Cons of EAV Design
The advantages of generic design are obvious. The
disadvantages, however, may be less obvious and depend on
the objectives of the specific application in question.

From a performance point of view, the strength of the EAV
design lies in effective entity-centered queries since no joins
are necessary to retrieve all facts about entities (eg, patients or
medical events) as would be the case in a conventional design
with facts spread over hundreds of tables. The drawback lies in
inefficient attribute-centered queries, since a (self) join is
necessary for each attribute that is requested.

Performance of EAV tables may not be an issue for small
databases, but for large clinical repositories with hundreds of
concurrent users, query time may be a critical factor. Also, the
need for complex attribute-centered data retrieval differs greatly
between applications. An electronic patient-record system, for
example, is usually aimed at displaying patient-centered (ie,
entity-centered) facts, while a research database usually must
have some means of aggregating data across a large number of
patients. In the latter, however, query efficiency may not be a
problem, since data summaries are retrieved only intermittently
and may be stored on separate hardware.

These issues warrant careful design of the database schema and
cautious decisions about when to use conventional tables in
place of generic EAV tables. As a rule of thumb, conventional
table design is appropriate for entities whose schemas are not
expected to change often (eg, people or institutions).

Metadata Preserves Information
The simplicity and flexibility of the database schema also
increases the complexity of collecting and displaying
information from data. The user needs to see and enter related
data on the same form. Often single values do not make sense
unless coupled with other values. Take as an example a body
weight of 176 lb (80 kg). This would be perfectly normal (and
desirable for some of us) for an adult male with a height of 5
ft, 10 in (182 cm). For a 10-year-old girl, 176 lb would be highly
disturbing. Using a simple EAV data table layout, relations
between data are lost unless steps are taken to store these as
well. This is the whole idea of metadata—to conserve
information about relationships between atomic data values.
The metadata schema is the only thing that differs between the
different EAV models presented in Figure 1, Figure 2, and
Figure 3 and between the actual implementations of the EAV
model presented in the articles. The data parts are for practical
purposes the same.

It appears that metadata schemas themselves may be more or
less generic depending on how closely related they are to the
actual domain being modeled. The more specific the metadata
schema is, the less flexible it will be. On the other hand, a
specific metadata schema will require less programming to drive
the user interface than a highly generic one.

To summarize this part, the choice of model depends on the
domain and the requirements for flexibility. The object-oriented
approach is by far the most flexible solution and in many ways
an elegant solution. On the other hand, the complexity
introduced by this model may not be justified unless the domain
requires the fine-grained control over objects and relations. A
simple model may well be the right solution for a simple job.

J Med Internet Res 2003 | vol. 5 | iss. 4 | e27 | p. 11http://www.jmir.org/2003/4/e27/
(page number not for citation purposes)

AnhøjJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Databases and Objects
Much effort has been put into generalizing clinical databases.
The most flexible and generic models take an object-oriented
approach to data modeling the mapping of objects to tables in
a relational database. There is no doubt that object-oriented
design is "hot" in the medical area. But porting of
object-oriented generic databases from traditional relational
databases to produce object-oriented database management
systems (OODBMSs) does not seem to be just around the corner.
One reason for this may of course be that object-oriented
database management systems are still lagging behind relational
database management systems with respect to efficiency and
availability, although extensive research is going on in this field.
Furthermore, object orientation is still a new concept to most
clinicians who design databases. But even with modest skills
in an object-oriented programming language such as Java, the
similarities between object-oriented programming and
object-oriented data management seem striking.

Object-oriented databases come in two flavors [16]:

• Systems that provide object-oriented extensions to relational
systems by adding composite attributes, class hierarchies,
and extensions to a data manipulation language such as
SQL. These systems are called object-relational systems.

• Systems that extend an existing object-oriented
programming language like C++ or Java to deal with
databases. Such languages are called persistent
programming languages. The term "persistent" refers to the
fact that the programming language must devise some
means of storing objects even when the program is not
running. Databases built upon persistent programming
languages are called object-oriented databases.

The former approach has similarities to the approaches described
in this project in that these build upon conventional relational
database management systems. The SENSELAB database allows
for composition and inheritance, and CPMC has explored the
extension of SQL to facilitate attribute-centered querying EAV
data.

The latter approach to generic database design has to my
knowledge not been described in the medical literature. The
idea of encapsulating all data and functionality relevant to an
object within each object opens up a plethora of possibilities of
interest for the developer and manager of clinical information
systems:

• The object-oriented paradigm ("everything is an object")
is a means of describing real-world concepts, and objects
may be easier to understand for a clinician than complex
relationship sets in a relational database. One could say that
object-oriented design brings together the logical and the
physical schema. Even if this may not be completely true,
the user should not have to worry about how to design tables
for storing of objects. The database will take care of this.

• Object-oriented languages handle complex attributes and
inheritance much more elegantly than do even the most
cleverly-designed relational database. When referring to
an object in an object-oriented programming language, the
object's fields and methods are available to the user

immediately, through the object's interface. To mimic an
object in a relational database, the database must be queried
for all attributes of interest, and each value must be accessed
separately.

• Objects may contain methods. For example, a person object
may contain a print() method, which outputs all information
related to the objects in a suitable format. The client
programmer, who builds the user interface, does not have
to worry how this information is gathered. This programmer
only needs to grab the information and present it in a nice
layout on a form. Furthermore, different subtypes of the
person class, eg, patient or doctor, may have different
implementations of the print() method. This is an example
of polymorphism and is one of the most powerful features
of object-oriented programming languages.

• Classes may be reused. If a class has been designed, it may
be reused in other applications; and if a class is redesigned
(eg, to improve execution speed) the client programmer
does not need to know this, as long as the class' interface
is unchanged.

A detailed discussion of object-oriented programming is outside
the scope of this article. However, the power of object-oriented
programming may be summarized in the terms encapsulation
and polymorphism. Encapsulation means that an object knows
all about itself and that it interacts with the surroundings only
through a well-defined interface. Encapsulation facilitates reuse
and safe programming. Polymorphism means "having many
forms." A polymorphic reference is one that can refer to objects
of different (sub) types at different times, which is exactly what
we need in a generic database.

It is obvious that these (and other) facilities of object-oriented
programming languages would be of immense value in the
creation of generic clinical databases. It is, however, important
to realize that a database management system, whether
object-oriented or not, comprises much more than a
programming and query language—important issues being
storage management, transaction management and concurrency
control—and these issues are still under development in
object-oriented database management systems. (Concurrency
control involves locking parts of the database to prevent
unintentional overwriting of data.)

Conclusions
The objective of generic database design is to provide a robust
physical database schema that does not need to change as the
domain evolves. Generic databases are of special interest for
clinical information systems, and several approaches to generic
design have been exercised. They have in common the use of
Entity-Attribute-Value tables for storing data and a number of
metadata tables to describe the semantics and the relations
between data. An object-oriented approach to generic modeling
of metadata is by far the most flexible and domain-independent
approach. However, the overhead in taking this approach may
not be justified for less-advanced applications.

Further studies regarding the implementation of object-oriented
database management systems for the purpose of generic clinical
databases are suggested.

J Med Internet Res 2003 | vol. 5 | iss. 4 | e27 | p. 12http://www.jmir.org/2003/4/e27/
(page number not for citation purposes)

AnhøjJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Acknowledgments
AstraZeneca A/S, Roskildevej 22, DK-2620 Albertslund, Denmark sponsored the study.

The article is an adapted and abbreviated version of the author's final project report for the Diploma in Information Technology
(DIT) at the IT University of Copenhagen.

Conflicts of Interest
None declared.

References

1. ; National Center for Biotechnology Information. Entrez PubMed. URL: http://www.ncbi.nih.gov/entrez/query.fcgi [accessed
2003 Jul 11]

2. ; Google. Home page. URL: http://www.google.com [accessed 2003 Jul 11]
3. Chen RS, Nadkarni P, Marenco L, Levin F, Erdos J, Miller PL. Exploring performance issues for a clinical database

organized using an entity-attribute-value representation. J Am Med Inform Assoc 2000;7(5):475-487. [PMC: 10984467]
[Medline: 20442543]

4. Nadkarni PM, Brandt CM, Marenco L. WebEAV: automatic metadata-driven generation of web interfaces to
entity-attribute-value databases. J Am Med Inform Assoc 2000;7(4):343-356. [PMC: 10887163] [Medline: 20347494]

5. Nadkarni PM, Marenco L, Chen R, Skoufos E, Shepherd G, Miller P. Organization of heterogeneous scientific data using
the EAV/CR representation. J Am Med Inform Assoc 1999;6(6):478-493. [PMC: 10579606] [Medline: 20044207]

6. Nadkarni PM, Brandt C. Data extraction and ad hoc query of an entity-attribute-value database. J Am Med Inform Assoc
1998;5(6):511-527. [PMC: 9824799] [Medline: 99042240]

7. Nadkarni PM, Brandt C, Frawley S, Sayward FG, Einbinder R, Zelterman D, et al. Managing attribute--value clinical trials
data using the ACT/DB client-server database system. J Am Med Inform Assoc 1998;5(2):139-151. [PMC: 9524347]
[Medline: 98185033]

8. Johnson SB, Paul T, Khenina A. Generic database design for patient management information. Proc AMIA Annu Fall
Symp 1997:22-26. [Medline: 98020452]

9. Johnson SB. Generic data modeling for clinical repositories. J Am Med Inform Assoc 1996;3(5):328-339. [PMC: 8880680
] [Medline: 97035024]

10. Johnson SB, Chatziantoniou D. Extended SQL for manipulating clinical warehouse data. Proc AMIA Symp 1999:819-823
[FREE Full text] [Medline: 20032984]

11. Nadkarni P. An introduction to entity-attribute-value design for generic clinical study data management systems. URL:
http://ycmi.med.yale.edu/nadkarni/Introduction%20to%20EAV%20systems.htm [accessed 2003 Jul 11]

12. Cai J, Johnson S, Hripcsak G. Generic data modeling for home telemonitoring of chronically ill patients. Proc AMIA Symp
2000:116-120 [FREE Full text] [Medline: 21027330]

13. Stead WW, Hammond WE, Straube MJ. A chartless record--is it adequate? J Med Syst 1983 Apr;7(2):103-109. [Medline:
83267241] [doi: 10.1007/BF00995117]

14. Nadkarni PM, Brandt C. TrialDB: a generic system for management of clinical study data. Answers to frequently asked
questions. URL: http://ycmi.med.yale.edu/trialdb/ [accessed 2003 Sep 24]

15. Huff SM, Berthelsen CL, Pryor TA, Dudley AS. Evaluation of an SQL model of the HELP patient database. Proc Annu
Symp Comput Appl Med Care 1991:386-390. [Medline: 92223761]

16. Silberschatz A, Korth HF, Sudarshan S. Database Systems Concepts with Oracle CD. Columbus, OH: McGraw-Hill
Science/Engineering/Math; Oct 30, 2001.

Abbreviations
ACT/DB: Adaptable Clinical Trials DataBase
CPMC: The Clinical Data Repository at Columbia-Presbyterian Medical Center
EAV: Entity-Attribute-Value
EAV/CR: EAV with Classes and Relations
SQL: Structured Query Language

J Med Internet Res 2003 | vol. 5 | iss. 4 | e27 | p. 13http://www.jmir.org/2003/4/e27/
(page number not for citation purposes)

AnhøjJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.ncbi.nih.gov/entrez/query.fcgi
http://www.google.com
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=10984467
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20442543&dopt=Abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=10887163
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20347494&dopt=Abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=10579606
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20044207&dopt=Abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=9824799
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=99042240&dopt=Abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=9524347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=98185033&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=98020452&dopt=Abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=8880680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=97035024&dopt=Abstract
http://www.amia.org/pubs/symposia/D005577.PDF
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20032984&dopt=Abstract
http://ycmi.med.yale.edu/nadkarni/Introduction%20to%20EAV%20systems.htm
http://www.amia.org/pubs/symposia/D200744.PDF
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21027330&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=83267241&dopt=Abstract
http://dx.doi.org/10.1007/BF00995117
http://ycmi.med.yale.edu/trialdb/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=92223761&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

submitted 28.08.03; peer-reviewed by P Nadkarni; comments to author 19.09.03; revised version received 25.09.03; accepted 01.10.03;
published 04.11.03

Please cite as:
Anhøj J
Generic Design of Web-Based Clinical Databases
J Med Internet Res 2003;5(4):e27
URL: http://www.jmir.org/2003/4/e27/
doi: 10.2196/jmir.5.4.e27
PMID: 14713655

© Jacob Anhøj. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 4.11.2003. Except where
otherwise noted, articles published in the Journal of Medical Internet Research are distributed under the terms of the Creative
Commons Attribution License (http://www.creativecommons.org/licenses/by/2.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited, including full bibliographic details and the URL
(see "please cite as" above), and this statement is included.

J Med Internet Res 2003 | vol. 5 | iss. 4 | e27 | p. 14http://www.jmir.org/2003/4/e27/
(page number not for citation purposes)

AnhøjJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.jmir.org/2003/4/e27/
http://dx.doi.org/10.2196/jmir.5.4.e27
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14713655&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

